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Motivated by applications in e-commerce logistics and production planning where orders (or items, or jobs)

arrive at different times and must be dispatched or processed in batches, we consider a multi-vehicle dispatch-

ing problem that captures the tension between waiting for orders to arrive and the economies of scale due to

batching. Our model extends the single-vehicle work in Erazo and Toriello (2023), and we focus primarily

on the case of identical vehicles with submodular dispatch times. We propose four different mixed-integer

programming formulations to solve this problem; we analyze the complexity of solving each formulation’s

linear relaxation, study the quality of the corresponding bounds, and leverage column generation to create

heuristics. Moreover, we analyze solutions where all batches are intervals of consecutive orders, and identify

two classes of functions for which such a solution is optimal. Finally, we computationally test our methods

on applications in same-day delivery and machine scheduling with family setups.
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1. Introduction

Retail e-commerce sales have increased significantly over the past few years, reaching a worldwide

total of $5.2 trillion in 2021, expected to grow to $8.1 trillion by 2026 (Statista 2023b). This growth

has put a spotlight on last-mile delivery, the last portion of the order fulfilment process, which

can represent up to 50% of total logistics costs (Vanelslander, Deketele, and Hove 2013). Last-mile

delivery systems are increasingly complex because of the scale of operations and the customers’

desire to have faster deliveries, as evidenced by 22% of customers dropping online shopping sessions

because shipping is too slow (Forbes 2023), and by a surging same-day delivery market that is

expected to grow by over 100% in the next four years (Statista 2023a). In particular, same-day

delivery (SDD) systems are particularly difficult to design and operate because the order arrival
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and packaging process overlaps significantly with the dispatching and delivery process, increasing

the system’s dynamism and reducing opportunities to consolidate orders and decrease routing costs

(Klapp, Erera, and Toriello 2020).

A common element in many processes within an e-commerce supply chain, including same-day

delivery (SDD), order picking and shelf re-stocking, is the need to dispatch (i.e. deliver, process,

pick or re-stock) orders or items that become available at different times, but where batching yields

economies of scale in dispatching time. This is also an element that characterizes many production

systems, where jobs arrive over the workday and are batched to distribute the workload between

multiple machines/servers and benefit from economies of scale. Submodular set functions are often

used to model the economies of scale that arise in these and other applications; their properties have

been widely studied by the combinatorial optimization community (e.g. Krause and Golovin 2014,

Nemhauser and Wolsey 1999, Schrijver 2003). Submodular functions are characterized by their

“discrete concavity”: the marginal change in value from adding an element to a subset decreases as

the subset includes more elements. In formal terms, for a ground set N := {1,2, . . . , n} and function

f : 2N →R, f is submodular if

f(S ∪S′)+ f(S ∩S′)≤ f(S)+ f(S′), S,S′ ⊆N.

In many applications, submodular functions are also non-negative and monotonically non-

decreasing, f(S)≤ f(S′) for S ⊆ S′ ⊆N , and the latter implies the former if f(∅) = 0.

Recently, Erazo and Toriello (2023) proposed the Subadditive Dispatching Problem (SAD) to

model the tension between economies of scale due to batching and idle time due to waiting for

orders. They focused on the case in which one vehicle (or picker, or server) dispatches or processes

orders, and considered the class of subadditive functions to define the dispatch times. In this paper,

we consider the case of multiple vehicles and focus on the scenario with identical vehicles and

submodular dispatch times.
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1.1. Problem Definition and Applications

The Multi-Vehicle Submodular Dispatching Problem (MSMD) is characterized by a finite set of

orders N that must be dispatched or processed, where each order has a release time. The orders

are dispatched by a set M of vehicles (servers), where each vehicle k ∈M has an associated non-

negative, monotone, submodular set function fk : 2
N →R+. Depending on the context, e.g. delivery

or production, N and f may represent different things; for clarity of exposition we adopt delivery

terminology throughout the rest of the paper. Thus, N is a set of orders, a subset S ⊆ N is a

batch of orders, and fk is the dispatch time function of vehicle k, representing the time required

for that vehicle to be dispatched from a depot to deliver the orders in batch S and return to the

depot. Informally, the goal is to partition the order set N into batches that the multiple vehicles

can dispatch, while minimizing the makespan (i.e. the end time of the last dispatch). Finally, when

fk = f for all vehicles k ∈M , we are under the identical vehicles scenario, a common occurrence

in real-world problems, and the main focus of this paper. Suppose each order i ∈N is associated

with a number τi > 0; the following are some important special cases of MSMD:

• f(S) = g
(∑

i∈S τi
)
, where g : R→ R is a non-decreasing concave function with g(0) = 0. In

particular, when τi = 1 for all i ∈N , f is a function of the batch’s cardinality. The specific case

f(S) = a+ b|S|+ c
√
|S|, for S ̸= ∅ and a, b, c≥ 0 is a continuous approximation of expected routing

and delivery time, used to model average-case SDD system behavior and to perform tactical design

of SDD systems with multi-vehicle fleets (Banerjee, Erera, and Toriello 2022, Banerjee et al. 2023,

Stroh, Erera, and Toriello 2022). MSMD allows arbitrary and non-stationary order arrivals, unlike

most previous work.

• Consider a set of nodes V with N ⊆ V , a depot node 0 and an undirected network (V ∪ 0,E)

with non-negative edge lengths. For S ⊆N , define f(S) as the optimal length of a Steiner traveling

salesman problem (TSP) through S ∪ 0; a Steiner TSP tour must visit nodes S ∪ 0 but may also

visit other nodes in the graph. With this function, MSMD captures operational SDD models in

which same-day deliveries must be made to locations N in the network, where different orders
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are ready for delivery at different points in the operating day (Klapp, Erera, and Toriello 2018b).

The function f is submodular for the class of naturally submodular graphs (Herer and Penn 1995),

which includes paths (Klapp, Erera, and Toriello 2018a), trees and other similar topologies.

• If f(S) =
∑

i∈S τi, MSMD generalizes the machine scheduling problem with serial batching,

studied since the 1960’s (Graham 1969), and still studied recently (Ghalami and Grosu 2019).

Similarly, if f(S) =maxi∈S{τi}, MSMD generalizes the machine scheduling problem with parallel

batching, which has received significant attention because of its applications in semi-conductor

production; see Fowler and Mönch (2022) for a recent survey. MSMD allows for arbitrary release

times on both problems. Finally, suppose the order set is partitioned intoQ families F1, . . . ,FQ, with

each family Fq having a setup time τq ≥ 0. With f(S) =
∑

i∈S τi+
∑

q:Fq∩S ̸=∅ τq, MSMD generalizes

serial-batching machine scheduling problems with family setups; see Kramer, Iori, and Lacomme

(2021) for a recent study under the total weighted completion time objective.

1.2. Contributions and Organization

We summarize our main contributions as follows:

1. We formulate the Multi-Vehicle Submodular Dispatching Problem (MSMD) and propose four

different mixed-integer linear programming (MILP) formulations to solve MSMD. We establish the

complexity of solving the LP relaxation for each formulation.

2. We study the quality of the lower bounds given by the LP relaxations of our formulations,

and give an upper bound on their worst-case performance.

3. We analyze the performance of interval solutions, in which batches consist of consecutive

order intervals. We discuss interval-solvable functions, for which there is always an optimal interval

solution; MSMD with these functions can be optimized with off-the-shelf solvers for large n.

4. We perform a computational analysis for two applications: tactical design of multi-vehicle

SDD systems under heterogeneous order arrival rates, and identical machine scheduling with serial

batching, family setups and release times. The former shows an application with an interval-solvable

function and the practical insights that can be derived from the solution; the latter demonstrates

the empirical effectiveness of our methods.
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The rest of the paper has the following organization. Section 2 presents a brief literature review,

while Section 3 defines MSMD under the heterogeneous fleet scenario, formulates it as an MILP and

discusses some preliminary complexity results. Section 4 focuses on the identical vehicles scenario,

presents three alternative MILP formulations, their complexity results, and discusses the quality of

their LP relaxation lower bounds. This section also defines interval-solvable functions and provides

examples. Section 5 summarizes our computational studies, and Section 6 concludes and outlines

future avenues of work. The appendix includes proofs omitted from the main body of the paper.

2. Literature Review
2.1. Same-Day Delivery

Multiple operational models that arise in SDD systems have received significant attention, partic-

ularly models that focus on dispatching, routing and delivery of orders. These problems have been

studied under different conditions, including deterministic or stochastic arrivals, single or multi-

vehicle fleets, and also different objectives, such as minimizing total distance driven, maximizing

orders dispatched or minimizing makespan. The literature on SDD models considers routing times

in general road networks, e.g. Klapp, Erera, and Toriello (2018b, 2020), Sun, Li, and Li (2021),

Voccia, Campbell, and Thomas (2019), Wölck and Meisel (2022), which are not submodular except

in special cases such as paths (Klapp, Erera, and Toriello 2018a, Erazo and Toriello 2023).

To study the average behavior of SDD and other last-mile distribution systems, continuous-time

approximations are being increasingly used for tactical-design; see Banerjee, Erera, and Toriello

(2022), Banerjee et al. (2023), Carlsson et al. (2021), Liu, He, and Shen (2020), Stroh, Erera, and

Toriello (2022). Under reasonably mild conditions, the expected routing time when locations are

sampled randomly from a geographic distribution exhibits economies of scale as the number of

locations increases, growing in proportion to the square root of the number of locations (Beardwood,

Halton, and Hammersley 1959); when considering discrete arrivals, this translates to submodularity.

For a recent survey on applications of continuous approximations in logistics, see Franceschetti,

Jabali, and Laporte (2017); other applications of these techniques in the last mile include Carlsson

and Song (2017).
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2.2. Machine Scheduling

Machine scheduling problems concern the assignment and processing of jobs on a machine, often

one of several, with typical objectives such as minimizing makespan, lateness, weighted completion

times, etc. MSMD generalizes three machine scheduling paradigms: (i) parallel batching, (ii) serial

batching, and (iii) family setups. The parallel-batching problem requires batches to be assigned to

machines, with the processing time of a batch being the longest processing time among jobs in the

batch. This problem has received a lot of attention because of its applications in semiconductor

production; see Chang, Damodaran, and Melouk (2004), Sung et al. (2002), Tian et al. (2009),

Wilson, King, and Hodgson (2004). Recently, Muter (2020) focused on the problem without release

dates, and Fowler and Mönch (2022) presented a literature survey.

The serial-batching problem also requires batches of jobs to be assigned to machines; however,

the processing time of a batch is just the sum of processing times of jobs in the batch. This

problem has been studied since the 1960’s, with seminal heuristic work by Graham (1969), Garey

and Johnson (1978), and relevant complexity results in the 70’s (Garey and Johnson 1979). Work

continues to this day in heuristics (Kuruvilla and Paletta 2015, Paletta and Vocaturo 2011, Habiba

et al. 2019), exact algorithms (Dell’Amico et al. 2008), and approximation algorithms (Ghalami

and Grosu 2019).

Extending the serial-batching problem, researchers have studied variants where the processing

time function exhibits economies of scale, such as with family setups. Batch setup times first

appeared in Monma and Potts (1989), and then family setup times plus release times were con-

sidered for the first time by Schutten, Van De Velde, and Zijm (1996). In general, setup times

are relevant because they may reduce production capacity significantly, e.g. 20% to 50% in board

assembly (Allahverdi 2015), and because other production problems can be modeled using them

(Pessan, Bouquard, and Néron 2008). Recent work includes Balin (2011), Pessan and Néron (2011),

Schaller (2014); in particular, Kramer, Iori, and Lacomme (2021) focus on family setups, but under

the weighted completion time objective and without release times. As in this article, they develop

multiple MILP formulations; however, their models are of pseudo-polynomial size.
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2.3. Submodular Optimization

Submodular functions have been extensively studied in combinatorial optimization (e.g. Krause

and Golovin 2014, Nemhauser and Wolsey 1999, Schrijver 2003), and it is known that they can

be minimized in polynomial time (Iwata, Fleischer, and Fujishige 2001, Schrijver 2000); however,

most other submodular optimization problems are NP-Hard. Many applications require the ground

set to be partitioned while optimizing over a different objective, and often with additional side

constraints; see Bogunovic et al. (2017), Chekuri and Ene (2011), Hirayama et al. (2023), Wang

et al. (2021), Wei et al. (2015). In particular, MSMD seeks a partition of the ground set of orders

N into batches, and an assignment of those batches into vehicles to minimize the makespan, a

scheduling objective; to the best of our knowledge, this is novel in the submodular optimization

literature.

3. Model Formulation and Preliminaries

The Multi-Vehicle Submodular Dispatching Problem (MSMD) is characterized by an order set

N := {1,2, . . . , n}, where each order i ∈ N has a release time ri ≥ 0, and by a vehicle set M :=

{1,2, . . . ,m}, where each vehicle k ∈M is associated with a non-decreasing, submodular set function

fk : 2
N →R+ with fk(∅) = 0. By translating and relabeling, we may assume 0 = r1 ≤ r2 ≤ · · · ≤ rn.

Each order must be assigned to a batch (a subset of orders), each batch assigned to a vehicle,

and a vehicle’s dispatches need to be scheduled so that they do not overlap in time; the goal is to

minimize the makespan, the time at which the last dispatch is finished. Formally, a solution is an

ordered list of vectors, where vector k ∈M indicates the batches S ⊆N that vehicle k dispatches,

and the departure time of each dispatch. Define batch collections Ni := {S ⊆ {1, . . . , i} : i ∈ S} for

all i∈N ; these collections partition the power set of N ,
⋃

i∈N Ni = 2N ; vehicle k’s dispatch vector

has 2n coordinates with values (t1,k, S1,k, . . . , tn,k, Sn,k), where Si,k ∈Ni ∪ {∅}; if Si,k ̸= ∅, then ti,k

represents the departure time of batch Si,k dispatched by vehicle k. Using this structure, we expand

the MILP formulation from Erazo and Toriello (2023) to the heterogeneous multi-vehicle case. We

consider the following variables:
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xS,k ∈ {0,1}: indicates if batch S ⊆N is dispatched by vehicle k ∈M .

ti,k ≥ 0: departure time of the i-th dispatch by vehicle k ∈M , if it occurs, for i∈N .

z ≥ 0 : makespan.

Proposition 1. MILP (1) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i∈N, ∀k ∈M (1a)

ti+1,k ≥ ti,k +
∑
S∈Ni

xS,kfk(S) ∀i≤ n− 1, ∀k ∈M (1b)

z ≥ tn,k +
∑
S∈Nn

xS,kfk(S) ∀k ∈M (1c)

∑
k∈M

∑
S⊆N
S∋i

xS,k = 1 ∀i∈N (1d)

z ≥ 0, t≥ 0, x∈ {0,1}

The proof can be found in Appendix A. Next, we establish some complexity results by leveraging

problems that are generalized by MSMD.

Proposition 2. MSMD is strongly NP-Hard even if all release dates are equal, vehicles are

identical and dispatch times are modular.

Proof: If r1 = · · ·= rn = 0 and fk(S) = f(S) =
∑

i∈S τi for all k ∈M and S ⊆N , our problem

corresponds to serial scheduling on identical machines, proved to be strongly NP-Hard by Garey

and Johnson (1979). ■

Proposition 3. MSMD is strongly NP-hard even if the batches are fixed.

Proof: This again corresponds to a serial scheduling problem on identical machines. ■

Proposition 4. Assume the batches are fixed and each batch is assigned to a vehicle. Then the

makespan can be computed in O(mn logn) time, even for heterogeneous vehicles.
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Proof: Erazo and Toriello (2023) proved that when the assignment of batches to a vehicle

is given, the makespan of that vehicle can be computed in O(n logn) time. If we perform the

procedure sequentially for all vehicles we get an O(mn logn) algorithm. ■

We next consider a simple lower bound; let [i, j] := {i, i+1, . . . , j} denote an interval batch.

Proposition 5. The value maxi∈N

{
ri+mink∈M{fk([i, n])}/min{m,n− i+1}

}
is a lower bound

for MSMD.

Proof: At time ri only orders 1, . . . , i− 1 can be completely dispatched. From submodularity,

the remaining total dispatch time across all vehicles cannot be less than mink∈M{fk([i, n])}. Even

if orders 1, . . . , i− 1 have been dispatched, there are still n− i+ 1 orders left, so the number of

vehicles that can be used to dispatch them is the minimum between m and n− i+1. We obtain a

lower bound by assuming that the workload can be perfectly divided among the maximum number

of vehicles that can be used for these dispatches. ■

Formulation (1) has O(m2n) variables, so we require column generation to solve its LP relaxation.

Proposition 6. The linear relaxation of (1) can be solved in polynomial time.

Proof: We relax the binary domain for each xS,k variable to non-negativity, and consider the

dual linear program of (1). Let α be the dual variable for (1a), β for (1b) and (1c), and γ for (1d).

The dual constraints corresponding to the (relaxed) x variables are

−βi,kfk(S)+
∑
j∈S

γj ≤ 0, i∈N,k ∈M,S ∈Ni.

For each i∈N,k ∈M , the separation problem of the dual linear program is then

min
S∈Ni

{
βi,kfk(S)−

∑
j∈S

γj

}
= min

S⊆[1,i−1]

{
βi,kfk(S ∪ i)− γi−

∑
j∈S

γj

}
.

As all functions fk are submodular, each of these optimization problems is a submodular minimiza-

tion problem, which can be solved in polynomial time in the oracle model (Schrijver 2003), and we

need to solve a polynomial number of them. From the equivalence of separation and optimization,

it follows that the LP relaxation of (1) can be solved in polynomial time. ■
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Formulation (1) has significant symmetry, because it has k variables for each subset S ⊆ N ;

that is also reflected in the separation problem for each i ∈ N,k ∈M . In Section 4, we present

formulations that alleviate those issues.

4. Identical Vehicles
4.1. Symmetry-Reducing Formulation

We leverage the fact that all vehicles have the same dispatch time function to create a new for-

mulation that only has one variable for each subset of orders S ⊆N . The new formulation has the

following variables:

xS ∈ {0,1}: indicates if batch S ⊆N is dispatched.

ti,k: departure time of the i-th dispatch by vehicle k ∈M , if it occurs, for i∈N .

z: makespan.

wi,k: departure time of i-th dispatch assigned to machine k, if it occurs, for i∈N , k ∈M .

yi,k ∈ {0,1}: indicates if the i-th dispatch is performed by vehicle k ∈M .

Intuitively, instead of choosing the batches and assignments simultaneously with variables xS,k as

in (1), we make the batch decisions with variables xS and the assignment decisions with variables

wi,k and yi,k.

Proposition 7. MILP (2) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i∈N, ∀k ∈M (2a)

ti+1,k ≥ ti,k +wi,k ∀i≤ n− 1, ∀k ∈M (2b)

z ≥ tn,k +wn,k ∀k ∈M (2c)

m∑
k=1

wi,k =
∑
S∈Ni

xSf(S) ∀i∈N (2d)

wi,k ≤ yi,kf([1, i]) ∀i∈N, ∀k ∈M (2e)

m∑
k=1

yi,k ≤ 1 ∀i∈N (2f)
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∑
S⊆N
S∋i

xS = 1 ∀i∈N (2g)

z ≥ 0, t≥ 0, w≥ 0, y ∈ {0,1}, x∈ {0,1}.

Furthermore, its linear relaxation can be solved in polynomial time.

Proof: We prove that MILP (2) solves MSMD in Appendix B.1. The linear relaxation of this

formulation has non-negative (instead of binary) domains for x and y. We consider the dual of the

linear relaxation of (2) and let α be the dual variable of (2a), β be the dual variable of (2b) and

(2c), ϵ be the dual variable of (2d), ϕ be the dual variable of (2e), π be the dual variable of (2f)

and finally γ be the dual variable of (2g). The dual constraints corresponding to the (relaxed) x

variables are

−ϵif(S)+
∑
j∈S

γj ≤ 0, i∈N,S ∈Ni,

and therefore the separation problem is

min
S∈Ni

{
ϵif(S)−

∑
j∈S

γj

}
= min

S⊆[1,i−1]

{
ϵif(S ∪ i)− γi−

∑
j∈S

γj

}
.

Constraint (2d) can be replaced with a greater-than-or-equal constraint without loss of optimality,

and thus we may assume ϵ ≥ 0. Therefore, the separation problem corresponds to submodular

minimization, and so the linear relaxation of (2) is also solvable in polynomial time. ■

Formulation (2) significantly reduces the number of batch variables x, but adds new variables w,y

and new big-M constraints. Despite adding those new variables and constraints, the LP relaxation

can be solved in polynomial time, just as the one from (1). We now compare the quality of the

lower bounds and solutions generated by the relaxations.

Theorem 1. The linear relaxations of formulations (1) and (2) have equal optimal values.

Moreover, given an extreme point feasible solution for one of the linear relaxations, we can obtain

a feasible solution for the other linear relaxation in polynomial time.
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The proof is presented on Appendix B.2. Theorem 1 implies we can interchangeably solve the LP

relaxation of either formulation. We can therefore solve the pricing problem for (2), which requires

O(n) submodular minimizations instead of O(mn). Formulation (2) keeps the same quality for the

LP bound, eliminates a significant number of variables, and also reduces the number of separation

problems to be solved; however, it also introduces some symmetry with variables w,y. Next, we

present a result we use as basis for two other formulations for MSMD.

Proposition 8. Consider an instance of MSMD with n≥m orders. Without loss of optimality,

each vehicle performs at least one dispatch.

Proof: Assume by contradiction that some vehicle performs no dispatches; then there must

be at least one vehicle that performs two dispatches, or that has a dispatch with more than one

order. In the former scenario we can assign one of the multiple dispatches to a vehicle that has no

dispatches, and the makespan cannot increase. In the latter scenario we can split the batch into

two sub-batches, both with smaller or equal dispatch time because of f ’s monotonicity. Then, by

assigning one of the sub-batches to the idle vehicle, we cannot increase the makespan. ■

4.2. Flow-Based Formulation

Using Proposition 8, we propose a flow-based formulation for the MSMD. We introduce a dummy

source node indexed by 0 and a dummy sink node indexed by n+1. Our problem minimizes the

makespan while sending m units of flow from the source node to the sink node; each unit of flow

will go through a path that represents the dispatch schedule of a vehicle. This new formulation

uses the following variables:

xS ∈ {0,1}: indicates if batch S ⊆N is dispatched.

ti: departure time of the i-th dispatch, if it occurs, for i∈N .

z = tn+1: makespan.

yij ∈ {0,1}: indicates if the i-th dispatch is performed immediately before the j-th dispatch by

the same vehicle, for 0≤ i < j ≤ n+1.
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Proposition 9. Formulation (3) solves MSMD:

min z = tn+1

s.t. ti ≥ ri ∀i∈N (3a)∑
i∈N

y0,i =m (3b)

∑
i∈N

yi,n+1 =m (3c)

∑
S⊆N
S∋i

xS = 1 ∀i∈N (3d)

∑
S∈Ni

xS =
i−1∑
j=0

yj,i ∀i∈N (3e)

i−1∑
j=0

yj,i =
n+1∑

j=i+1

yi,j ∀i∈N (3f)

tj ≥ ti +
∑
S∈Ni

f(S)xS − (1− yi,j)f([1, i]) ∀(i, j) : 1≤ i < j ≤ n+1 (3g)

t≥ 0, yij ∈ {0,1}, x∈ {0,1}.

Furthermore, the linear relaxation can be solved in polynomial time.

The proof can be found in Appendix B.3. The presence of big-M constraints causes this formu-

lation to have a weak LP relaxation in some instances.

4.3. Set Cover Formulation

For a set cover formulation, we consider slightly redefined variables xS,k that indicate the complete

set of orders S dispatched by some vehicle, potentially in multiple batches. The formulation has

the following variables:

xS,k ∈ {0,1}: if orders S ⊆N are dispatched by vehicle k ∈M , possibly in multiple dispatches.

z: makespan.

We denote the optimal makespan of a single-vehicle SMD dispatching orders S ⊆N as SMD(S).

Proposition 10. Formulation (4) solves MSMD:

min z
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s.t. z ≥
∑
S⊆N

SMD(S)xS,k ∀k ∈M (4a)

∑
S⊆N

xS,k = 1 k ∈M (4b)

∑
k∈M

∑
S⊆N,S∋i

xS,k = 1 ∀i∈N (4c)

x∈ {0,1}, z ≥ 0.

Proof: Because of constraint (4c), vector x partitions the order set N . Constraint (4b) makes

sure we use assign one batch to each vehicle, and the correctness of the formulation comes from

the fact that SMD(S) returns a feasible solution for a single vehicle dispatching S; therefore, each

vehicle has a feasible schedule. ■

Unlike many set cover formulations, (4) includes multiple copies of each set variable, one per

vehicle k ∈M . This symmetry is unavoidable because of the makespan objective and constraints

(4a); if we used only one copy of each set variable, we would need exponentially many constraints

to define the makespan. Next, we discuss a simplification of the formulation.

Proposition 11. Constraints (4b) can be aggregated into a single constraint,∑
k∈M

∑
S⊆N xS,k =m, without affecting the formulation’s correctness or the optimal value of the

LP relaxation.

Proof: Suppose an integer optimal solution has xS1,k = xS2,k = 1. Since
∑

k∈M

∑
S⊆N xS,k =m,

there is some k′ ∈M with xS,k′ = 0 for all S ⊆N . We can reassign either S1 or S2 to k′ without

loss of optimality.

Now consider an optimal solution (x, z) for the linear relaxation with the aggregated constraint.

Define a solution (x′, z) with x′
S,k = (1/m)

∑
k∈M xS,k, for all S ⊆ N and k ∈M . As x defines a

fractional partition of N , x′ does also, so (4c) holds. From construction, (4b) holds, and the right-

hand sides of all constraints (4a) for x′ are equal, hence no larger than the largest right-hand side

among constraints (4a) for x; therefore, the fractional makespan with x′ cannot be larger. ■
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From now on, we use (4) to refer to the formulation with the aggregated constraint (4b), as it

simplifies the analysis. Consider the linear relaxation of (4) where we relax the binary domain for

each xS,k. Let α be the dual variable of (4a), β be the dual variable of (4b) and γ be the dual

variable of (4c). The dual constraints corresponding to the (relaxed) x variables are

−αk SMD(S)+β+
∑
i∈S

γi ≤ 0, ∀S ⊆N,∀k ∈M.

For each k ∈M , the separation problem for these constraints is then

min
S⊆N

{
αk SMD(S)−β−

∑
i∈S

γi

}
. (5)

Erazo and Toriello (2023) proved that computing SMD(N) is in general strongly NP-Hard; thus

the separation problem is strongly NP-Hard. We next study the complexity of (5) under additional

assumptions.

Proposition 12. Suppose all orders have the same release time; then (5) can be solved in

polynomial time.

Proof: Without loss of generality, we may assume that ri = 0 for all i ∈ N . Because non-

decreasing submodular functions are subadditive, we have SMD(S) = f(S) for S ⊆ N . As f is

submodular and αk ≥ 0, the separation problem is submodular minimization, which can be solved

in polynomial time. ■

Conversely, if we have arbitrary release times the problem becomes significantly harder, even for

modular functions f .

Theorem 2. Suppose each order i∈N is associated with a value τi > 0, and let f(S) =
∑

i∈S τi;

this corresponds to scheduling on identical serial machines with release times. The separation prob-

lem (5) is NP-Hard.

We use a reduction from the knapsack problem; see Appendix C.1. Theorem (2) establishes that

the separation problem is NP-Hard even for modular functions f ; nevertheless, this special case and

its extensions to serial-batch scheduling with release times have a pseudo-polynomial algorithm.
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Theorem 3. Suppose each order i ∈N is associated with a value τi > 0, and consider a fixed

setup time τ0 ≥ 0. For f(S) = τ0 +
∑

i∈S τi, (5) can be solved in pseudo-polynomial time. If ri, τi

are integer for i ∈N , and given an integer upper bound U for SMD(N), the complexity of solving

(5) is O(Un2); moreover, if τ0 = 0, the complexity is O(Un).

The proof is in Appendix C.2. Finally, we consider the extension to family setups.

Theorem 4. Suppose each order i ∈ N is associated with a value τi > 0; assume Q families

F1,F2, . . . ,FQ partition order set N , and each family q has a setup time τq ≥ 0. For f(S) =
∑

i∈S τi+∑
q:Fq∩S ̸=∅ τq, (5) can be solved in pseudo-polynomial time. Let U be an integer upper bound on

SMD(N), and define Uq = τq +
∑

j∈Fq
τj for q= 1, . . . ,Q. If vectors r, τ are integer, the complexity

is O
(
nU

[∏Q

q=1Uq|Fq|
])

.

The proof is in Appendix C.3.

4.4. Interval-Solvable Functions

We define a solution to be of interval type, or simply an interval solution, if its batches all have a

minimum index i, a maximum index j, and the batch contains all orders in the interval [i, j]. A

function f is interval-solvable if any instance defined by f has an optimal interval solution.

Theorem 5. Suppose each i ∈N is associated with a number τi > 0. Moreover, consider some

τ0 ≥ 0 and a concave non-decreasing function g :R→R with g(0) = 0. The following functions are

interval-solvable:

1. f(S) = τ0 +maxi∈S{τi}

2. f(S) = τ0 + g(|S|).

Furthermore, f(S) =
∑

i∈S τi is not only interval-solvable, it suffices to consider singleton batches.

The proof is in appendix D. Theorem 5 verifies that some important classes of functions are

interval-solvable; this includes (1) parallel-batch scheduling on identical machines, and (2) tactical

design of SDD systems with identical vehicles.
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Table 1 Comparison of the four proposed formulations by number of constraints and variables.

MILP (1) MILP (2) MILP (3) MILP (4)
Constraints 2nm+n 3nm+3n 0.5n2 +4.5n+2 m+n+1

Variables
General problem m(2n− 1)+nm+1 2n +3nm 2n +0.5n2 +2.5n m(2n− 1)+1
Interval-solvable 0.5mn2 +1.5nm+1 0.5(n2 +n)+ 3nm+1 n2 +3n+1 0.5m(n2 +n)+ 1
Singleton-solvable 2nm+1 n+3nm+1 0.5n2 +3.5n+1 mn+1

4.5. Formulation Comparison

Table 1 presents a comparison of formulations (1) through (4) based on their numbers of constraints

and variables, differentiating between the general case and the interval-solvable case. Depending

on the function f and the number of vehicles m, the trade-offs between formulations vary signifi-

cantly. In particular, when f is interval-solvable (or singleton-solvable), (1) becomes more attractive

because of its relatively low number of constraints and lack of big-M coefficients.

With respect to the linear relaxation bounds, (1), (3) and (4) are incomparable; we explore this

question computationally below in Section 5. Next, we study the multiplicative gap between these

bounds and the optimal solution; recall that the bounds provided by (1) and (2) are equal.

Proposition 13. Let z∗I be the optimal makespan of MSMD for an instance I with m vehicles

and n ≥ m orders. Let z
LP (1)
I , z

LP (3)
I , z

LP (4)
I be the optimal (fractional) makespan of the linear

relaxations of (1), (3) and (4), respectively, for instance I. Even when f is modular and all

release times are zero, there exists a family of instances I1, I2, . . . such that limh→∞ z∗Ih/z
LP (1)
Ih

=

limh→∞ z∗Ih/z
LP (4)
Ih

=m, and limh→∞ z∗Ih/z
LP (3)
Ih

=∞.

The proof is in Appendix E.1. Our next result shows that for modular functions, the lower bound

provided by the linear relaxation of (1) is dominated by the lower bound from Proposition 5.

Proposition 14. Let each order i∈N be associated with a value τi > 0, and let f(S) =
∑

i∈S τi.

The lower bound presented in Proposition 5 is greater than or equal to the lower bound given by

the linear relaxation of (1).

The proof is in Appendix E.2. This result indicates that our formulations may be weak compared

to combinatorial bounds that exploit the structure of f and other problem parameters. With this

motivation, we next propose a strengthening for set cover formulation (4).
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Theorem 6. Let LB be a lower bound for the optimal makespan. Constraint (4a) of formulation

(4) can be strengthened to z ≥
∑

S⊆N max{SMD(S),LB}xS,k; furthermore, all previous complexity

results on the formulation remain unchanged.

The proof is in Appendix E.3. With this strengthening, the set cover formulation matches (or

exceeds) the worst-case performance of any of our lower bounds. For instance, by using LB =

maxi∈N{τi}, we get an optimal bound for the worst-case instances from Proposition 13.

5. Computational Study and Discussion
5.1. Tactical Design for SDD

In this experiment, we assess the impact on an SDD system when the size of the fleet increases.

In the SDD context, the makespan objective of MSMD corresponds to the length of the delivery

shift. Starting from a system with one vehicle and a shift length of ϕ∗, we investigate how many

extra orders can be delivered if we increase the size of the fleet to m while ensuring the delivery

shift length does not exceed ϕ∗. Moreover, we study the impact of increasing m on the structure

of the optimal solution, i.e. the expected number of routes and route durations by vehicle.

We consider an SDD system studied in Stroh, Erera, and Toriello (2022) with a service area

of roughly 26 square miles in northeastern metro Atlanta; it includes 22 census tracts and has a

population of 92,198 as measured by the U.S. Census. The SDD system accepts orders between 9

AM and 2 PM; assuming 5% of the population in the region uses the SDD service once every two

months, 50 people place orders each day on average. For this system, Stroh, Erera, and Toriello

(2022) computed the dispatch-time function to be f(S) = 10 + 1.5|S|+ 24
√
|S| minutes. In our

baseline scenarios, we set r1 = 9 AM and r50 = 2 PM, a fleet of a single vehicle, and three arrival

patterns for the orders: (i) constant order arrival rate, every six minutes; (ii) a U-shaped arrival

rate: the first 15 orders arrive every two minutes, the next 20 orders arrive every 12 minutes, the

last 15 orders arrive every two minutes; and (iii) arrivals concentrated towards the end of the order

window: the first 20 orders arrive every 12 minutes, the last 30 orders arrive every two minutes.

For these scenarios we use the algorithm from Erazo and Toriello (2023) to obtain the optimal

solution for the single-vehicle problem.
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When m increases, the SDD system has a larger delivery capacity; thus, the order deadline can

be delayed, allowing more orders to be delivered while keeping a delivery shift length at or below

ϕ∗. For m> 1, we use (1); as f is an interval-solvable function, we only need a quadratic number

of variables and can use an off-the-shelf solver. For our two tests, we consider the following arrival

patterns after 2 PM: (A) new orders arrive at a constant rate, every 6 minutes; and (B) new orders

arrive at a constant rate, every 4 minutes. Algorithm 1 details our procedure for tests A and B;

Appendix F.1 covers more details on the implementation. Results for tests A and B under the

different baseline scenarios are shown in Figure 1.

Algorithm 1 Procedure to find the number of orders that can be dispatched with m vehicles

Notation: f : dispatch time function used

FIFO(r, f): optimal polynomial-time algorithm from Erazo and Toriello (2023) that returns the

optimal makespan for the single-vehicle SMD with arrival vector r and dispatch time function f .

Input: Initial arrival vector r (defined by the baseline scenario), structure of arrivals after original

deadline (defined by test A or B).

1: Vehicles ← 1; Orders ← 50; Previous Orders ← 50; Results = [50]

2: Solve single-vehicle SMD, return original makespan ϕ∗← FIFO(r, f)

3: Compute the maximum number of orders that can be dispatched under the particular (scenario,

test) pair, denoted Max Orders, by finding the latest order that can be dispatched by itself

before ϕ∗.

4: Vehicles ← Vehicles + 1

5: while Orders ≤ Max Orders do

6: Solve the SMD with (1), return makespan ϕ

7: if ϕ≤ ϕ∗ then

8: Orders ← Orders + 1

9: Update arrival r by adding new order, according to the current test (A or B)

10: else

11: Vehicles ← Vehicles + 1

12: Append value Orders-1 to list Results

13: end if

14: end while

15: Append value Max Orders to list Results

Output: List of Results. The i-th entry has the maximum number of orders that can be dispatched

with i vehicles while having a makespan ϕ≤ ϕ∗

As Figure 1 indicates, increasing m is more beneficial when the arrival rate for orders after

the original 2 PM deadline is larger (test B). Furthermore, the benefits of increasing the fleet are
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Figure 1 Orders dispatched (y-axis) for different values of m, under tests A) and B), and for all baseline cases.

also amplified when the original order arrival process is concentrated towards the end of the order

window, as in baseline case (iii). This is due to two factors: first, the original solution has a larger

makespan ϕ∗ when the arrival process has the orders concentrated towards the end of the ordering

period, and second, it is easier to get economies of scale due to batching with the new orders if the

original orders are released later. Moreover, with respect to test A in all baseline scenarios, 90%

of the maximum number of orders can be dispatched with just two vehicles, and over 95% with

three vehicles; for test B, 80% of the maximum can be dispatched with two vehicles, and 90% with

three.

We now focus on the impact of m on the optimal solution. Figure 2a shows the changes for test

(A) under baseline case (i), whereas Figure 2b does so for (A) under baseline case (iii). To obtain

the structure of the optimal solutions we use a modified version of (1), shown in Appendix F.2.
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Figure 2 Structure of the solutions for test A), under baseline cases (i) and (iii).

The structure of the optimal solution depends heavily on the order arrival pattern before the

original deadline. Figure 2a shows that for baseline scenario (i), increasing the fleet to two vehicles

does not significantly affect the efficiency of dispatches in terms of their size, but the start time

of the first dispatch is delayed by almost 90 minutes. When increasing from two to four vehicles,

the dispatch efficiency is significantly reduced, and the first dispatch actually starts earlier. Figure

2b shows that under baseline case (iii), increasing the fleet to two vehicles improves the balance

between the cardinality of different batches, and the start time of the first dispatch increases by over

two hours. Increasing to four vehicles continues to improve the overall efficiency of dispatches, but

does so by decreasing the cardinality balance. Moreover, the earliest departure time continues to

increase, again by almost two hours. These results suggest that SDD operational efficiency benefits

more from a larger fleet under some order arrival patterns. In particular, some SDD systems may

have their dispatch balance improved, and may start their delivery operations later. In fact, our

results suggest that if more vehicles are added to the fleet, they may not need to be available for

the complete working day, and so they could be part of a shared fleet (between next-day and SDD),

further improving operational efficiency for carriers.
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5.2. Machine Scheduling - Serial Batching with Family Setups

In our second set of experiments, we study the quality of the linear relaxation lower bounds

for our MILP formulations, the quality of heuristics that rely on solving the LP relaxation with

column generation, and the computational performance and scalability of our methods. We test

our algorithms with instances of serial-batch scheduling on identical machines with family setups

and release times, a strongly NP-Hard problem that is not interval-solvable. Similar problems have

been tackled in the machine scheduling literature; for example, Kramer, Iori, and Lacomme (2021)

recently considered instances with up to n= 80 for a similar problem without release times.

For instance design, we use a similar setup to Kramer, Iori, and Lacomme (2021) and previous

works: the values τi are drawn from a uniform (integer) distribution with minimum value of 1

and maximum value of 100; family setup times τq are drawn from a uniform (integer) distribution

with minimum value of 0 and maximum value of UF , which we vary over our experiments. Finally,

the inter-arrival times between orders are also drawn from a uniform (integer) distribution, with

minimum value of 0, and maximum value of Ur.

We generate 25 instances for each parameter combination of (m,Q,UF ,Ur), and use Python 3.11,

Gurobi 10.0.1 and a Windows machine with 16 GB of RAM and an Intel Core i7-12650H processor

for our experiments. We use the following notation to refer to the different bounds obtained from

the LP Relaxations and solutions we evaluate:

• IP: MILP formulation (1).

• LP (a): LP relaxation of MILP (a), solved

with column generation, for a= 1,3,4.

• CG IP (a): MILP (a) restricted to the

columns generated when computing LP (a), for

a= 1,3,4.

• LBF: Lower bound based on Proposition 5,

but leveraging specific aspects of this problem.

LBF is detailed in Appendix F.3.

• LPS (4): LP relaxation for the strength-

ened set cover formulation. The lower bound

considered for the strengthened constraints is

LBF.
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• CGS IP (4): Strong set cover formulation

constrained to the columns generated when

solving LPS (4).

• Interval IP: MILP (1) constrained to inter-

val batches, which is not guaranteed to be opti-

mal.

For column generation methods, we use the acceleration technique from Ben-Ameur and Neto

(2007), as explained in Appendix F.4. For LP (1) we use the separation problem from (2), which

does not differentiate by vehicle; for CG IP (4) and CGS IP (4) we use an MILP to solve the

separation problem, because preliminary tests showed this to be faster than the algorithm from

Theorem 4. Tables 2 and 3 show the results of our first set of instances, where n= 15 and the goal

is to compare our bounds versus the actual optimal solution, computed using (1); a gap of 100%

means the solution has the same objective as the actual optimal solution.

From Table 2 we see that LBF provides a strong bound, over 79.7% gap geometric mean for all

sets of instances with three machines, and over 90.4% for five. LPS (4) leverages LBF to further

improve the bound to a gap geometric mean of at least 95.9% for sets of instances with three

and five machines. With respect to the other bounds, (1), (3) and (4) are incomparable, but they

complement each other. When m increases, the gaps for (1) and (4) decrease, whereas the opposite

happens for (3), LBF and LPS (4); the latter three exceed an 87% gap geometric mean for all sets

of instances with five vehicles. When Q increases, LBF and LP (3) exhibit similar performance,

whereas LP (1) and the two set-cover methods improve their bounds. Larger values of UF translate

to more savings due to batching; an increase in UF causes LP (1) to decrease its performance;

other LP methods have a worse performance if instances are dense (Ur = 25), but improve when

arrivals are sparse. Increases in Ur significantly reduce the quality of the set cover LP (4); but

other methods improve significantly. In particular, LP (3) has the highest increase, and performs

better than LP (1) under these conditions. With respect to running time, methods LP (1), LP (3)

and LBF require less than 0.1 seconds on average for every instance set; on the other hand, LP (4)

and LPS (4) take over 100 seconds for some instances.
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Table 2 Results for our lower bounds on instances with n= 15, compared versus the MILP optimal solution.

Lower bounds
m Q UF Ur LP (1) LP (3) LPS (4) LP (4) LBF

3

2

50
25

Geom gap (%) 85.8 67.1 96.9 88.8 82.2
Worst (best) gap (%) 81.6 (90.4) 52.9 (85.9) 94.7 (98.9) 76.6 (94.1) 76.9 (88.4)

100
Geom gap (%) 93.3 98.3 99.4 48.5 98.7

Worst (best) gap (%) 87.7 (96.8) 88.0 (100) 97.0 (100) 38.9 (62.4) 93.4 (100)

100
25

Geom gap (%) 81.3 69.5 95.9 87.8 79.7
Worst (best) gap (%) 72.1 (88.9) 45.0 (100) 93.4 (100) 93.6 (71.7) 72.0 (100)

100
Geom gap (%) 90.7 98.5 99.4 52.9 98.6

Worst (best) gap (%) 85.2 (96.0) 84.0 (100) 93.6 (100) 40.1 (67.6) 86.2 (100)

5

50
25

Geom gap (%) 89.9 70.9 97.9 91.8 87.7
Worst (best) gap (%) 84.8 (93.2) 54.5 (98.5) 95.7 (99.2) 85.1 (96.4) 80.5 (98.5)

100
Geom gap (%) 93.2 99.1 99.6 47.9 99.4

Worst (best) gap (%) 86.8 (98.0) 89.6 (100) 95.9 (100) 37.5 (59.7) 93.8 (100)

100
25

Geom gap (%) 87.1 68.0 96.2 91.4 83.8
Worst (best) gap (%) 82.7 (92.6) 49.4 (89.8) 91.2 (99.5) 81.3 (97.8) 77.2 (89.8)

100
Geom gap (%) 91.8 98.4 99.3 56.1 98.8

Worst (best) gap (%) 83.0 (97.8) 91.6 (100) 96.2 (100) 47.3 (69.7) 94.3 (100)

5

2

50
25

Geom gap (%) 75.7 94.1 97.8 72.1 95.5
Worst (best) gap (%) 68.8 (86.0) 78.1 (100) 92.3 (100) 54.5 (84.6) 84.7 (100)

100
Geom gap (%) 92.2 99.0 99.5 32.0 99.3

Worst (best) gap (%) 85.9 (98.9) 93.1 (100) 96.5 (100) 24.6 (42.4) 95.6 (100)

100
25

Geom gap (%) 72.0 88.3 95.9 72.0 90.4
Worst (best) gap (%) 64.5 (79.0) 59.0 (100) 90.4 (100) 56.0 (84.8) 73.5 (100)

100
Geom gap (%) 88.8 99.3 99.6 36.8 99.5

Worst (best) gap (%) 82.1 (96.5) 90.6 (100) 96.1 (100) 25.4 (56.0) 95.1 (100)

5

50
25

Geom gap (%) 77.3 91.1 97.2 76.2 93.9
Worst (best) gap (%) 67.7 (85.9) 58.1 (100) 88.7 (100) 52.4 (90.6) 77.8 (100)

100
Geom gap (%) 92.7 99.1 99.4 33.7 99.2

Worst (best) gap (%) 86.9 (97.8) 93.6 (100) 95.6 (100) 24.5 (43.8) 94.5 (100)

100
25

Geom gap (%) 74.6 87.7 96.1 77.5 90.5
Worst (best) gap (%) 68.9 (81.4) 47.5 (100) 87.8 (100) 65.0 (89.0) 68.7 (100)

100
Geom gap (%) 88.4 99.6 99.8 39.9 99.7

Worst (best) gap (%) 82.4 (92.4) 95.6 (100) 97.5 (100) 26.4 (49.5) 96.6 (100)

With respect to the heuristics, Table (3) indicates that the heuristics based on the set cover

formulation have very bad performance; this is because a very small number of columns are gener-

ated when solving those LP’s. CG IP (1) performs particularly well, with a gap geometric mean of

104.5% at most, and a worst gap (over the 400 instances) of 122.4%. The Interval IP method also

provides high-quality solutions (maximum 108.0% gap geometric mean), and is better than CG IP

(1) in some cases. With respect to parameters, an increase in arrival sparsity (i.e. Ur increases)

improves the heuristics substantially, with many reaching optimality in almost all instances with

Ur = 100. An increase in UF (i.e. savings due to batching) decreases the performance of Interval IP,

and also CG IP (1) though only slightly. When the number of families increases, the gaps for CG IP
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Table 3 Results for our heuristics on instances with n= 15, compared versus the MILP optimal solution.

Heuristics
m Q UF Ur CG IP (1) CG IP (3) CGS IP (4) CG IP (4) Interval IP

3

2

50
25

Geom gap (%) 104.5 115.2 246.2 230.6 104.1
Worst (best) gap (%) 113.7 (100.0) 131.6 (101.9) 267.2 (221.6) 251.2 (200.3) 111.3 (100.0)

100
Geom gap (%) 100.0 100.0 130.0 130.0 100.0

Worst (best) gap (%) 100.0 (100.0) 100.0 (100.0) 164.5 (105.1) 164.5 (105.1) 100.0 (100.0)

100
25

Geom gap (%) 103.5 134.7 231.1 222.1 108.0
Worst (best) gap (%) 110.8 (100.0) 175.7 (100.0) 265.1 (194.4) 237.8 (194.4) 117.4 (100.0)

100
Geom gap (%) 100.0 100.9 135.5 135.5 100.1

Worst (best) gap (%) 101.0 (100.0) 107.0 (100.0) 171.3 (100.2) 171.3 (100.2) 101.2 (100.0)

5

50
25

Geom gap (%) 100.4 108.6 257.8 227.1 104.2
Worst (best) gap (%) 102.8 (100.0) 120.5 (100.3) 275.1 (237.1) 253.7 (201.8) 108.6 (100.0)

100
Geom gap (%) 100.0 100.0 128.8 128.8 100.0

Worst (best) gap (%) 100.0 (100.0) 100.0 (100.0) 161.6 (103.9) 161.6 (103.9) 100.0 (100.0)

100
25

Geom gap (%) 100.8 122.5 249.7 221.6 109.9
Worst (best) gap (%) 104.8 (100.0) 137.6 (105.5) 274.3 (221.0) 244.3 (198.2) 123.1 (103.3)

100
Geom gap (%) 100.0 100.1 146.4 146.4 100.0

Worst (best) gap (%) 100.0 (100.0) 100.1 (103.0) 178.3 (120.4) 178.3 (120.4) 101.0 (100)

5

2

50
25

Geom gap (%) 100.2 101.3 279.5 174.9 100.6
Worst (best) gap (%) 102.1 (100.0) 111.5 (100.0) 300.0 (239.4) 201.5 (146.1) 107.3 (100.0)

100
Geom gap (%) 100.0 100.0 124.0 123.8 100.0

Worst (best) gap (%) 100.0 (100.0) 100.0 (100.0) 163.7 (100.0) 158.5 (100.0) 100.0 (100.0)

100
25

Geom gap (%) 103.5 107.1 265.5 178.4 101.8
Worst (best) gap (%) 122.4 (100.0) 124.2 (100.0) 300.0 (223.8) 192.8 (152.4) 106.7 (100.0)

100
Geom gap (%) 100.0 100.0 135.6 134.5 100.0

Worst (best) gap (%) 100.0 (100.0) 100.0 (100.0) 186.8 (100.0) 178.1 (100.0) 100.0 (100.0)

5

50
25

Geom gap (%) 100.1 100.7 281.4 174.6 100.5
Worst (best) gap (%) 101.0 (100.0) 104.6 (100.0) 300.0 (208.8) 194.9 (140.2) 104.6 (100.0)

100
Geom gap (%) 100.0 100.0 132.6 132.4 100.0

Worst (best) gap (%) 100.0 (100.0) 100.0 (100.0) 169.1 (105.9) 169.1 (105.9) 100.0 (100.0)

100
25

Geom gap (%) 101.3 106.2 271.7 176.9 103.4
Worst (best) gap (%) 110.7 (100.0) 121.8 (100.0) 302.1 (220.4) 194.8 (150.5) 116.7 (100.0)

100
Geom gap (%) 100.0 100.0 153.6 151.9 100.0

Worst (best) gap (%) 100.0 (100.0) 100.0 (100.0) 187.3 (111.4) 184.2 (111.4) 100.0 (100.0)

(1) improve, whereas the opposite happens for the Interval IP solution. Finally, when the number

of machines increases, the gaps for CG IP (1) stay almost equal, whereas the gap of Interval IP

increases. With respect to running time, all methods solve within 0.1 seconds, except for CG IP

(3), which takes up to over 2 seconds.

For our large experiments, we consider n= 80,120,160; m= 5,10,15; Q= 5,10,15; UF = 25,100,

and Ur = 10,25; we select smaller values for Ur to benchmark against harder instances. Because of

their speed and empirical performance, we use LP (1) and LBF as lower bounds; in each instance

we choose the maximum value between the two as our benchmark. On the heuristic side, we keep

CG IP (1) and the Interval IP and report their performance. For all instances, we allow a run
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time of up to two minutes for both heuristic methods. We summarize results in Figure 3, where

each sub-figure depicts the performance of a given heuristic, given a fixed value of m, and for

n= 80,120,160. Our scenarios for (Q,UF ,Ur) are:

1. (5, 50, 10)

2. (5, 50, 25)

3. (5, 100, 10)

4. (5, 100, 25)

5. (10, 50, 10)

6. (10, 50, 25)

7. (10, 100, 10)

8. (10, 100, 25)

9. (15, 50, 10)

10. (15, 50, 25)

11. (15, 100, 10)

12. (15, 100, 25)

Figures 3a, 3c and 3e detail results for CG IP (1), while the other figures do the same for the

Interval IP. The gap geometric means for CG IP (1) improve slightly when n increases; on the

other hand, Interval IP has difficulty handling large values of n, as evidenced by gaps over 200%

for n= 160. In particular, CG IP (1) achieves a gap geometric mean of 130% or less for all of our

instance sets, and is within 1% of optimality in every single even instance set (Ur = 25), for m= 10

and m= 15. With respect to the effect of m, for both heuristics the worst-case and best-case gaps

are amplified (i.e. worse and better, respectively) when m= 10; this suggests a concave structure

where the values near the middle have either very low or very high gaps. With respect to Q, an

increase seems to have a small positive effect for CG IP (1), and a slight negative effect for Interval

IP. Finally, with respect to running times, we limited both CG IP (1) and Interval IP to run for

at most two minutes; LP (1) required 44.7 seconds on average for n= 160, and 190 seconds for the

worst instance set with n= 160; this shows we can obtain geometric gaps within 10% of optimality

for all instance sets with n= 160 in less than six minutes.

6. Conclusions

We studied the multi-vehicle submodular dispatching problem (MSMD) and focused on the case

with identical vehicles, for which we proposed four different MILP formulations. MSMD includes

several important models as special cases, such as models for SDD tactical design, machine schedul-

ing under serial-batching and parallel-batching machines, and routing models under restricted
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Figure 3 Geometric gaps (%) of CG IP (1) and Interval IP, versus the best lower bound, for instance scenarios

1-12. Each figure contains curves n= 80, 120, 160, given a fixed value of m.
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topologies. We established the difficulty of solving the LP relaxations of our formulations, and

studied the quality of their bounds. In addition, we proposed a strengthened version of a set cover

formulation that can leverage any known lower bound on the optimal makespan. Moreover, we

characterized interval-solvable functions, which always have an optimal solution of interval type,

where batches consist of consecutive orders.

We used our formulations and results on interval-solvable functions to computationally study

SDD tactical design problems with non-stationary order arrival rates, deriving insights on fleet

expansion benefits. A computational study on serial-batching scheduling with family setups and

release dates allowed us to assess the performance of our lower bounds and of heuristics based on

our column generation procedures. Our methods proved to be efficient from a computational stand-

point, achieving results within 10% of optimality with average running times below six minutes for

up to 160 jobs, an improvement over the recent literature for similar problems.

Our results motivate several avenues for future research, including the use of meta-heuristics

to enhance our current solution methods, and new combinatorial lower bounds to leverage the

structure of other dispatch time functions. More generally, the heterogeneous vehicle case presents

additional challenges, as well as the case in which batches are constrained, e.g. by cardinality.
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Pessan C, Bouquard JL, Néron E, 2008 An unrelated parallel machine model for an industrial production

resetting problem. European Journal of Industrial Engineering 2:153–171, URL http://dx.doi.org/

10.1504/EJIE.2008.017349.
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Appendix A: Formulation (1) Solves the Multi-Vehicle Submodular Dispatching
Problem

Proposition 1. MILP (1) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i∈N, ∀k ∈M (1a)

ti+1,k ≥ ti,k +
∑
S∈Ni

xS,kfk(S) ∀i≤ n− 1, ∀k ∈M (1b)

z ≥ tn,k +
∑

S∈Nn

xS,kfk(S) ∀k ∈M (1c)

∑
k∈M

∑
S⊆N
S∋i

xS,k = 1 ∀i∈N (1d)

z ≥ 0, t≥ 0, x∈ {0,1}

Proof: A solution for MSMD is an ordered list of m vectors v1, v2 . . . , vm (one for each vehicle). Each

vector has 2n dimensions: vk = (t̂1,k, S1,k, . . . , t̂n,k, Sn,k) for k ∈M , where Si,k ∈Ni∪{∅}, and if Si,k ̸= ∅, then

t̂i,k represents the departure time of batch Si,k dispatched by vehicle k. We prove that formulation (1) solves

the problem. First, based on a solution {vk}mk=1 for the problem, we create a feasible solution (x, t, z) for

MILP (1). We initialize vector x as 0, then for each k ∈M :

• Set index ℓ= 1, t0,k = 0 and auxiliary value aux= 0. Consider vector vk = (t̂1,k, S1,k, . . . , t̂n,k, Sn,k).

• If Sℓ,k ̸= ∅, then set xSℓ,k = 1, tℓ,k = t̂ℓ,k and aux= fk(Sℓ). Otherwise, just set tℓ,k =max(rℓ, t̂ℓ−1,k+aux).

Increase ℓ by 1, until ℓ= n.

Finally, set z = maxk∈M{tn,k}. From construction, t is a feasible vector and meets constraints (1a) and

(1b). The last step guarantees constraint (1c) is met, and as all subsets Sℓ,k are a partition for N , then

(1d) is also satisfied; thus (x, t, z) is a feasible solution for formulation (1). Also note that the recursion used

to compute the values t returns the minimum makespan for each of the vehicles, as proved by Erazo and

Toriello (2023). Now, starting from a solution (x, t, z) for formulation (1), we create a solution v1, . . . , vm for

MSMD:

• For each k ∈M , set vk = (t̂1,k = t1,k, S1,k = ∅, t̂2,k = t2,k, S2,k = ∅, . . . , t̂n,k = tn,k, Sn,k = ∅).

• For each i∈N and S ∈Ni, if xS,k = 1, then set Si,k = S.
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As (x, t, z) is a feasible solution for formulation (1), then the values t̂ for each vector vk are feasible; thus,

each vehicle has a feasible schedule. Furthermore, as vector x is a partition for N , then the set of non-

empty subsets S (over all vehicles) also is. It follows that {vk}mk=1 is a feasible solution for the Multi-Vehicle

Submodular Dispatching Problem. Finally, as formulation (1) explicitly computes the minimum makespan

for each feasible solution, it solves MSMD. ■

Appendix B: Proofs for Formulations (2) and (3)

B.1. Formulation 2 Solves MSMD

Proposition 7. MILP (2) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i∈N, ∀k ∈M (2a)

ti+1,k ≥ ti,k +wi,k ∀i≤ n− 1, ∀k ∈M (2b)

z ≥ tn,k +wn,k ∀k ∈M (2c)

m∑
k=1

wi,k =
∑
S∈Ni

xSf(S) ∀i∈N (2d)

wi,k ≤ yi,kf([1, i]) ∀i∈N, ∀k ∈M (2e)

m∑
k=1

yi,k ≤ 1 ∀i∈N (2f)

∑
S⊆N
S∋i

xS = 1 ∀i∈N (2g)

z ≥ 0, t≥ 0, w≥ 0, y ∈ {0,1}, x∈ {0,1}.

Furthermore, its linear relaxation can be solved in polynomial time.

Proof: In this subsection we prove that formulation (2) solves MSMD; the complexity of solving the LP

relaxation is proved in the main body of the paper. We establish the equivalence between feasible solutions

for MILP (1) and feasible solutions for MILP (2). Assume we have a feasible solution (x1, t1, z1) for MILP

(1); we construct a solution (x, t, z, y,w) for MILP (2). Set x, y and w as zero vectors, then:

• For all S ⊆ N,k ∈M such that x1
S,k = 1, let i = max{j : j ∈ S} and set variables xS = 1, yi,k = 1 and

wi,k = f(S).

• For all i∈N,k ∈M set ti,k = t1i,k and z = z1
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As x1 forms a partition, then x satisfies constraint (2g). Because it is a partition, for each i ∈N there is

at most one set S ∈Ni such that xS = 1; therefore (2f)
∑m

k=1 yi ≤ 1 holds. From construction, equality (2d)

is met, and by monotonicity inequality (2e) holds. Finally, from the definition of w and feasibility of t1,

our new solution (x, t, z, y,w) satisfies constraints (2a), (2b) and (2c). From construction, the makespan is

correct and equal to the makespan of solution (x1, t1, z1) for MILP (1).

Consider a feasible solution (x, t, z, y,w) for MILP (2); we construct a solution (x1, t1, z1) for MILP (1):

1. For all i∈N,k ∈M set t1i,k = ti,k, then set z1 = z and x as a zero-valued vector.

2. Find all subsets S ⊆N such that xS = 1. For each of those sets S, compute its maximum index order;

i.e., i=max{j : j ∈ S}. Because of non-negativity of f and constraint (2e), there is exactly one machine k

such that yi,k is non-zero (equal to one) and wi,k = f(S). Set variable x1
S,k = 1.

Because of definition of vector w, inequalities (2a), (2b) and (2c) correspond to inequalities (1a), (1b) and

(1c) in MILP (1), and so they are satisfied. Because x is a partition, then x1 is as well and (1d) holds. It

follows that (x1, t1, z1) is feasible and has the same makespan as solution (x, t, z, y,w) for MILP (2). ■

B.2. Equivalence Between the LP Relaxations of Formulations 1 and 2 for MSMD

Theorem 1. The linear relaxations of formulations (1) and (2) have equal optimal values. Moreover,

given an extreme point feasible solution for one of the linear relaxations, we can obtain a feasible solution

for the other linear relaxation in polynomial time.

Proof: Assume we have a feasible solution (x1, t1, z1) for the LP relaxation of MILP (1); we construct a

feasible solution (x, t, z,w, y) for the LP relaxation of MILP (2):

• Let xS =
∑

k∈M
x1
S,k for each S ⊆N ; which implies xS ≥ 0 from feasibility of x1, but also that xS ≤ 1.

• Set z = z1, and ti,k = t1i,k for all i∈N, k ∈M .

• Set wi,k =
∑

S∈Ni
x1
S,kf(S) for all i∈N, k ∈M ; from the feasibility of x1 and f , then wi,k ≥ 0.

• Define yi,k as the minimum number such that wi,k ≤ yi,kf({1, . . . , i}); this implies 0≤ yi,k, as wi,k ≥ 0,

but also that yi,k ≤ 1 as wi,k =
∑

S∈Ni
x1
S,kf(S)≤ 1× f({1, . . . , i}), where the last inequality follows from no

order being dispatched more than once (over all the fractional dispatches including that order).

We show that constraints (2a)-(2g) are satisfied by (x, t, z,w, y). It is clear that (2a) holds, as (1a) holds for

x1. Moreover,
∑

k∈M
wi,k =

∑
k∈M

∑
S∈Ni

x1
S,kf(S) =

∑
S∈Ni

f(S)
∑

k∈M
x1
S,k =

∑
S∈Ni

f(S)xS, and so (2d) is

satisfied. From the definitions of wi,k and ti,k plus the feasibility of x1 and t1, constraints (2b) and (2c) hold
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as well. Moreover, by construction (2e) holds and from the choice of yi,k we have that
∑

k∈M wi,k

f({1,...,i}) =
∑

k∈M
yi,k,

and as
∑

k∈M
Wi,k ≤ f({1, . . . , i}), then (2f) is satisfied. Finally, (2g) follows from the choice of x. For every

feasible solution (x1, t1, z1) for the LP relaxation of (1), we can thus create a feasible solution (x, t, z,w, y)

for the LP relaxation of MILP (2) and with the same makespan.

Assume now that we have a feasible solution (x, t, z,w, y) for the LP relaxation of MILP (2); we create a

feasible solution (x1, t1, z1) for the LP relaxation of MILP (2) as follows:

• Set z1 = z, vector x1 as zero, and t1i,k = ti,k for all i∈N, k ∈M .

• For values x1
i,k do as follows: for each i ∈ N , we initialize an auxiliary vector Vi that has the same

values as wi,k for each k, i.e. Vi,k = wi,k. Then, for each S such that xS > 0, we find its maximum index

i = max{j : j ∈ S} and do as follows: find the first index k such that Vi,k > 0; if Vi,k > xSf(S), then set

x1
S,k = xS, substract xSf(S) from Vi,k and set xS to zero. On the other hand, when Vi,k ≤ xSf(S), we

set x1
S,k =

Vi,k

f(S)
≤ xS, set Vi,k = 0 and reduce xS by x1

S,k, continuing until xS = 0. Because of feasibility of

(x, t, z,w, y) (constraint (2d)) the final result of this procedure is a vector Vi that is zero-valued for all i∈N .

We prove that solution (x1, t1, z1) is feasible for the LP relaxation of MILP (1). From the definition of t1,

constraint (1a) holds, and by construction of the vector x1 so do constraints (1b) and (1c) (as the auxiliary

vectors Vi are zero at the end of the procedure above). Furthermore, for all S ⊆N we have
∑

k∈M
x1
S,k = xS,

and constraint (1d) holds. Every feasible solution (x, t, z,w, y) for the LP relaxation of MILP (2) can thus

be mapped to a feasible solution (x1, t1, z1) for the LP relaxation of MILP (1),

To conclude the proof, if we are given an extreme point solution for one of the LP relaxations, then that

solution has a polynomially bounded number of variables x with non-zero value, and hence the number of

operations needed to go from the solution of one LP relaxation to the solution for the other is polynomially

bounded too. ■

B.3. Formulation 3 solves MSMD

Proposition 9. Formulation (3) solves MSMD:

min z = tn+1

s.t. ti ≥ ri ∀i∈N (3a)∑
i∈N

y0,i =m (3b)
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∑
i∈N

yi,n+1 =m (3c)

∑
S⊆N
S∋i

xS = 1 ∀i∈N (3d)

∑
S∈Ni

xS =

i−1∑
j=0

yj,i ∀i∈N (3e)

i−1∑
j=0

yj,i =

n+1∑
j=i+1

yi,j ∀i∈N (3f)

tj ≥ ti +
∑
S∈Ni

f(S)xS − (1− yi,j)f([1, i]) ∀(i, j) : 1≤ i < j ≤ n+1 (3g)

t≥ 0, yij ∈ {0,1}, x∈ {0,1}.

Furthermore, the linear relaxation can be solved in polynomial time.

Proof: We prove that MILP (3) solves MSMD by showing that each feasible solution for (3) is feasible

for MSMD, and that each optimal solution for MSMD is feasible for MILP (3). Consider a feasible solution

(x, y, t) for MILP (3); there must be m indices i∈N such that y0,i = 1. We denote those indices as i11, . . . , i
1
m,

and will map index i1k to vehicle k for k ∈M . We construct a solution {vk}mk=1 for MSMD:

• Assign z as the makespan for our solution in MSMD, then for each vehicle k ∈M , we find the set of

indices i1k, i
2
k, . . . , i

ℓ
k such that yi1

k
,i2
k
= . . .= yiℓ

k
,n+1 = 1; the set exists because of constraint (3f).

• For each vehicle k ∈M , initialize vector vk as vk = (0,∅,0,∅, . . . ,0,∅), and set i = 1. If i is one of the

values i1k, . . . , i
ℓ
k, then because of constraint (3e) there must be a subset Si ∈Ni with xSi

= 1; assign vk[2i] = ti

and vk[2i+1] = Si; otherwise assign vk[2i] =max
(
ri, vk[2(i− 1)]

)
. Increase i by one and repeat until i= n.

Because x is a partition (constraint (3d)), our solution for MSMD is as well. Moreover, because of con-

struction and feasibility of vector t (constraints (3a) and (3g)), our vectors vk also have a feasible schedule

for the vehicles. As the makespan z is feasible given this schedule, we just constructed a solution for MSMD,

and with the same makespan. Now, consider an optimal solution {vk}mk=1 for MSMD; we construct a solution

for MILP (3) by first initializing vectors x, y, t as zero; then:

• For each k ∈M , find all the indices i1, i2, . . . , iℓ such that vk[2i1 +1], vk[2i2 +1], . . . , vk[2iℓ +1] are non-

empty sets; we denote those sets as Si1 , Si2 , . . . , Siℓ . Set y0,i1 = yi1,i2 = . . .= yiℓ,n+1 = 1 and xi1 = xi2 = . . .=

xiℓ = 1. Furthermore, for j = i1, . . . , iℓ, set tj = vk[2j].

• Let J be the set of indices that have not been modified; i.e. j ∈ J if tj was not modified. For j ∈ J set

tj =max{maxi<j(ti), rj}, with t0 = 0. Finally, set tn+1 as the minimum value that meets constraints (3g).
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We show that (x, t, y) is feasible: from construction and feasibility of the MSMD solution we know that

constraint (3a) holds. By construction of values y, we know that constraints (3b), (3c), (3e) and (3f) hold.

As {vk}mk=1 induces a partition, then constraint (3d) is also satisfied. Finally, with respect to constraint (3g):

• Consider j in J , then for all i < j we have yi,j = 0, hence tj ≥ ti+
∑

S∈Ni
xSf(S)−f([1, i]). As f([1, i])≥∑

S∈Ni
xSf(S), then our choice of tj satisfies (3g).

• Every order j ̸∈ J must be associated to a dispatch done by a vehicle k.

—Consider all indices i ∈ J , with i < j; if ti = ri then constraint (3g) holds; otherwise ti = tk for some

k < i, and because no batch in Ni is dispatched, then the inequality that involves indices j and k is stronger.

—Consider all indices i < j that are associated to the same vehicle k; because of feasibility of the original

solution for MSMD, then constraint (3g) holds for all pairs (i, j).

—Consider all indices ih1 , i
h
2 , . . . , i

h
ℓ associated to vehicle h ̸= k and batch Sh

1 , S
h
2 , . . ., such that ih1 < . . . <

ihℓ < j. Because of optimality of the MSMD solution, there exists a largest index, say iha such that tiha = riha ;

and for every index b : a≤ b≤ ℓ we have that tih
b
+f(Sh

b ) = riha +
∑b

p=a
f(Sh

p )≤ rihb +f(∪
b
p=aS

h
p ), otherwise the

MSMD solution is not optimal. Moreover, for all b≤ ℓ, we have f([1, ihb ])≥ f(∪b
p=aS

h
p ), thus for b : a≤ b≤ ℓ,

tj ≥ rj ≥ rih
b
≥ rih

b
+ f(∪b

v=aS
h
v )− f([1, ihb ])

= rih
b
+ f(∪b

v=aS
h
v )− (1− yih

b
,j)f([1, i

h
b ])

≥ tih
b
+ f(Sh

b )− (1− yih
b
,j)f([1, i

h
b ]).

Therefore, constraint (3g) holds for indices iha, . . . i
h
ℓ . Because of the choice of a, riha ≥ tihc + f(Sh

c ) for c < a,

so the inequality holds for indices ih1 , . . . , i
h
a−1. The three cases include all values i such that i < j, hence (3g)

holds for all pairs (i, j), with j ∈N . In the case of j = n+1 (sink node), then the values yi,n+1 = 1 enforce

the correct computation of the makespan, and constraints with yi,n+1 = 0 are redundant.

It follows that solution (x, t, z) for (3) is feasible. As we already showed that every feasible solution for (3)

is feasible for MSMD, and that every optimal solution for MSMD is feasible for (3); then formulation (3)

solves MSMD.

With respect to the linear relaxation of (3), the separation problem is very similar to that for (1) and (2),

and can again be solved as a series of submodular minimization problems. ■
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Appendix C: Proofs for the Set Cover Formulation

C.1. Complexity of Separation Problem

Theorem 2. Suppose each order i ∈ N is associated with a value τi > 0, and let f(S) =
∑

i∈S
τi; this

corresponds to scheduling on identical serial machines with release times. The separation problem (5) is

NP-Hard.

Proof: For each k ∈M the separation problem is minS⊆N{αk SMD(S)−β−
∑

i∈S
γi}. As α≥ 0, we just

need to optimize the separation problem for k∗ = argmink∈M{αk}. As f is modular, we can reformulate the

separation problem as the following maximization problem, where z =SMD(S):

max
t,x,z

− zαk∗ +
∑
i∈N

γixi (6a)

s.t. ti ≥ ri i∈N (6b)

ti+1 ≥ ti +xiτi i∈N \n (6c)

z ≥ tn +xnτn (6d)

xi ∈ {0,1} ∀i∈N (6e)

t, z ≥ 0 (6f)

Constraints (6b), (6c) and (6d) are the feasibility constraints for SMD, and binary variable xi represents the

choice of adding order i to the subset S in the separation problem (5).

To complete the proof we reduce the knapsack problem to formulation (6). Consider the following knapsack

problem with integer numbers vi,wi > 0 for all i = 1,2 . . . , n− 1 (representing value and weight of item i,

respectively) and integer knapsack capacity W ≥wi; for all i= 1, . . . , n− 1:

max
x

n−1∑
i=1

vixi (7a)

s.t.

n−1∑
i=1

vixi ≤W (7b)

xi ∈ {0,1} ∀i= 1, . . . , n− 1 (7c)

We reduce this knapsack problem to MILP (6) by using the following transformation:

• ri = 0 for i= 1, . . . , n− 1 and rn =W .

• τi =wi for i= 1, . . . , n− 1 and τn = 1.
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• γi = vi for i= 1, . . . , n− 1 and γn = 1+
∑n−1

i=1 vi.

• αk∗ =
∑n−1

i=1 vi.

The corresponding instance for separation problem (6) is:

max
t,x,z

− z
( n−1∑

i=1

vi

)
+

n−1∑
i=1

vixi +

(
1+

n−1∑
i=1

vi

)
xn (8a)

s.t. tn ≥W (8b)

ti+1 ≥ ti +xiwi ∀i= 1, . . . n− 1 (8c)

z ≥ tn +xn (8d)

xi ∈ {0,1} ∀i∈N (8e)

t, z ≥ 0 (8f)

As ri = 0 for i = 1, . . . , n − 1, by repeatedly using constraints (8c) and starting from t1 = 0, we can set

t2 = 0+x1w1, then t3 = t2+x2w2 = x1w1+x2w2 and continue until tn−1 =
∑n−2

i=1 xiwi. Then (8) is equivalent

to:

max
tn,x,z

− z
( n−1∑

i=1

vi

)
+

n−1∑
i=1

vixi +

( n−1∑
i=1

vi

)
xn +xn (9a)

s.t. tn ≥W (9b)

tn ≥
n−1∑
i=1

xiwi (9c)

z ≥ tn +xn (9d)

xi ∈ {0,1} ∀i∈N (9e)

tn, z ≥ 0 (9f)

We prove the equivalence between solutions for (9) and solutions for the original knapsack problem. Assume

we have an optimal solution for (9), it is clear that xn = 1 because adding order n increases the makespan z

by just 1 (constraint (9d)) and therefore increases the total objective value by 1. It follows that the optimal

solution is completely described by the orders that are dispatched among the first n − 1 orders; i.e. the

orders maximizing −z
(∑n−1

i=1 vi

)
+
∑n−1

i=1 vixi. An optimal solution is such that
∑n−1

i=1 xiwi ≤W , otherwise

by integrality of values wi and W we would have
∑n−1

i=1 xiwi ≥W + 1, and therefore z ≥W + 2, implying

that −z
(∑n−1

i=1 vi

)
+
∑n−1

i=1 vixi ≤−(W + 2)

(∑n−1
i=1 vi

)
+
∑n−1

i=1 vixi ≤−(W + 1)

(∑n−1
i=1 vi

)
, which is the
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objective when we do not dispatch to any of the n−1 first orders, a contradiction with optimality. Therefore,

the optimal solution of (9) is such that z =W +1, and maximizes
∑n−1

i=1 vixi subject to binary variables xi

for i= 1, . . . , n− 1 and
∑n−1

i=1 xiwi ≤W ; it is precisely a feasible optimal solution for the knapsack problem.

Furthermore, (9) is a feasible problem (by setting all xi = 0, ti = 0 for i = 1, . . . , n, and tn = z =W ) and

its objective is bounded by above (by 2(
∑n−1

i=1 vi) + 1), thus (9) is guaranteed to have an optimal solution.

By solving (9) we can always get a feasible optimal solution for the knapsack problem (i.e., the solution

described by x1, . . . , xn−1). As the knapsack problem is NP-Hard, and we did a transformation with a linear

number of steps to get MILP (9), which is a special case of the separation problem (5) that considers a

modular function f , the proof is complete. ■

C.2. Complexity of Separation Problem for Modular Function with Setup Time

The separation problem (5) is: minS⊆N{αk SMD(S)−β−
∑

i∈S
γi}.

Theorem 3. Suppose each order i ∈N is associated with a value τi > 0, and consider a fixed setup time

τ0 ≥ 0. For f(S) = τ0 +
∑

i∈S
τi, (5) can be solved in pseudo-polynomial time. If ri, τi are integer for i ∈N ,

and given an integer upper bound U for SMD(N), the complexity of solving (5) is O(Un2); moreover, if

τ0 = 0, the complexity is O(Un).

Proof: We assume all values τi are integer, and prove first the complexity for τ0 = 0. Under this scenario

the key realization is that we can work with singleton batches, and that they are dispatched according to their

index in increasing order. The separation problem can be solved by computing the shortest path between a

source and sink nodes. We describe the directed acyclic network as follows:

• A source node T0 and a sink node T1.

• States (Ψ, ℓ) for Ψ = 0, . . . ,U and ℓ ∈N . Ψ denotes the partial makespan after the end of stage ℓ, and

stage ℓ is just after deciding if order ℓ is dispatched or not.

• Arcs T0→ (Ψ,1) with distance 0 if Ψ< τ1 (order 1 is not dispatched) and with distance −γ1 otherwise

(order 1 is dispatched).

• Arcs (Ψ, ℓ− 1)→ (Ψ, ℓ) with distance 0 for all Ψ≤ U and ℓ= 2, . . . , n; this represents not dispatching

order ℓ.

• Arcs (Ψ, ℓ− 1)→ (Ψ+ τℓ, ℓ) with distance −γℓ for all Ψ≥ rℓ (feasibility condition) and ℓ= 2, . . . , n; this

represents dispatching order ℓ.
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• Arcs (Ψ, n)→ T1 with distance Ψαk−β, for all Ψ≥mini∈N(ri+τi), where this condition enforces that at

least one order is dispatched (because γ ≥ 0), a requirement for feasible solutions of the separation problem

(i.e. it excludes the empty set).

There are O(Un) arcs, hence computing the shortest path between T0 and T1 in this directed acyclic graph

has a complexity of O(Un). When the fixed setup τ0 is greater than 0, we cannot just consider singleton

batches, and instead need to consider intervals of orders, which we can track using an extra dimension. We

again compute the shortest path between T0 and T1 but in the following directed acyclic network:

• States (Ψ, ℓ, h); for Ψ = 0, . . . ,U , ℓ ∈ N and h ∈ {ℓ+ 1, . . . , n} ∪ {0}. Ψ denotes the partial makespan

after the end of stage ℓ, stage ℓ decides if order ℓ will be dispatched or not; and h represents the order with

largest index that will be a part of the current batch; if h= 0, then there is no current batch.

• First we describe the arcs leaving node T0:

—Arcs T0→ (Ψ,1,0) with distance 0 for Ψ≤ τ1 + τ0 − 1 (i.e. order 1 is not dispatched to); and with

distance −γ1 for Ψ≥ τ1 + τ0 (order 1 is dispatched as a singleton; this is our feasibility condition).

—Arcs T0→ (Ψ,1, h) with distance −γ1 for Ψ≥ rh+τ1+τ0 (i.e. order 1 is in a batch that has as largest

order h; this is the feasibility condition); for all 1<h≤ n.

• Now we describe the arcs leaving node (Ψ, ℓ,0) for ℓ= 1, . . . , n− 1 and Ψ≤U :

—Arcs (Ψ, ℓ,0)→ (Ψ, ℓ+1,0) with distance 0 (order ℓ+1 will not be dispatched).

—Arcs (Ψ, ℓ,0)→ (Ψ+ τℓ+1 + τ0, ℓ+1,0) with distance −γ1 (order ℓ+1 is dispatched as a singleton);

if Ψ≥ rℓ+1 (feasibility condition).

—Arcs (Ψ, ℓ,0)→ (Ψ+ τℓ+1 + τ0, ℓ+1, h) with distance −γ1 (order ℓ+1 will be dispatched in a batch

that has h as its largest index order); if Ψ≥ rh (feasibility condition), and ℓ+1<h.

• Arcs leaving nodes (Ψ, ℓ, h) for ℓ= 1, . . . , n− 1, ℓ < h and Ψ≤U :

—If ℓ+1= h, then the only option is to finalize the dispatch; i.e. arc (Ψ, ℓ, ℓ+1)→ (Ψ+ τℓ+1, ℓ+1,0)

with distance −γℓ+1 (feasibility conditions where already enforced)

—Arc (Ψ, ℓ, h)→ (Ψ, ℓ+1, h) with distance 0; not adding order ℓ+1 to the current batch.

—Arc (Ψ, ℓ, h)→ (Ψ + τℓ+1, ℓ + 1, h) with distance −γℓ+1; adding order ℓ + 1 to the current batch

(feasibility conditions where already enforced).

• Arcs (Ψ, n,0)→ T1 with distance Ψαk−β; for all Ψ≥mini∈N(ri+τi)+τ0; which guarantees the optimal

solution includes at least one order being dispatched.
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The total number of arcs departing states (Ψ, ℓ,0) is O(Un2); and the total number of arcs departing states

(Ψ, ℓ, h) is O(Un2); hence the total number of arcs in this directed acyclic graph is O(Un2) and solving the

separation problem has complexity O(Un2). ■

C.3. Complexity of Separation Problem for Family Setups

Theorem 4. Suppose each order i∈N is associated with a value τi > 0; assume Q families F1, F2, . . . , FQ

partition order set N , and each family q has a setup time τq ≥ 0. For f(S) =
∑

i∈S
τi+

∑
q:Fq∩S ̸=∅ τq, (5) can be

solved in pseudo-polynomial time. Let U be an integer upper bound on SMD(N), and define Uq = τq+
∑

j∈Fq
τj

for q= 1, . . . ,Q. If vectors r, τ are integer, the complexity is O
(
nU

[∏Q

q=1Uq|Fq|
])

.

Proof: The proof in Appendix C.2 corresponds to the case where Q = 1; we generalize the shortest

path problem needed to solve the separation problem in (5). Assume that vectors τ, r are integer, and that

values Uq are known for q= 1, . . . ,Q. We use the notation F{i} to denote the family that contains i∈N . The

directed acylic graph is as follows:

• States (Ψ, ℓ,ψ1, h1,ψ2, h2, . . . ,ψQ, hQ); for all Ψ ≤ U , ℓ ∈ N , 0 ≤ ψq ≤ Uq and ℓ < hq with hq ∈ Fq or

hq = 0 for all q≤Q. Ψ represents the partial makespan, ℓ is the decision stage (whether to dispatch to order

ℓ+1 or not). For all q ≤Q, if hq > 0, then hq corresponds to the largest index of family q that is included

in the current batch of that family and ψq is the accumulated dispatching time of that batch; otherwise, if

hq = 0 then there is no current dispatch for family q, with ψq = 0.

• We now proceed to describe the arcs for this acyclic directed graph. Between stage ℓ and ℓ+1, the only

coordinates of the states vector that can change are Ψ and the coordinates of the family of order ℓ+1; i.e.

F{ℓ+1}; so our notation for states will be (Ψ, ℓ, . . . ,ψF{ℓ+1} , hF{ℓ+1} , . . .). We start with the arcs departing T0:

—Arcs T0→ (Ψ,1, . . . ,0,0, . . .) with distance 0; for all Ψ< τ1 + τF{1} (order 1 is not dispatched).

—Arcs T0→ (Ψ,1, . . . ,0,0, . . .) with distance −γ1; for all τ1 + τF{1} ≤Ψ≤U (order 1 is dispatched as a

singleton, this is the feasibility condition).

—Arcs T0→ (Ψ,1, . . . , τ1+ τF{1} , hF{1} , . . .) with distance −γ1; for all Ψ≤U , and 1<hF{1} with hF{1} ∈

F{1} (i.e., order 1 is dispatched in a batch that has as maximum index hF{1} , feasibility conditions are

enforced later).

• For each ℓ= 1, . . . , n− 1, and Ψ≤U ; when hF{ℓ+1} = 0 then ψF{ℓ+1} = 0 and the arcs are:

—(Ψ, ℓ, . . . ,0,0, . . .)→ (Ψ, ℓ+1, . . . ,0,0, . . .) with distance 0 (order ℓ+1 is not dispatched).
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—(Ψ, ℓ, . . . ,0,0, . . .)→ (Ψ+τℓ+1+τF{ℓ+1} , ℓ+1, . . . ,0,0, . . .) with distance−γℓ+1 (order ℓ+1 is dispatched

as a singleton), if Ψ≥ rℓ+1 (feasibility condition).

—(Ψ, ℓ, . . . ,0,0, . . .)→ (Ψ, ℓ+1, . . . , τℓ+1+τF{ℓ+1} , h, . . .) with distance −γℓ+1 for h> ℓ+1 and h∈ F{ℓ+1}

(order ℓ+1 is dispatched in a batch where the largest order is h, feasibility condition is enforced later).

• For each ℓ= 1, . . . , n−1, and Ψ≤U ; when hF{ℓ+1} = ℓ+1 then the only possible arc (that represents the

dispatch being finalized) is (Ψ, ℓ, . . . ,ψF{ℓ+1} , hF{ℓ+1} , . . .)→ (Ψ+ψF{ℓ+1} + τℓ+1, ℓ+1, . . . ,0,0, . . .) and exists

only if Ψ≥ rℓ+1 (feasibility condition for the batch with largest index ℓ+1).

• For each ℓ= 1, . . . , n− 1, and Ψ≤U , when hF{ℓ+1} > ℓ+1 then arcs are:

—(Ψ, ℓ, . . . ,ψF{ℓ+1} , hF{ℓ+1} , . . .)→ (Ψ, ℓ+ 1, . . . ,ψF{ℓ+1} , hF{ℓ+1} , . . .) with distance 0 (order ℓ+ 1 is not

dispatched).

—(Ψ, ℓ, . . . ,ψF{ℓ+1} , hF{ℓ+1} , . . .)→ (Ψ, ℓ, . . . ,ψF{ℓ+1} + τℓ+1, hF{ℓ+1} , . . .) with distance −γℓ+1 (order ℓ+1

is added to the current batch of family F{ℓ+1}; feasibility conditions are enforced at ℓ+1= hF{ℓ+1}).

• Finally, we have the arcs (Ψ, n, . . . ,0,0, . . .)→ T1 with distance Ψαk−β; for Ψ≥mini∈N(ri+ τi+ τF{i});

condition that guarantees any shortest path dispatches to at least one order.

For each ℓ < n, if hF{ℓ+1} ̸= 0, then state (Ψ, ℓ, . . . ,ψF{ℓ+1} , hF{ℓ+1} , . . .) has either one or two departing arcs;

so there are O

(
U

[
ΠQ

q=1Uq× |Fq|
]
) arcs departing from these states. On the other hand, if hF{ℓ+1} = 0, then

there are up to |F{ℓ+1}|+ 2 departing arcs; however as ψF{ℓ+1} = 0 and |F{ℓ+1}| < UF{ℓ+1} , then the total

number of arcs departing from these states is also O

(
U

[
ΠQ

q=1Uq × |Fq|
]
). By adding all arcs over ℓ ∈ N ,

there are O

(
nU

[
ΠQ

q=1Uq × |Fq|
]
) arcs. ■

Appendix D: Interval-Solvable Functions

Theorem 5. Suppose each i∈N is associated with a number τi > 0. Moreover, consider some τ0 ≥ 0 and

a concave non-decreasing function g :R→R with g(0) = 0. The following functions are interval-solvable:

1. f(S) = τ0 +maxi∈S{τi}

2. f(S) = τ0 + g(|S|).

Furthermore, f(S) =
∑

i∈S τi is not only interval-solvable, it suffices to consider singleton batches.

Proof: We prove the claim for each of the functions separately:

1. As shown by Erazo and Toriello (2023), we may assume without loss of optimality that the τi are in

non-increasing order. Consider a solution for the MSMD and order all batches according to their minimum
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index ; let B1, . . . ,Bh be the ordered batches. We set i= 1 and construct iteratively a new solution as follows:

Let li and ui be the minimum and maximum indices (respectively) of Bi; we construct new interval batch

B′
i = {li, li + 1, . . . , ui} and assign it to the same vehicle to which Bi is assigned to; then update all the

batches Bi+1, . . . ,Bh by removing the new orders that were just assigned to B′
i, and increase i by one. If

Bi is empty, then we add B′
i as empty and increase i by one; we finish this procedure when i= h+ 1. By

construction, the minimum index of B′
i is greater than or equal to the minimum index of Bi for all i where

B′
i is not empty, so f(B′

i)≤ f(Bi) because of τ being monotone non-increasing. Furthermore, the maximum

index of B′
i is smaller or equal to the maximum index of Bi for all i= 1, . . . , h where B′

i is not empty, so each

of those respective B′
i dispatches do not start later than when batch Bi starts its dispatch in the original

optimal solution. Therefore, as no extra dispatches have been added, each vehicle has its makespan reduced

or maintained and the interval solution is also optimal.

2. From proposition 4, without loss of optimality we assume that each vehicle dispatches to batches

according to an increasing value of the maximum index of the batch. From this observation, we create

an interval solution as follows: order all the batches according to their maximum index and let B1, . . . ,Bh

be the ordered batches, with respective cardinalities C1, . . . ,Ch. We can construct the interval solution by

doing B′
1 = {1, . . . ,C1}, and B′

i+1 = {
∑i

j=1Cj + 1, . . . ,
∑i+1

j=1Cj} for i= 1, . . . , h− 1, such as to get batches

B′
1, . . . ,B

′
h, where by construction |B′

i|= |Bi| and maxj∈B′
i
{j} ≤maxj∈Bi

{j}. By assigning each batch B′
i to

the same vehicle that batch Bi was assigned to, the new solution cannot increase its makespan; thus, the

interval solution is optimal as well.

Finally, we prove that the function f(S) =
∑

i∈S
τi can be solved only by considering the singleton batches.

Assume the optimal solution has at least one non-singleton batch in vehicle k; and let Ok be the set of

orders dispatched by that vehicle in the optimal solution. If that vehicle dispatches the same orders, but

as singletons, the total dispatch time would be equal, and no order would have its dispatch starting later;

it follows that the makespan for this vehicle cannot increase. By iterating over vehicles we get the desired

result; this result still holds if the fleet is heterogeneous. ■

Appendix E: Strength of LP relaxation Lower Bounds

E.1. Worst Case For the Bound Given by the LP Relaxations of Our Formulations

Proposition 13. Let z∗I be the optimal makespan of MSMD for an instance I with m vehicles and n≥m

orders. Let z
LP (1)
I , z

LP (3)
I , z

LP (4)
I be the optimal (fractional) makespan of the linear relaxations of (1), (3) and
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(4), respectively, for instance I. Even when f is modular and all release times are zero, there exists a family

of instances I1, I2, . . . such that limh→∞ z∗Ih/z
LP (1)
Ih

= limh→∞ z∗Ih/z
LP (4)
Ih

=m, and limh→∞ z∗Ih/z
LP (3)
Ih

=∞.

Proof: Consider any arbitrary number of vehicles m and positive integer h; we design an instance Ih

with n=m+2 orders, ri = 0 for all i ∈N ; τ1 = 1 and τi = 1/h for all orders i= 2, . . . ,m+2. For h≥ n− 1,

the makespan of instance z∗Ih is equal to 1. We prove the claim for each of the LP relaxations:

• For the LP relaxation of formulation (1), set xN,k = 1/m for every vehicle k ∈M ; this ensures constraint

(1d) holds. As all release times are zero, we set t1 = t2 = . . .= tn = 0 and constraints (1a), (1b) and (1c) hold.

Finally, z
LP (1)
Ih

=
(
(n− 1)/h+1

)
/m= (m+1)/hm+1/m; thus limh→∞ z∗Ih/z

LP (1)
Ih

=m.

• For the LP relaxation of formulation (4), set x{1},k = x{2},k = . . . = x{m−1},k = x[m−1,m+1],k = 1/m for

every vehicle k ∈ M . This choice guarantees that constraints (4b) and (4c) hold. Each constraint (4a)

becomes z ≥ 1/m + (m − 2)/hm + 3/hm = 1/m + (m + 1)/hm; thus z
LP (4)
Ih

= 1/m + (m + 1)/hm; and

limh→∞ z∗Ih/z
LP (1)
Ih

=m.

• For the LP relaxation of formulation (3) set xi = 1 for all i ∈N , then (3d) holds. Moreover, set y0,1 =

1, y1,2 = 2/3, y1,3 = 1/3 (i.e. flow constraints at order 1 hold), y0,2 = 1/3, y2,3 = 2/3, y2,n+1 = 1/3 (i.e.

flow constraints at order 2 hold); y3,4 = 1/3, y3,n+1 = 2/3 (i.e. flow constraints at order 3 hold), y0,4 =

2/3, y4,n+1 = 1 (i.e. flow constraints at order 4 hold) and finally, y0,i = yi,n+1 = 1 for i ∈ 5, . . . , n. It follows

that constraints (3e) and (3f) hold; and as n=m+2; then (3b) and (3c) hold as well. Now with respect to

constraints (3g), starting with orders 1, 2, 3 and 4:

— t1 = 0; then t2 ≥ t1 +1− (1− 2/3)× 1 = 2/3; thus we set t2 = 2/3

— t3 ≥ t1 +1− (1− 1/3)× 1 = 1/3 but also t3 ≥ t2 +1/h− (1− 2/3)× (1+1/h) = 2/3+1/h− (1/3)(1+

1/h) = 1/3+2/(3h); therefore we set t3 = 1/3+2/(3h)

— t4 ≥ t1 + 1− 1 = 0; t4 ≥ t2 + 1/h− (1 + 1/h) =−1/3 and t4 ≥ t3 + 1/h− (1− 1/3)(1 + 2/h) = 1/3 +

2/(3h)− 2/3− 4/(3h) =−1/3− 2/(3h); so we set t4 = 0

For all the other ti with 5≤ i≤ n because f([1, i])> 1 and the only non-zero incoming variable y is y0,i = 1,

then we get ti = 0. Finally, for tn+1 we have:

— tn+1 ≥ t1 +1− 1 = 0

— tn+1 ≥ t2 +1/h− (1− 1/3)(1+2/h) = 2/3+1/h− 2/3− 4/(3h)< 0

— tn+1 ≥ t3 +1/h− (1− 2/3)(1+3/h) = 1/3+1/h− 1/3− 1/h= 0
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— tn+1 ≥ t4 +1/h− 0 = 1/h.

—For all 5≤ i≤ n we get tn+1 ≥ ti +1/h= 1/h

Our assignment of values t is feasible for constraints (3a) and (3g). We conclude that tn+1 = z
LP (4)
Ih

= 1/h;

and limh→∞ z∗Ih/z
LP (1)
Ih

=∞.

Note that by swapping the values of τ1 and τn the values of z
LP (1)
Ih

and z
LP (4)
Ih

remain constant, however

z
LP (3)
Ih

= z∗Ih ; this suggests that our formulations have a complementary structure for the lower bounds. ■

E.2. The Linear Relaxation of (1) is Dominated

Proposition 14. Let each order i∈N be associated with a value τi > 0, and let f(S) =
∑

i∈S τi. The lower

bound presented in Proposition 5 is greater than or equal to the lower bound given by the linear relaxation of

(1).

Proof: We start the proof by adding a constraint in the formulation, that implies we get an upper bound

on the objective of the LP relaxation. We enforce xS,1 = xS,2 = . . .= xS,m for all subsets S ⊆N ; that makes

the LP relaxation to be equivalent to solving a modified instance of a single vehicle SMD, with function

f ′(S) = f(S)/m= (
∑

i∈S
τi)/m. Erazo and Toriello (2023) proved that this problem can be solved in linear

time with the recursion t1 = r1 = 0 and ti+1 =max(ti + f ′({i}), ri+1) for all i ∈N\{1}. From the recursion,

we know that there exists a maximum index j ≥ 1 such that tj = rj , and therefore we have.

z = tn+1 = tj +

n∑
i=j

f ′({i})
m

= rj +
f({j, . . . , n})

m
≤ rj +

f({j, . . . , n})
min(m,n− j+1)

≤max
i∈N

[
ri +

f({i, . . . , n})
min(k,n− i+1)

]
.

The equations follow from definition, the first inequality is due to dividing by a smaller number, and the

last inequality follows from maximizing over i ∈N . The last expression is precisely the lower bound from

Proposition 5. ■

E.3. Strong Set Cover Formulation

Theorem 6. Let LB be a lower bound for the optimal makespan. Constraint (4a) of formulation (4)

can be strengthened to z ≥
∑

S⊆N
max{SMD(S),LB}xS,k; furthermore, all previous complexity results on the

formulation remain unchanged.

Proof: To prove that the strong formulation continues to solve the MSMD, we assume that we have an

optimal solution z,x for MILP (4). Because that solution is optimal, then each vehicle k ∈M will have only
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one variable xSk,k equal to one, and constraints (4a) are just equal to z ≥ SMD(Sk)xSk,k for all k ∈M . More-

over, LB is a lower bound on the makespan; therefore, z ≥LB, which implies z ≥max(SMD(Sk),LB)xSk,k

for all k ∈M , thus z,x is also optimal for the strong set cover formulation. The separation problem of the

strong set cover MILP is

min
S⊆N

(
αk max(LB,SMD(S))−β−

∑
i∈S

γi

)
∀k ∈M.

The proof for Theorem 2 continues to hold for any knapsack problem with W ≥ LB; thus, the complexity

result holds. With respect to Theorems 3 and 4, the same dynamic programs work; the sole difference is that

arcs arriving into the terminal state T1 need to be modified to account for the right objective; i.e. those arcs

have distance max(LB,Ψ)αk−β instead of Ψαk−β. ■

Appendix F: Experiment Details

F.1. Details on Algorithm 1

The optimization procedure can be stopped as soon as we get a feasible solution with makespan less than or

equal to ϕ∗ or as soon as the dual lower bound reported by Gurobi is greater than ϕ∗. Also, from iteration

to iteration we can pass on the previous best solution found as a warm-start (if the previous iteration was

True) or partial warm-start (if previous iteration was False). This improves the algorithm’s performance.

F.2. Details on Dispatch Structure for m≥ 2

We have as input the number of vehicles m, the vector of arrival times r (with n1 > n orders, determined

by Algorithm 1), the dispatch time function f and the original makespan ϕ∗. From Algorithm 1, m vehicles

can dispatch to those n1 orders within the desired makespan; therefore we modify MILP (1) to find the most

efficient solution given those constraints. We also leverage the fact that f is interval-solvable. The variables

for the modified MILP are:

xS,k ∈ {0,1}: indicates if S is dispatched by vehicle k ∈M

ti,k: departure time of dispatch i in vehicle k, if it occurs, for i∈N , k= 1, . . . ,m.

min
∑
S

xS,kf(S)

s.t. ti,k ≥ ri ∀i= 1, . . . , n1, ∀k= 1, . . . ,m (10a)

ti+1,k ≥ ti,k +
∑
S∈Ni

xS,kfk(S) ∀i= 1, . . . , n1− 1, ∀k= 1, . . . ,m (10b)
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ϕ∗ ≥ tn1,k +
∑

S∈Nn1

xS,kfk(S) ∀k= 1, . . . ,m (10c)

m∑
k=1

∑
S:S∋i

xS,k = 1 ∀i= 1, . . . , n1 (10d)

t≥ 0, x∈ {0,1}

Constraints (10a) and (10b) are feasibility conditions for dispatches, (10c) enforces the makespan condition

and (10d) is the coverage constraint for orders.

F.3. Lower Bound for Serial-Batch Scheduling with Family Setups and Release Times

Proposition 15. Consider an instance of MSMD with m vehicles and Q families F1, . . . , FQ that partition

order set N . Each family q has a setup time τq ≥ 0, each order i ∈N is associated to a positive number τi,

and f(S) =
∑

i∈S
τi +

∑
q:Fq∩S ̸=∅ τq. For all i ∈N , define Gi := min(m,n− i+1), Li :=

∣∣{q : Fq ∩ [i, n] ̸= ∅}
∣∣

(number of families intersecting batch [1, n]), and Pi := {q : |Fq ∩ [i, n]|> 1}. Furthermore, define Vi as the

increasing vector with the values τq for each q ∈ Pi, each value repeated exactly |Fq ∩ [i, n]|−1 times. Finally,

let Pi(a) be the sum of the first a components of vector Pi, with Pi(0) = 0 for all i∈N . Then,

max
i∈N

{
ri +

[
f([i, n]) +Pi

(
max{Gi−Li,0}

)]
/Gi

}
is a lower bound for the MSMD instance.

Proof: Consider any i ∈N , then at time ri we still have to dispatch to orders i, . . . , n, hence a lower

bound on the total dispatching time is f([i, n]), and that amount of time can be divided into at most m

vehicles ifm≥ n− i+1 and n− i+1 vehicles otherwise (one order per vehicle). It follows that ri+f([i, n])/Gi

is a lower bound on the makespan. For any i, if Gi ≤Li, then the expression within the principal maximum

function is the lower bound from Proposition 5.

On the other hand, if Gi >Li then that implies the total dispatching load of the lower bound is divided

into more vehicles than the total number of families intersecting with [i, n]. From that observation, as each

vehicle needs to incur at least one family setup time, we can add the Gi −Li smallest setup times to f(S)

to get a lower bound on the total dispatch time done by the Gi vehicles. In fact, instead of picking the

smallest setup times, we can pick the smallest setup times among families that intersect batch [i, n]. As f(S)

considers the setup of each family intersecting the batch, then only the families in Pi are eligible for their

setup time to be selected; and if family q intersects the batch k times, then that setup can be added up to

k−1 extra times (because the family cannot be divided into more than k vehicles). Hence we need to add to
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f(S) the value Pi(Gi−Li) to get a lower bound ri +
(
f([i, n])+Pi(Gi−Li)

)
/Gi. By unifying cases Gi ≤Li

and Gi >Li and maximizing over i∈N , we find the desired lower bound. ■

F.4. Column Generation Acceleration

We implement the acceleration procedure from Ben-Ameur and Neto (2007) when solving the linear relax-

ations of MILPs (1), (2), (3), (4) and the strong formulation of MILP (4). At every iteration, this procedure

uses an incumbent feasible dual solution, denoted δf here for convenience, which can be initialized with

any feasible solution, such as δf = 0, and the infeasible dual solution obtained by the master solve, denoted

δm. Instead of attempting to separate δm, we solve the dual separation problem for the convex combination

δ̂ = λδf + (1− λ)δm. Intuitively, this solution is likelier to be feasible or at least closer to the dual feasible

region. If δ̂ is dual feasible, it necessarily has a larger objective value than δf , so it becomes the new feasible

incumbent. Otherwise, it is dual infeasible, so we add dual cutting planes (i.e. columns in the primal) and

perform another master solve. After preliminary calibration, we used λ= 0.5 in our experiments.
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