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Abstract

Online advertising has motivated interest in online selection problems. Displaying ads
to the right users benefits both the platform (e.g., via pay-per-click) and the advertisers (by
increasing their reach). In practice, not all users click on displayed ads, while the platform’s
algorithm may miss the users most disposed to do so. This mismatch decreases the platform’s
revenue and the advertiser’s chances to reach the right customers. With this motivation, we
propose a secretary problem where a candidate may or may not accept an offer according to a
known probability p. Because we do not know the top candidate willing to accept an offer, the
goal is to maximize a robust objective defined as the minimum over integers k of the probability
of choosing one of the top k candidates, given that one of these candidates will accept an offer.
Using Markov decision process theory, we derive a linear program for this max-min objective
whose solution encodes an optimal policy. The derivation may be of independent interest, as
it is generalizable and can be used to obtain linear programs for many online selection models.
We further relax this linear program into an infinite counterpart, which we use to provide
bounds for the objective and closed-form policies. For p ≥ p∗ ≈ 0.6, an optimal policy is a
simple threshold rule that observes the first p1/(1−p) fraction of candidates and subsequently
makes offers to the best candidate observed so far.

1 Introduction

The growth of online platforms has spurred renewed interest in online selection problems, auc-
tions and stopping problems (Edelman et al., 2007; Lucier, 2017; Devanur and Hayes, 2009; Alaei
et al., 2012; Mehta et al., 2014). Online advertising has particularly benefited from developments
in these areas. As an example, in 2005 Google reported about $6 billion in revenue from adver-
tising, roughly 98% of the company’s total revenue at that time; in 2020, Google’s revenue from
advertising grew to almost $147 billion. Targeting users is crucial for the success of online adver-
tising. Studies suggest that targeted campaigns can double click-through rates in ads (Farahat and
Bailey, 2012) despite the fact that internet users have acquired skills to navigate the web while
ignoring ads (Cho and Cheon, 2004; Drèze and Hussherr, 2003). Therefore, it is natural to expect
that not every displayed ad will be clicked on by a user, even if the user likes the product on the
ad, whereas the platform and advertiser’s revenue depend on this event (Pujol et al., 2015). An
ignored ad misses the opportunity of being displayed to another user willing to click on it and
decreases the return on investment for the advertiser, especially in cases where the platform uses
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methods like pay-for-impression to charge the advertisers. At the same time, the ignored ad uses
the space of another, possibly more suitable ad for that user. In this work, we take the perspective
of a single ad, and we aim to understand the right time to begin displaying the ad to users as a
function of the ad’s probability of being clicked.

We model the interaction between the platform and the users using a general online selection
problem. We refer to it as the secretary problem with uncertain acceptance (SP-UA for short). Using
the terminology of candidate and decision maker, the general interaction is as follows:

1. Similar to other secretary problems, a finite sequence of candidates of known length arrives
online, in a random order. In our motivating application, candidates represent platform users.

2. Upon an arrival, the decision maker (DM) is able to assess the quality of a candidate compared
to previously observed candidates and has to irrevocably decide whether to extend an offer to
the candidate or move on to the next candidate. This captures the online dilemma the platform
faces: the decision of displaying an ad to a user is based solely on information obtained up to
this point.

3. When the DM extends an offer, the candidate accepts with a known probability p ∈ (0, 1], in
which case the process ends, or turns down the offer, in which case the DM moves on to the
next candidate. This models the users, who can click on the ad or ignore it.

4. The process continues until either a candidate accepts an offer or the DM has no more candi-
dates to assess.

A DM that knows in advance that at least one of the top k candidates is willing to accept the offer
would like to maximize the probability of making an offer to one of these candidates. In reality, the
DM does not know k; hence, the best she can do is maximize the minimum of all these scenario-
based probabilities. We call the minimum of these scenario-based probabilities the robust ratio
and our max-min objective the optimal robust ratio (see Subsection 1.2 for a formal description).
Suppose that the DM implements a policy that guarantees a robust ratio γ ∈ (0, 1]. This implies
the DM will succeed with probability at least γ in obtaining a top k candidate, in any scenario
where a top k candidate is willing to accept the DM’s offer. This is an ex-ante guarantee when the
DM knows the odds for each possible scenario, but the policy is independent of k and offers the
same guarantee for any of these scenarios. Moreover, if the DM can assign a numerical valuation
to the candidates, a policy with robust ratio γ can guarantee a factor at least γ of the optimal
offline value. Tamaki (1991) also studies the SP-UA and considers the objective of maximizing the
probability of selecting the best candidate willing to accept the offer. Applying Tamaki’s policy to
value settings can also guarantee an approximation factor of the optimal offline cost; however, the
policy with the optimal robust ratio attains the largest approximation factor of the optimal offline
value among rank-based policies (see Proposition 1).

SP-UA captures the inherent unpredictability in online selection, as other secretary problems do,
but also the uncertainty introduced by the posibility of candidates turning down offers. SP-UA is
broadly applicable; the following are additional concrete examples.

Data-driven selection problems When selling an item in an auction, buyers’ valuations are typ-
ically unknown beforehand. Assuming valuations follow a common distribution, the aim is to
sell the item at the highest price possible; learning information about the distribution is crucial
for this purpose. In particular auction settings, the auctioneer may be able to sequentially observe
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the valuations of potential buyers, and can decide in an online manner whether to sell the item or
continue observing valuations. Specifically, the auctioneer decides to consider the valuation of a
customer with probability p and otherwise the auctioneer moves on to see the next buyer’s val-
uation. The auctioneer’s actions can be interpreted as an exploration-exploitation process, which is
often found in bandit problems and online learning (Cesa-Bianchi and Lugosi, 2006; Hazan, 2019;
Freund and Schapire, 1999). This setting is also closely related to data-driven online selection and
the prophet inequality problem (Campbell and Samuels, 1981; Kaplan et al., 2020; Kertz, 1986);
some of our results also apply in these models (see Section 6).

Human resource management As its name suggests, the original motivation for the secretary
problem is in hiring for a job vacancy. Screening resumes can be a time-consuming task that
shifts resources away from the day-to-day job in Human Resources. Since the advent of the inter-
net, several elements of the hiring process can be partially or completely automated; for example,
multiple vendors offer automated resume screening (Raghavan et al., 2019), and machine learning
algorithms can score and rank job applicants according to different criteria. Of course, a highly
ranked applicant may nevertheless turn down a job offer. Although we consider the rank of a
candidate as an absolute metric of their capacities, in reality, resume screening may suffer from
different sources of bias (Salem and Gupta, 2019), but addressing this goes beyond our scope.
See also (Smith, 1975; Tamaki, 1991; Vanderbei, 2012) for classical treatments. Similar applications
include apartment hunting (Bruss, 1987; Cowan and Zabczyk, 1979; Presman and Sonin, 1973),
among others.

1.1 Our Contributions

(1) We propose a framework and a robust metric to understand the interaction between a DM and
competing candidates, when candidates can reject the DM’s offer. (2) We state a linear program
(LP) that computes the optimal robust ratio and the best strategy. We provide a general method-
ology to derive our LP, and this technique is generalizable to other online selection problems.
(3) We provide bounds for the optimal robust ratio as a function of the probability of acceptance
p ∈ (0, 1]. (4) We present a family of policies based on simple threshold rules; in particular, for
p ≥ p∗ ≈ 0.594, the optimal strategy is a simple threshold rule that skips the first p1/(1−p) frac-
tion of candidates and then makes offers to the best candidate observed so far. We remark that
as p → 1 we recover the guarantees of the standard secretary problem and its optimal threshold
strategy. (5) Finally, for the setting where candidates also have non-negative numerical values, we
show that our solution is the optimal approximation among rank-based algorithms of the opti-
mal offline value, where the benchmark knows the top candidate willing to accept the offer. The
optimal approximation factor equals the optimal robust ratio.

1.2 Problem formulation

A problem instance is given by a fixed probability p ∈ (0, 1] and the number of candidates n. These
are ranked by a total order, 1 ≺ 2 ≺ · · · ≺ n, with 1 being the best or highest-ranked candidate.
The candidate sequence is given by a random permutation π = (R1, . . . , Rn) of [n] .

= {1, 2, . . . , n},
where any permutation is equally likely. At time t, the DM observes the partial rank rt ∈ [t] of the
t-th candidate in the sequence compared to the previous t− 1 candidates. The DM either makes
an offer to the t-th candidate or moves on to the next candidate, without being able to make an
offer to the t-th candidate ever again. If the t-th candidate receives an offer from the DM, she
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accepts the offer with probability p, in which case the process ends. Otherwise, if the candidate
refuses the offer (with probability 1− p), the DM moves on to the next candidate and repeats the
process until she has exhausted the sequence. A candidate with rank in [k] is said to be a top k
candidate. The goal is a policy that maximizes the probability of extending an offer to a highly
ranked candidate that will accept the offer. However, since the DM does not know which candidate
will accept the offer, the DM would like to be robust against any possible scenario. To measure the
quality of a policy P , we use the robust ratio

γP = γP (p) = min
k=1,...,n

P(P selects a top k candidate, candidate accepts offer)
P(At least one of the top k candidates accepts offer)

. (1)

The k-th term in the minimization operator, γP ,k(p), is the probability that policy P successfully
selects a top k candidate given that some top k candidate will accept the offer. Then, the robust ratio
γP = mink=1,...,n γP ,k(p) captures the situation where policy P has the worst possible performance
over all such scenarios. When every candidate accepts an offer with certainty, p = 1, the robust
ratio γP equals the probability of selecting the highest ranked candidate, thus we recover the
standard secretary problem and γP (1) ≈ 1/e for the optimal policy P . The goal is to find a policy
that maximizes this robust ratio, γ∗n

.
= supP γP . We say the policy P is γ-robust if γ ≤ γP .

The Robust Ratio and Related Objectives The SP-UA has been studied before under different
objectives. Smith (1975) studied the SP-UA with the objective of maximizing the probability of
selecting the top candidate and having that candidate accept the offer. This is the unconditional
version of γP ,k for k = 1; however, the top candidate may not accept the offer, and the objective
does not plan for this contingency. This is particularly inadequate when p is small, as in many of
our motivating applications.

Tamaki (1991) instead studied the SP-UA with the objective of maximizing the probability of
choosing the top candidate willing to accept the offer. Despite being more realistic than Smith
(1975), this objective is often overly selective and may not make an offer hoping to encounter a
better candidate in the future. Our objective overcomes this selectiveness, and makes an offer to
a candidate as long as their rank is high compared to other candidates willing to accept the offer.
A further distinction between Tamaki’s objective and the robust ratio emerges when values are
assigned to the candidates. In this case, a value-driven DM would like to maximize the value
obtained from a candidate that accepts the offer. The robust ratio turns out to be the optimal ap-
proximation ratio of any rank-based algorithm in this setting (see Proposition 1). In Section 8,
we provide extensive numerical experiments for the value version of the problem. Our policy
consistently yields better results for small acceptance probabilities, p < 0.2, demonstrating its
effectiveness compared to Tamaki (1991).

1.3 Our technical contributions

Recent works have studied secretary models using linear programming (LP) methods (Buchbinder
et al., 2014; Chan et al., 2014; Correa et al., 2024; Dütting et al., 2021). We also give an LP formu-
lation that computes the best robust ratio and the optimal policy for our model. Whereas these
recent approaches derive an LP formulation using ad-hoc arguments, our first contribution is to
provide a general framework to obtain LP formulations that give optimal bounds and policies for
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different variants of the secretary problem. The framework is based on Markov decision process
(MDP) theory (Altman, 1999; Puterman, 2014). This is surprising since early literature on secre-
tary problem used MDP techniques, e.g. Dynkin (1963); Lindley (1961), though typically not LP
formulations. In that sense, our results connect the early algorithms based on MDP methods with
the recent literature based on LP methods. Specifically, we provide a mechanical way to obtain an
LP using a simple MDP formulation (Section 4). Using this framework, we present a structural
result that completely characterizes the space of policies for the SP-UA:

Theorem 1. Any policy P for the SP-UA can be represented as a vector in the set

POL =

{
(x, y) ≥ 0 : xt,s + yt,s =

1
t

t−1

∑
σ=1

(yt−1,σ + (1− p)xt−1,σ) , ∀t > 1, s ∈ [t], x1,1 + y1,1 = 1

}
.

Conversely, any vector (x, y) ∈ POL represents a policy P . The policy P makes an offer to the first candi-
date with probability x1,1 and to the t-th candidate with probability txt,s/

(
∑t−1

σ=1 yt−1,σ + (1− p)xt−1,σ

)
if the t-th candidate has partial rank rt = s.

The variables xt,s represent the probability of reaching candidate t and making an offer to that
candidate when that candidate has partial rank s ∈ [t]. Likewise, variables yt,s represent the
probability of reaching candidate t and not making an offer when this candidate’s partial rank
is s ∈ [t]. We note that although the use of LP formulations in MDP is a somewhat standard
technique, see e.g. Puterman (2014), the recent literature in secretary problems and related online
selection models does not appear to make an explicit connection between LP’s used in analysis
and the underlying MDP formulation.

Problems solved via MDP can typically be formulated as reward models, where each action taken
by the DM generates some immediate reward. Objectives in classical secretary problems fit in this
framework, as the reward (e.g. the probability of selecting the top candidate) depends only on
the current state (the number t of observed candidates so far and the current candidate’s partial
rank rt = s), and on the DM’s action (make an offer or not); see Section 4.1 for an example. Our
robust objective, however, cannot be easily written as a reward depending only on rt = s. Thus,
we split the analysis into two stages. In the first stage, we deal with the space of policies and
formulate an MDP for our model with a generic utility function. The feasible region of this MDP’s
LP formulation corresponds to POL and is independent of the utility function chosen; therefore, it
characterizes all possible policies for the SP-UA. In the second stage, we use the structural result
in Theorem 1 to obtain a linear program that finds the largest robust ratio.

Theorem 2. The best robust ratio γ∗n for the SP-UA equals the optimal value of the linear program

(LP)n,p

max
x≥0

γ

s.t.
xt,s ≤

1
t

(
1− p

t−1

∑
τ=1

τ

∑
σ=1

xτ,σ

)
∀t ∈ [n], s ∈ [t]

γ ≤ p
1− (1− p)k

n

∑
t=1

t

∑
s=1

xt,s P(Rt ≤ k | rt = s) ∀k ∈ [n],

where P(Rt ≤ k | rt = s) = ∑k∧(n−t+s)
i=s (i−1

s−1)(
n−i
t−s)/(

n
t) is the probability the t-th candidate is ranked in

the top k given that her partial rank is s.

Moreover, given an optimal solution (x∗, γ∗n) of (LP)n,p, the (randomized) policy P∗ that at state (t, s)

makes an offer with probability tx∗t,s/
(

1− p ∑t−1
τ=1 ∑τ

σ=1 x∗τ,σ

)
is γ∗n-robust.
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We show that γP can be written as the minimum of n linear functions on the x variables in POL,
where these variables correspond to a policy’s probability of making an offer in a given state.
Thus our problem can be written as the maximum of a concave piecewise linear function over
POL, which we linearize with the variable γ. By projecting the feasible region onto the (x, γ)
variables we obtain (LP)n,p.

As a byproduct of our analysis via MDP, we show that γ∗n is non-increasing in n for fixed p ∈ (0, 1]
(Lemma 1), and thus limn→∞ γ∗n = γ∗∞ exists. We show that this limit corresponds to the optimal
value of an infinite version of (LP)n,p from Theorem 2, where n tends to infinity and we replace
sums at time t with integrals (see Section 5). This allows us to show upper and lower bounds for
γ∗n by analyzing γ∗∞. Our first result in this vein gives upper bounds on γ∗∞.

Theorem 3. For any p ∈ (0, 1], γ∗∞(p) ≤ min
{

pp/(1−p), 1/β
}

, where 1/β ≈ 0.745 and β is the

(unique) solution of the equation
∫ 1

0 (y(1− log y) + β− 1)−1dy = 1.

To show γ∗∞ ≤ pp/(1−p), we relax all constraints in the robust ratio except k = 1. This becomes the
problem of maximizing the probability of hiring the top candidate, which has a known asymptotic
solution of p1/(1−p) (Smith, 1975). For γ∗∞(p) ≤ 1/β, we show that any γ-robust ordinal algorithm
can be used to construct an algorithm for i.i.d. prophet inequality problems with a multiplicative
loss of (1+ o(1))γ and an additional o(1) additive error. Using a slight modification of the impos-
sibility result by Hill and Kertz (1982) for the i.i.d. prophet inequality, we conclude that γ∗∞ cannot
be larger than 1/β.

By constructing solutions of the infinite LP, we can provide lower bounds for γ∗n. For 1/k ≥ p >
1/(k + 1) with integer k, the policy that skips the first 1/e fraction of candidates and then makes
an offer to any top k candidate afterwards obtains a robust ratio of at least 1/e. The following
result gives improved bounds for γ∗∞(p).

Theorem 4. Let p∗ ≈ 0.594 be the solution of p(2−p)/(1−p) = (1− p)2. There is a solution of the infinite
LP for p ≥ p∗ that guarantees γ∗n ≥ γ∗∞(p) = pp/(1−p). For p ≤ p∗ we have γ∗∞(p) ≥ (p∗)p∗/(1−p∗) ≈
0.466. Moreover, for p→ 0, we obtain γ∞(p) ≥ 0.51.

To prove this result, we use the following general procedure to construct feasible solutions for the
infinite LP. For any numbers 0 < t1 ≤ t2 ≤ · · · ≤ tk ≤ · · · ≤ 1, there is a policy that makes offers
to any candidate with partial rank rt ∈ [k] when a fraction tk of the total number of candidates
has been observed (Proposition 2). For p ≥ p∗, the policy corresponding to t1 = p1/(1−p) and
t2 = t3 = · · · = 1 has a robust ratio of at least pp/(1−p). For p ≤ p∗, we show how to transform the
solution for p∗ into a solution for p with an objective value at least as good as the value γ∗∞(p∗) =
(p∗)p∗/(1−p∗). For values of p close to 0, we construct a feasible solution of the infinite LP that
guarantees γ∗∞(p) ≥ 0.51.

Figure 1 depicts the various theoretical bounds we obtain. For reference, we also include numeri-
cal results for γ∗n computed by solving (LP)n,p in Theorem 2 for n = 200 and with p ranging from
p = 10−2 to p = 1, with increments of 10−3. Since γ∗n is nonincreasing in n, the numerical values
obtained by solving (LP)n,p also provide an upper bound over γ∗∞.

We follow this introduction with a brief literature review. In Section 3 we present preliminaries,
including MDP notation and an alternative characterization of the robust ratio in terms of utility
functions. In Section 4 we present the MDP framework and use it to prove Theorems 1 and 2.
In Section 5 we introduce the infinite relaxation of (LP), then prove Theorem 3 in Section 6. In
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Figure 1: Bounds for γ∗∞ as a function of p. The solid line represents the theoretical upper bound
given in Theorem 3. The dashed-dotted line corresponds to the theoretical lower bound given in
Theorem 4; for p close to 0, the guarantee rises to 0.51. In dashed line we present numerical results
by solving (LP)n,p for n = 200 candidates.

Section 7 we prove Theorem 4. In Section 8 we present a numerical comparison between the
policies obtained by solving (LP)n,p and other benchmarks policies. We conclude in Section 9,
and an appendix includes proofs and analysis omitted from the main article.

2 Related Work

Online advertising and online selection Online advertising has been extensively studied from
the viewpoint of two-sided markets: advertisers and platform. There is extensive work in auction
mechanisms to select ads (e.g. second-price auctions, the VCG mechanism, etc.), and the payment
systems between platforms and advertisers (pay-per-click, pay-for-impression, etc.) (Devanur and
Kakade, 2009; Edelman et al., 2007; Fridgeirsdottir and Najafi-Asadolahi, 2018); see also Choi et al.
(2020) for a review. On the other hand, works relating the platform, advertisers, and web users
have been studied mainly from a learning perspective, to improve ad targeting (Devanur and
Kakade, 2009; Farahat and Bailey, 2012; Hazan, 2019). In this work, we also aim to display an ad
to a potentially interested user. Multiple online selection problems have been proposed to display
ads in online platforms, e.g., packing models (Babaioff et al., 2007; Korula and Pál, 2009), secre-
tary problems and auctions (Babaioff et al., 2008b), prophet models (Alaei et al., 2012) and online
models with ”buyback“ (Babaioff et al., 2008a). In our setting, we add the possibility that a user
ignores the ad; see e.g. Cho and Cheon (2004); Drèze and Hussherr (2003). Failure to click on ads
has been considered in full-information models (Goyal and Udwani, 2020); however, our setting
considers only partial information, where the rank of an incoming customer can only be assessed
relative to previously observed customers—a typical occurrence in many online applications. Our
model is also disaggregated and looks at each ad individually. Our goal is to understand the right
time to display an ad/make offers via the SP-UA and the robust ratio for each individual ad.

Online algorithms and arrival models Online algorithms have been extensively studied for ad-
versarial arrivals (Borodin and El-Yaniv, 2005). This worst-case viewpoint gives robust algorithms
against any input sequence, which tend to be conservative. Conversely, some models assume dis-
tributional information about the inputs (Kertz, 1986; Kleywegt and Papastavrou, 1998; Lucier,
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2017). The random order model lies in between these two viewpoints, and perhaps the most stud-
ied example is the secretary problem (Dynkin, 1963; Gilbert and Mosteller, 1966; Lindley, 1961).
Random order models have also been applied in Adword problems (Devanur and Hayes, 2009),
online LP’s (Agrawal et al., 2014) and online knapsacks (Babaioff et al., 2007; Kesselheim et al.,
2014), among others.

Secretary problems Martin Gadner popularized the secretary problem in his 1960 Mathematical
Games column; for a historical review, see Ferguson et al. (1989) and also the classical survey
by Freeman (1983). For the classical secretary problem, the optimal strategy that observes the
first n/e candidates and thereafter selects the best candidate was computed by Lindley (1961);
Gilbert and Mosteller (1966). The model has been extensively studied in ordinal/ranked-based
settings (Lindley, 1961; Gusein-Zade, 1966; Vanderbei, 1980; Buchbinder et al., 2014) as well as
cardinal/value-based settings (Bateni et al., 2013; Kleinberg, 2005).

A large body of work has been dedicated to augment the secretary problem. Variations include
cardinality constraints (Buchbinder et al., 2014; Vanderbei, 1980; Kleinberg, 2005), knapsack con-
straints (Babaioff et al., 2007), and matroid constraints (Soto, 2013; Feldman et al., 2014; Lachish,
2014). Model variants also incorporate different arrival processes, such as Markov chains (Hlynka
and Sheahan, 1988) and more general processes (Dütting et al., 2021). Closer to our problem are the
data-driven variations of the model (Correa et al., 2024, 2021; Kaplan et al., 2020), where samples
from the arriving candidates are provided to the decision maker. Our model can be interpreted
as an online version of sampling, where a candidate rejecting the decision maker’s offer is tanta-
mount to a sample. This also bears similarity to the exploration-exploitation paradigm often found
in online learning and bandit problems (Cesa-Bianchi and Lugosi, 2006; Hazan, 2019; Freund and
Schapire, 1999).

Uncertain availability in secretary problems The SP-UA is studied by Smith (1975) with the
goal of selecting the top candidate — k = 1 in (1) — who gives an asymptotic probability of
success of p1/(1−p). If the top candidate rejects the offer, this leads to zero value, which is per-
haps excessively pessimistic in scenarios where other competent candidates could accept. Tamaki
(1991) considers maximizing the probability of selecting the top candidate among the candidates
that will accept the offer. Although more realistic, this objective still gives zero value when the
top candidate that accepts is missed because she arrives early in the sequence. In our approach,
we make offers to candidates even if we have already missed the top candidate that accepts the
offer; this is also appealing in utility/value-based settings (see Proposition 1). We also further the
understanding of the model and our objective by presenting closed-form solutions and bounds.
See also Bruss (1987); Presman and Sonin (1973); Cowan and Zabczyk (1979).

Linear programs in online selection Linear programming has been used extensively in online
selection (Agrawal et al., 2014; Beyhaghi et al., 2021; Epstein and Ma, 2024; Kesselheim et al., 2014).
Typically, the LP is used as a structured bound over a benchmark that the algorithm designer can
compare with. Our approach is different, as we provide an exact formulation of our robust objec-
tive. In secretary problems, early work used mostly MDP’s (Lindley, 1961; Smith, 1975; Tamaki,
1991), while LP formulations were recently introduced by Buchbinder et al. (2014); subsequently,
multiple formulations have been used to solve variants of the secretary problem (Chan et al., 2014;
Correa et al., 2024; Dütting et al., 2021). We extend this line of work and use an MDP to derive the
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exact polyhedron that encodes policies for the SP-UA; this helps explain why some LP formula-
tions in secretary problems are exact (see, Subsection 4.1). Jiang et al. (2021, 2023); Perez-Salazar
et al. (2022) are closer to our work, as these studies characterize the optimal policies for prophet in-
equalities. Further connections between MDP and LPs in related models have been studied mostly
in approximate regimes (Adelman, 2007; Torrico et al., 2018; Torrico and Toriello, 2022) and par-
ticularly in constrained MDP’s (Altman, 1999; Haskell and Jain, 2013, 2015). To the best of the
authors’ knowledge, there was previously no explicit connection between the MDP formulation
and the exact LP formulation in secretary problems.

3 Preliminaries

To discuss our model, we use standard MDP notation for secretary problems (Dynkin, 1963; Free-
man, 1983; Lindley, 1961). An instance is characterized by the number of candidates n and the
probability p ∈ (0, 1] that an offer is accepted. For t ∈ [n] and s ∈ [t], a state of the system is a
pair (t, s) indicating that the candidate currently being evaluated is the t-th and the corresponding
partial rank is rt = s. To simplify notation, we add the states (n + 1, s), s ∈ [n + 1], and the state
Θ as absorbing states where no decisions can be made. For t < n, transitions from a state (t, s)
to a state (t + 1, σ) are determined by the random permutation π = (R1, . . . , Rn). We denote by
St ∈ {(t, s)}s∈[t] the random variable indicating the state in the t-th stage. A simple calculation
shows

P(St+1 = (t + 1, σ) | St = (t, s)) = P(rt+1 = σ | rt = s) = P(St+1 = (t + 1, σ)) = 1/(t + 1),

for t < n, s ∈ [t] and σ ∈ [t + 1]. In other words, partial ranks at each stage are independent. For
notational convenience, we assume the equality also holds for t = n. Let A = {offer, pass} be the
set of actions. For t ∈ [n], given a state (t, s) and an action At = a ∈ A, the system transitions to a
state St+1 with the following probabilities :

P((t,s),a),(τ,σ) = P(St+1 = (τ, σ) | St = (t, s), At = a) =


1−p
t+1 a = offer, τ = t + 1, σ ∈ [τ]

p a = offer, (τ, σ) = Θ
1

t+1 a = pass, τ = t + 1, σ ∈ [τ].

The randomness is over the permutation π and the random outcome of the t-th candidate’s de-
cision. We utilize states (n + 1, σ) as end states and the state Θ as the state indicating that an
offer is accepted from the state St. A policy P : {(t, s) : t ∈ [n], s ∈ [t]} → A is a function
that observes a state (t, s) and decides to extend an offer (P(t, s) = offer) or move to the next
candidate (P(t, s) = pass). The policy specifies the actions of a decision maker at any point in
time. The initial state is S1 = (1, 1) and the computation (of a policy) is a sequence of state and
actions (1, 1), a1, (2, s2), a2, (3, s3), . . . where the states transitions according to P((t,s),a),(t+1,σ) and
at = P(t, st). Note that the computation always ends in a state (n + 1, σ) for some σ or the state
Θ, either because the policy was able to go through all candidates or because some candidate t
accepted an offer.

We say that a policy reaches stage t or reaches the t-th stage if the computation of a policy contains
a state st = (t, s) for some s ∈ [t]. We also refer to stages as times.

A randomized policy is a function P : {(t, s) : t ∈ [n], s ∈ [t]} → ∆A where ∆A = {(q, 1− q) :
q ∈ [0, 1]} is the probability simplex over A = {offer, pass} and P(st) = (qt, 1− qt) means that P
selects the offer action with probability qt and otherwise selects pass.
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We could also define policies that remember previously visited states and at state (t, st) make
decisions based on the history, (1, s1), . . . , (t, st). However, MDP theory guarantees that it suffices
to consider Markovian policies, which make decisions based only on (t, st); see Puterman (2014).

We say that a policy P collects a candidate with rank k if the policy extends an offer to a candidate
that has rank k and the candidate accepts the offer. Thus our objective is to find a policy that solves

γ∗n = max
P

min
k∈[n]

P(P collects a candidate with rank ≤ k)
1− (1− p)k

= max
P

min
k∈[n]

P(P collects a top k candidate | a top k candidate accepts).

The following result is an alternative characterization of γ∗n based on utility functions. We use this
result to relate SP-UA to the i.i.d. prophet inequality problem; the proof appears in Appendix A.1.
Consider a nonzero utility function U : [n] → R+ with U1 ≥ U2 ≥ · · · ≥ Un ≥ 0, and any
rank-based algorithm ALG for the SP-UA, i.e., ALG only makes decisions based on the relative
ranking of the values observed. In the value setting, if ALG collects a candidate with overall rank
i, it obtains value Ui. We denote by U(ALG) the value collected by such an algorithm.

Proposition 1. Let ALG be a γ-robust algorithm for SP-UA. For any U : [n]→ R+ we have E[U(ALG)] ≥
γ E[U(OPT)] where OPT is the maximum value obtained from candidates that accept. Moreover,

γ∗n = max
ALG

min
{

E [U(ALG)]

E [U(OPT)]
: U : [n]→ R+, U 6= 0, U1 ≥ U2 ≥ · · · ≥ Un ≥ 0

}
.

4 The LP Formulation

In this section, we present the proofs of Theorems 1 and 2. Our framework is based on MDP
and can be used to derive similar LPs in the literature, e.g. Buchbinder et al. (2014); Chan et al.
(2014); Correa et al. (2024). As a byproduct, we also show that γ∗n is a nonincreasing sequence
in n (Lemma 1). For ease of explanation, we first present the framework for the classical secre-
tary problem, then we sketch the approach for our model. Technical details are deferred to the
appendix.

4.1 Warm-up: MDP to LP in the classical secretary problem

We next show how to derive an LP for the classical secretary problem (Buchbinder et al., 2014)
using an MDP framework. In this model, the goal is to maximize the probability of choosing the
top candidate, and there is no offer uncertainty.

Theorem 5 (Buchbinder et al. (2014)). The maximum probability of choosing the top-ranked candidate
in the classical secretary problem is given by

max

{
n

∑
t=1

t
n

xt : xt ≤
1
t

(
1−

t−1

∑
τ=1

xτ

)
, ∀t ∈ [n], x ≥ 0

}
.

We show this as follows:

10



1. First, we formulate the secretary problem as a Markov decision process, where we aim to find
the highest ranked candidate. Let v∗(t,s) be the maximum probability of selecting the highest
ranked candidate in t + 1, . . . , n given that the current state is (t, s). We define v∗(n+1,s) = 0
for any s. The value v∗ is called the value function and it can be computed via the optimality
equations (Puterman, 2014)

v∗(t,s) = max

{
P(Rt = 1 | rt = s),

1
t + 1

t

∑
σ=1

v∗(t+1,σ)

}
. (2)

The first term in the max operator corresponds to the expected value when the offer action is
chosen in state (t, s). The second corresponds to the expected value in stage t + 1 when we
decide to pass in (t, s). Note that P(Rt = 1 | rt = s) = t/n if s = 1 and P(Rt = 1 | rt = s) = 0
otherwise. The optimality equations (2) can be solved via backwards recursion, and v∗(1,1) ≈ 1/e
(for large n). An optimal policy can be obtained from the optimality equations by choosing at
each state an action that attains the maximum, breaking ties arbitrarily.

2. Using a standard argument (Manne, 1960), it follows that v∗ = (v∗(t,s))t,s is an optimal solution
of the linear program (D):

(D)

min
v≥0

v(1,1)

v(t,s) ≥ P(Rt = 1 | rt = s) ∀t ≤ n, ∀s ≤ t (3)

v(t,s) ≥
1

1 + t

t+1

∑
σ=1

v(t+1,σ) ∀t ≤ n, s ≤ t (4)

3. Taking the dual of (D), we obtain (P):

(P)

max
x,y≥0

n

∑
t=1

t
n

xt,1

x1,1 + y1,1 ≤ 1 (5)

xt,s + yt,s ≤
1
t

t−1

∑
σ=1

yt−1,σ ∀t ≤ n, s ≤ t (6)

Variables xt,s are associated with constraints (3), yt,s with constraints (4). Take any solution
(x, y) of the problem (P) and note that the objective does not depend on y. Incrementing y to
tighten all constraints does not alter the feasibility of the solution and the objective does not
change; thus we can assume that all constraints are tight in (P). Here, xt,s is the probability
that a policy (determined by x, y) reaches the state (t, s) and makes an offer, while yt,s is the
probability that the same policy reaches state (t, s) but decides to not to make an offer.

4. Finally, projecting the feasible region of (P) onto the variables (xt,1)t∈[n], e.g. via Fourier-Motzkin
elimination (see Schrijver (1998) for a definition), gives us Theorem 5. We skip this for brevity.

The same framework can be applied to obtain the linear program for the secretary problem with re-
hire (Buchbinder et al., 2014) and the formulation for the (J, K)-secretary problem (Buchbinder et al.,
2014; Chan et al., 2014). It can also be used to derive an alternative proof of the result by Smith
(1975). Besides secretary problems, this approach using MDP has been applied for prophet prob-
lems (Jiang et al., 2021) and in online bipartite matching (Torrico et al., 2018; Torrico and Toriello,
2022).
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4.2 Framework for the SP-UA

Next, we sketch the proof of Theorem 1 and use it to derive Theorem 2. Technical details are
deferred to the appendix.

In the classical secretary problem, the objective is to maximize the probability of choosing the top
candidate, which we can write in the recursion of the value function v∗. For our model, the ob-
jective γP corresponds to a multi-objective criteria, and it is not clear a priori how to write the
objective as a reward. We present a two-step approach: (1) First, we follow the previous sub-
section’s argument to uncover the polyhedron of policies; (2) second, we show that our objective
function can be written in terms of variables in this polyhedron, and we maximize this objective
in the polyhedron.

4.2.1 The polyhedron of policies via a generic utility function

When we obtained the dual LP (P) (Step 3 in the above framework), anything related to the ob-
jective of the MDP is moved to the objective value of the LP, while anything related to the actions
of the MDP remained in constraints (5)-(6). This suggests using a generic utility function to un-
cover the space of policies. Consider any vector U : [n] → R+, and suppose that our objective is
to maximize the utility collected, where choosing a candidate of rank i means obtaining Ui ≥ 0
value. Let v∗(t,s) be the maximum value collected in times t, t + 1, . . . , n given that the current state
is (t, s), where v∗(n+1,s) = 0. Then, the optimality equations yield

v∗(t,s) = max

{
pUt(s) + (1− p)

1
t + 1

t+1

∑
σ=1

v∗(t+1,σ),
1

t + 1

t+1

∑
σ=1

v∗(t+1,σ)

}
, (7)

where Ut(s) = ∑n
i=1 Ui P(Rt = i | rt = s). The term in the left side of the max operator is

the expected value obtained by an offer action, while the term in the right corresponds to the
expected value of the pass action. Using an approach similar to the one used in steps 2 and 3 from
the previous subsection, we can deduce that

POL =

{
(x, y) ≥ 0 : x1,1 + y1,1 = 1, xt,s + yt,s =

1
t

t−1

∑
σ=1

(yt−1,σ + (1− p)xt−1,σ) , ∀t > 1, s ∈ [t]

}

contains all policies (Theorem 1). A formal proof is presented in the appendix.

4.2.2 The linear program

Next, we consider Theorem 2. Given a policy P , we define xt,s to be the probability of reaching
state (t, s) and making an offer to the candidate, and yt,s to be the probability of reaching (t, s) and
passing. Then (x, y) belongs to POL. Moreover,

P(P collects a top k candidate) = p
n

∑
t=1

t

∑
s=1

xt,s P(Rt ≤ k | rt = s). (8)

Conversely, any point (x, y) ∈ POL defines a policy P : At state (t, s), it extends an offer to the t-th
candidate with probability x1,1 if t = 1, or probability txt,s/

(
∑t−1

σ=1 yt−1,σ + (1− p)xt−1,σ

)
if t > 1.
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Also, P satisfies (8). Thus,

γ∗n = max
P

min
k∈[n]

P(P collects a top k candidate)
1− (1− p)k

= max
(x,y)∈POL

min
k∈[n]

p ∑n
t=1 ∑t

s=1 xt,s P(Rt ≤ k | rt = s)
1− (1− p)k

= max
{

γ : (x, y) ∈ POL, γ ≤ p ∑n
t=1 ∑t

s=1 xt,s P(Rt ≤ k | rt = s)
1− (1− p)k , ∀k ∈ [n]

}
. (9)

Projecting the feasible region of (9) as in step 4 onto the (x, γ)-variables gives us Theorem 2. The
details appear in Appendix A.2.

Our MDP framework also allows us to show the following monotonicity result.

Lemma 1. For a fixed p ∈ (0, 1], we have γ∗n ≥ γ∗n+1 for any n ≥ 1.

We sketch the proof of this result here and defer the details to Appendix A.3. The dual of the LP (9)
can be reformulated as

min
u:[n]→R+

∑i ui≥1

v(1,1)

(DLP) s.t. v(t,s) ≥ max

{
Ut(s) +

1− p
t + 1

t=1

∑
σ=1

v(t+1,σ),
1

t + 1

t=1

∑
σ=1

v(t+1,σ)

}
∀t ∈ [n], s ∈ [t]

v(n+1,s) = 0 ∀s ∈ [n + 1],

where Ut(s) = p ∑n
j=1

(
∑k≥j uk/

(
1− (1− p)k)) P(Rt = j | rt = s). The variables u1, . . . , un corre-

spond to the constraints involving γ in the LP (9). Note that (DLP) is the minimum value that an
MDP can attain when the utility functions are given by Ui = p ∑k≥i uk/

(
1− (1− p)k). Taking any

weighting u : [n] → R+ with ∑i ui ≥ 1, we extend it to û : [n + 1] → R+ by setting ûn+1 = 0. We
define accordingly Ûi = p ∑k≥i ûk/

(
1− (1− p)k), and note that Ui = Ûi for i ≤ n and Ûn+1 = 0.

Using a coupling argument, from any policy for utilities Û with n + 1 candidates, we can con-
struct a policy for utilities U, with n candidates, where both policies collect the same utility. Thus,
the utility collected by the optimal policy for U upper bounds the utility collected by an optimal
policy for Û. The conclusion follows since γ∗n+1 is a lower bound for the latter value.

Since γ∗n ∈ [0, 1] and (γ∗n)n is a monotone sequence in n, limn→∞ γ∗n must exist. In the next section
we show that the limit corresponds to the value of a continuous LP.

5 The Continuous LP

In this section we introduce the continuous linear program (CLP), and we show that its value γ∗∞
corresponds to the limit of γ∗n when n tends to infinity. We also state Proposition 2, which allows
us to construct feasible solutions of (CLP) using any set of times 0 < t1 ≤ t2 ≤ · · · ≤ 1. In the
finite model, the solution constructed in this section has the natural interpretation of segmenting
time: for a candidate arriving between times tin and ti+1n, we make an offer if the candidate has
partial rank i or better. In the remainder of the section, finite model refers to the SP-UA with n < ∞
candidates, while the infinite model refers to SP-UA when n→ ∞.

We assume p ∈ (0, 1] fixed. The continuous LP (CLP) is an infinite linear program with variables
given by a function α : [0, 1]×N → [0, 1] and a scalar γ ≥ 0. Intuitively, if in the finite model we
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interpret xt,s as weights and the sums of xt,s over t as Riemann sums, then the limit of the finite
model, should have a robust ratio computed by the continuous LP (CLP)

(CLP)p

sup
α:[0,1]×N→[0,1]

γ≥0

γ

s.t. tα(t, s) ≤ 1− p
∫ t

0
∑
σ≥1

α(τ, σ)dτ ∀t ∈ [0, 1], s ≥ 1

(10)

γ ≤
p
∫ 1

0 ∑s≥1 α(t, s)∑k
`=s (

`−1
s−1)t

s(1− t)`−s dt
(1− (1− p)k)

∀k ≥ 1.

(11)

We denote by γ∗∞ = γ∗∞(p) the objective value of (CLP)p. The following result formalizes the fact
that the value of the continuous LP (CLP)p is in fact the robust ratio of the infinite model. The
proof is similar to other continuous approximations (Chan et al., 2014); a small caveat in the proof
is the restriction of the finite LP to the top (log n)/p candidates, as they carry most of the weight
in the objective function. The proof is deferred to Appendix A.4.

Lemma 2. Let γ∗n be the optimal robust ratio for n candidates and let γ∗∞ be the value of the continuous LP
(CLP)p. Then |γ∗n − γ∗∞| ≤ O

(
(log n)2/

(
p
√

n
))

.

The following proposition gives a recipe to find feasible solutions for (CLP)p. We use it to con-
struct lower bounds in the following sections.

Proposition 2. Consider 0 ≤ t1 ≤ t2 ≤ · · · ≤ 1 and consider the function α : [0, 1]×N→ [0, 1] defined
such that for t ∈ [ti, ti+1)

α(t, s) =

{
Ti/ti·p+1 s ≤ i
0 s > i,

where Ti = (t1 · · · ti)
p. Then α satisfies Constraint (10).

Proof. We verify that inequality (10) holds. We only need to verify it for t ∈ [ti, ti+1) with i ≥ 1
since α(t, s) = 0 for t ∈ [0, t1). We define t0 = 0 and T0 = 0. For t ∈ [ti, ti+1) we have

1− p
∫ t

0
∑
σ≥1

α(τ, σ)dτ = 1− p

(
j−1

∑
j=1

∫ tj+1

tj

j
Tj

τ jp+1 dτ

)
− p

∫ t

ti

i
Ti

τip+1 dτ

= 1− p
i−1

∑
j=1

j · Tj ·
1
−pj

(
t−jp

j+1 − t−jp
j

)
− pi · Ti ·

1
−ip

(
t−ip − tip

i

)
= 1 +

i−1

∑
j=1

Tj

(
t−jp

j+1 − t−jp
j

)
+ Ti

(
t−ip − tip

i

)
= 1 +

(
i−1

∑
j=1

Tj+1t−(j+1)p
j+1 − Tjt

−jp
j

)
+ Ti

(
t−ip − t−ip

i

)
(Since Tj+1t−jp

j+1 = Tj+1t−(j+1)p
j+1 )

= 1 + Tit
−ip
i − T1t−p

1 + Ti

(
t−ip − t−ip

i

)
= Tit−ip ≥ tα(t, s)

for any s ≥ 1. This concludes the proof.
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We use this result to show lower bounds for γ∗∞. For instance, if 1/k ≥ p > 1/(k + 1) for some
integer k, and we set t1 = 1/e and t2 = t3 = · · · = 1, we can show that γ∗∞(p) is at least 1/e.
Thus, in combination with Lemma 1, we have that γ∗n(p) ≥ 1/e for any n and p > 0; we skip this
analysis for brevity. In Section 7, we use Proposition 2 to show exact solutions of γ∗∞ for large p.

6 Upper Bounds for the Continuous LP

We now consider upper bounds for (CLP) and prove Theorem 3, which states that γ∗∞(p) ≤
min

{
pp/(1−p), 1/β

}
, for any p ∈ (0, 1], where 1/β ≈ 0.745 and β is the unique solution of∫ 1

0 (y(1− log y) + β− 1)−1dy = 1 (Kertz, 1986).

We show that γ∗∞ is bounded by each term in the minimum operator. For the first bound, we have

γ∗n = max
P

min
k∈[n]

P(P collects a top k candidate)
1− (1− p)k

≤ max
P

P(P collects the top candidate)
p

.

The probability of collecting the highest candidate in SP-UA is shown by Smith (1975) to be
p1/(1−p) + o(1), where o(1)→ 0 as n→ ∞. Thus, by Lemma 1, we have

γ∗∞(p) ≤ γ∗n(p) ≤ pp/(1−p) + o(1)/p.

Taking the limit n→ ∞, we conclude γ∗∞(p) ≤ pp/(1−p).

For the second bound, we use the following technical result; its proof is deferred to Appendix A.5,
but we give a short explanation here. A γ-robust algorithm A for the SP-UA, in expectation, has
pn candidates to choose from and (1− p)n candidates from which the algorithm can learn about
candidate quality. We give an algorithmA′ that solves the i.i.d. prophet inequality for any m ≈ pn
i.i.d. random variables X1, . . . , Xm, for m large. The algorithm A′ runs a utility version of A in n
values sampled from the distribution X1 (see the discussion before Proposition 1), guaranteeing
at least a factor γ of the maximum of m ≈ pn of these samples, which is the value of the prophet.
A′ is the capped utility version of A, where no more than m ≈ pn offers can be made. Using
concentration bounds, we show that the loss of these restrictions is minimal. Kaplan et al. (2020)
uses a similar argument, with the difference that their sampling is a fixed fraction of the input
and is done in advance, while in our case the sampling is online and might deviate from the
expectation, implying the need for concentration bounds. The following result summarizes the
reduction and the upper bound.

Theorem 6. Let p ∈ (0, 1) and A be any algorithm that is γ-robust for the SP-UA for any n. Then γ ≤
1/β, where β ≈ 1.34 is the unique solution of the integral equation

∫ 1
0 (y(1− log y) + (β− 1))dy = 1.

The proof of Theorem 6 uses the reduction mentioned in the previous paragraph. The use of
concentration bounds guarantees a (1− o(1))γ multiplicative approximation with e−Θ(n2) additive
error for the i.i.d. prophet inequality problem. Specifically, for any distribution D over [0, 1], we
can guarantee

E
[
Val(A′)

]
+ e−Θ(n2) ≥ γ(1− o(1)) E

[
max
i≤m

Xi

]
, (12)
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where X1, . . . , Xm distribute according toD and Val(A′) is the value collected byA′, the algorithm
described in the previous paragraph where no more than m ≈ pn offers are made. Here o(1) is a
term that can be chosen arbitrarily close to 0 for n large enough. Unfortunately, we cannot con-
clude that γ ≤ 1/β immediately from this bound, since this bound only holds for multiplicative
error in the i.i.d. prophet problem. We bypass this technical challenge as follows. A combination
of results by Hill and Kertz (1982) and Kertz (1986) shows that, for any m and for ε′ > 0 small
enough, there is an i.i.d. instance X1, . . . , Xm with support in [0, 1] such that

E
[

max
i≤m

Xi

]
≥ (am − ε′) sup {E[Xτ] : τ ∈ Tm} ,

where Tm is the class of stopping times for X1, . . . , Xm, and am → β. Thus, using Inequality 12, we
must have

γ(1− o(1)) ≤ 1
am − ε′

+
e−Θ(n2)

E [maxi≤m Xi]

for m ≈ pn. A slight reformulation of Hill and Kertz’s result allows us to set ε′ = 1/m3 and
E[maxi≤m Xi] ≥ 1/m3 (see the discussion at the end of Appendix A.5). Thus, as n → ∞ we have
m → ∞ and so e−Θ(n2)/ E[maxi≤m Xi] → 0. In the limit we obtain γ(1 − o(1)) ≤ 1/β, which
implies our stated result.

An algorithm that solves (LP)n,p and implements the policy given by the solution is γ∗∞-robust
(Theorem 2 and the fact that γ∗n ≥ γ∗∞) for any n. Thus, by the previous analysis we obtain
γ∗∞ ≤ 1/β ≈ 0.745.

7 Lower Bounds for the Continuous LP

In this section we consider lower bounds for (CLP)p and prove Theorem 4. We first give optimal
solutions of (CLP)p for large values of p. For p ≥ p∗ ≈ 0.594, the optimal value of (CLP)p is
γ∗∞(p) = pp/(1−p) and the optimal strategy is to observe p1/(1−p) fraction of the candidates, and
then make offers to the best observed candidate so far. We then show that for p ≤ p∗, γ∗∞(p) ≥
(p∗)p∗/(1−p∗) ≈ 0.466. At the end of the section, we show that γ∗∞(p) ≥ 0.51 when p→ 0.

7.1 Exact solution for large p

We now show that for p ≥ p∗, γ∗∞(p) = pp/(1−p), where p∗ ≈ 0.594 is the solution of (1− p)2 =
p(2−p)/(1−p). Thanks to the upper bound γ∗∞(p) ≤ pp/(1−p) for any p ∈ (0, 1], it is enough to exhibit
feasible solutions (α, γ) of the continuous LP (CLP)p with γ ≥ pp/(1−p).

Let t1 = p1/(1−p), t2 = t3 = · · · = 1, and consider the function α defined by t1, t2, . . . in Proposi-
tion 2. That is, for t ∈ [0, p1/(1−p)), α(t, s) = 0 for any s ≥ 1 and for t ∈ [p1/(1−p), 1] we have

α(t, s) =

{
pp/(1−p)/t1+p s = 1
0 s > 1.

Let γ
.
= infk≥1 p

(
1− (1− p)k)−1 ∫ 1

p1/(1−p)
pp/(1−p)

t1+p ∑k
`=1 t(1− t)`−1dt. Then (α, γ) is feasible for the

continuous LP (CLP)p, and we aim to show that γ ≥ pp/(1−p) when p ≥ p∗. The result follows by
the following lemma.
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Lemma 3. For any p ≥ p∗ and any ` ≥ 0,
∫ 1

p1/(1−p) (1− t)`t−p dt ≥ (1− p)`.

We defer the proof of this lemma to Appendix A.6. Now, we have

γ = inf
k≥1

p
1− (1− p)k

∫ 1

p1/1−p

pp/(1−p)

t1+p

k

∑
`=1

t(1− t)`−1dt

= pp/(1−p) inf
k≥1

∑k
`=1
∫ 1

p1/(1−p) t−p(1− t)`−1 dt

∑k
`=1(1− p)`−1

≥ pp/(1−p) inf
k≥1

inf
`∈[k]

∫ 1

0

1
tp

(1− t)`−1

(1− p)`−1 dt ≥ pp/(1−p),

where we use the known inequality ∑m
`=1 a`/∑m

`=1 b` ≥ min`∈[m] a`/b` for a`, b` > 0, for any `, and
the lemma. This shows that γ∗∞ ≥ pp/(1−p) for p ≥ p∗.

Remark 1. Our analysis is tight. For k = 2, constraint

p
1− (1− p)2

∫ 1

p1/(1−p)

pp/(1−p)

t1+p

k

∑
`=1

t(1− t)`−1 dt ≥ pp/(1−p)

holds if and only if p ≥ p∗.

7.2 Lower bounds for small p

In this subsection we present two lower bounds for γ∗∞(p) when p ≤ p∗, with p∗ ≈ 0.594 as
obtained in the previous subsection. The first bound guarantees γ∗∞(p) ≥ (p∗)p∗/(1−p∗) ≈ 0.466;
the second guarantees γ∗∞(p) ≥ 0.51 when p approaches 0. We present details for the first bound,
as it includes a mechanism to transform the solution of (CLP)p∗ into a solution of (CLP)p for
p ≤ p∗. We defer some details of the latter bound, as it uses a construction similar to (Correa et al.,
2021) with a different limit argument.

Let ε ∈ [0, 1) satisfy p = (1− ε)p∗. For the argument, we take the solution α∗ for (CLP)p∗ that
we obtained in the last subsection and we construct a feasible solution for (CLP)p with objective
value at least (p∗)p∗/(1−p∗). For simplicity, we denote τ∗ = (p∗)1/(1−p∗).

From the previous subsection, we know that the optimal solution α∗ of (CLP)p∗ has the following
form. For t ∈ [0, τ∗), α∗(t, s) = 0 for any s, while for t ∈ [τ∗, 1] we have

α∗(t, s) =

{
(p∗)p∗/(1−p∗)/tp∗+1 s = 1
0 s > 1.

For (CLP)p, we construct a solution α as follows. Let α(t, s) = εs−1α∗(t, 1) for any t ∈ [0, 1] and
s ≥ 1; for example, α(t, 1) = α∗(t, 1). If we interpret α∗ as a policy, it only makes offers to the
highest candidate observed. By contrast, in (CLP)p the policy implied by α makes offers to more
candidates (after time τ∗), with a probability geometrically decreasing according to the relative
ranking of the candidate.

Lemma 4. The solution α satisfies constraints (10),

tα(t, s) ≤ 1− p
∫ t

0
∑
σ≥1

α(τ, σ)dτ,
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for any t ∈ [0, 1], s ≥ 1.

Proof. Indeed,

1− p
∫ t

0
∑
σ≥1

α(τ, σ)dτ = 1− p∗(1− ε)
∫ t

0
∑
σ≥1

εσ−1α∗(τ, 1)dτ

= 1− p∗
∫ t

0
α∗(τ, 1)dτ (Since ∑σ≥1 εσ−1 = 1/(1− ε))

= 1− p∗
∫ t

0
∑
σ≥1

α∗(τ, σ)dτ (Since α∗(τ, σ) = 0 for σ > 1)

≥ tα∗(t, 1). (By feasibility of α∗)

Since α(t, s) = εs−1α∗(t, 1) ≤ α∗(t, 1), we conclude that α satisfies (10) for any t and s.

We now define γ = infk≥1 p
(
1− (1− p)k)−1 ∫ 1

0 ∑s≥1 α(t, s)∑k
`=s (

`−1
s−1)t

s(1 − t)`−sdt. Using the
claim, we know that (α, γ) is feasible for (CLP)p, and need to verify that γ ≥ (p∗)p∗/(1−p∗). Similar
to the analysis in the previous section, the result follows by the following result.

Lemma 5. For any ` ≥ 0,
∫ 1

τ∗ (1− (1− ε)t)`t−p∗ dt ≥ (1− p)`.

Before proving the claim, we establish the bound:

γ = inf
k≥1

1

∑k
`=1(1− p)`−1

∫ 1

0

k

∑
s=1

εs−1α∗(s, 1)
k

∑
`=s

(
`− 1
s− 1

)
ts(1− t)`−s dt (Using definition of α)

= (p∗)p∗/(1−p∗) inf
k≥1

1

∑k
`=1(1− p)`−1

∫ 1

τ∗

1
tp∗+1

k

∑
`=1

`

∑
s=1

εs−1
(
`− 1
s− 1

)
ts(1− t)`−s dt

(Using the definition of α∗ and changing order of summmation)

= (p∗)p∗/(1−p∗) inf
k≥1

1

∑k
`=1(1− p)`−1

∫ 1

τ∗

1
tp∗

k

∑
`=1

(1− (1− ε)t)`−1 dt

(Using the binomial expansion)

= (p∗)p∗/(1−p∗) inf
k≥1

∑k
`=1
∫ 1

τ∗ t−p∗(1− (1− ε)t)`−1 dt

∑k
`=1(1− p)`−1

≥ (p∗)p∗/(1−p∗)

We again used the inequality ∑m
`=1 a`/∑m

`=1 b` ≥ min`∈[m] a`/b` for a`, b` > 0, for any `, and the
claim.
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Proof of Lemma 5. We have 1− (1− ε)t = (1− ε)(1− t) + ε. Therefore,∫ 1

τ∗

1
tp∗ (1− (1− ε)t)`dt =

∫ 1

τ∗

1
tp∗

`

∑
j=0

(
`

j

)
(1− ε)`−j(1− t)`−jεjdt (Binomial expansion)

=
`

∑
j=0

(
`

j

)
(1− ε)`−jεj

∫ 1

τ∗

1
tp∗ (1− t)`−j dt

≥
`

∑
j=0

(
`

j

)
(1− ε)`−jεj(1− p∗)`−j dt (Using Lemma 3 for p∗)

= (ε + (1− ε)(1− p∗))` (Using binomial expansion)

= (1− (1− ε)p∗)` = (1− p)`,

where we used p = (1− ε)p∗. From this inequality the claim follows.

7.2.1 Improved bound for p close to 0

Now we present a better bound for γ∗∞(p), for p close to 0, using an explicit construction of a
solution α for (CLP)p.

The following proposition gives a sufficient condition to ensure lower bounds over γ∗∞(p).

Proposition 3. Let 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ≤ 1. If for all k ≥ 1 we have

Tk

(
t1−kp
k+1 − t1−kp

k

1− kp

)
≥ γp(1− p)k−1,

where Tk = (t1 · · · tk)
p, then, γ∗∞(p) ≥ γ.

Proof. Let α(t, s) be defined as follows. For i ≥ 1, if t ∈ [ti, ti+1), then

α(t, s) =

{
Ti/ti·p+1 s ≤ i
0 s > i.

Then, by Proposition 2, we know that α defines a feasible solution to (CLP)p. Now, using α(t, s) ≥
α(t, `) for any s ≤ `, we obtain

p
∫ 1

0
∑
s≥1

α(t, s)
k

∑
`=s

(
`− 1
s− 1

)
ts(1− t)`−s dt ≥ p

∫ 1

0

k

∑
`=1

α(t, `)t dt

= p
∞

∑
i=1

min{k, i}Ti

(
t1−ip
i+1 − t1−ip

i

1− ip

)

= p
k

∑
j=1

∞

∑
i=i

Ti

(
t1−ip
i+1 − t1−ip

i

1− ip

)

≥ p
k

∑
j=1

∞

∑
i=j

γp(1− p)j−1

= γp
k

∑
j=1

(1− p)j−1 = γ(1− (1− p)k).
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This holds for any k; thus, γ∗∞(p) ≥ γ.

We now present an iterative method to generate a sequence t1, t2, . . . as in Proposition 3. Fix
t1 ∈ [0, 1] and γ > 0, and define Ak = t1(1− p)−k + γpk for k ≥ 1. Note that Ak is increasing in k.
Define t2 = t1 (1 + γp(1− p)/t1)

1/(1−p), and for k ≥ 2, define tk+1 as follows:(
tk+1

tk

)1−kp

=
Ak(1− p)

Ak−1
. (13)

Lemma 6. The sequence t1, . . . defined above satisfies tk ≤ tk+1 for each k ≥ 1. Moreover, for any k ≥ 1,

Tk

(
t1−kp
k+1 − t1−kp

k

1− kp

)
= γp(1− p)k−1,

where Tk = (t1 · · · tk)
p.

Proof. The first part follows from the fact that k < 1/p if and only if Ak(1− p) ≥ Ak−1. For the
second part, let

Bk = Tk

(
t1−kp
k+1 − t1−kp

k

1− kp

)
.

It is easy to verify that B1 = γp using the definition of t2. Now, for k ≥ 2,

Bk+1

Bk
= tp

k+1

 t1−(k+1)p
k+2 − t1−(k+1)p

k+1

t1−kp
k+1 − t1−kp

k

( 1− kp
1− (k + 1)p

)
.

Using Identity (13) and Aj(1− p)− Aj−1 = γp(1− jp), we obtain

Bk+1

Bk
= tp

k+1
Ak−1

Ak

t1−(k+1)p
k+1

t1−kp
k

= (1− p).

Then, inductively, we can show that Bk = γp(1− p)k−1.

Our goal is to give t1 ∈ [0, 1] and γ ∈ [0, 1] as large as possible such that limk tk ≤ 1, with tk
defined via (13).

Lemma 7. We have
lim
k→∞

log tk = log t1 +
∫ ∞

0

γ

t1ex + γx
dx.

for p→ 0.

The proof of the lemma is technical and borrows a strategy used by Correa et al. (2021). The main
insight is to apply logarithms to both sides of Identity (13), and find an expression for log tk+1 as
a sum of terms only involving Aj, γ and p. In the limit in k, and then in p, we can reinterpret the
sums as Riemann sums that later translate into the integral term given in the lemma. We defer the
details of this proof to the Appendix.

We find numerically that the combination of t1 ≈ 0.228 and γ ≈ 0.511 ensures limk→∞ log tk = 0.
Thus, γ∗∞(p) ≥ 0.51 for p close to 0; note that t1 remains bounded away from 0. This means
that the policy given by the values t1, t2, . . . spends the first t1 fraction of time “exploring” before
“exploiting”, and this exploring time remains a constant.
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8 Computational Experiments

In this section we aim to empirically test our policy; to do so, we focus on utility models. Recall
from Proposition 1 that a γ-robust policy ensures at least γ fraction of the optimal offline utility,
for any utility function that is consistent with the ranking, i.e., Uj < Ui if and only if i ≺ j.
This is advantageous for practical scenarios, where a candidate’s “value” may be unknown to the
decision maker.

We evaluate the performance of two groups of solutions. The first group includes policies that are
computed without the knowledge of any utility function:

• Robust policy (Rob-Pol(n, p)), corresponds to the optimal policy obtained by solving (LP)n,p.

• Tamaki’s policy (Tama-Pol(n, p)), which maximizes the probability of selecting the best candi-
date willing to accept an offer. To be precise, Tamaki (1991) studies two models of availabil-
ity: MODEL 1, where the availability of the candidate is known after an offer has been made;
and MODEL 2, where the availability of the candidate is known upon the candidate’s arrival.
MODEL 2 has higher values and is computationally less expensive to compute; we use this
policy. Note that in SP-UA, the expected value obtained by learning the availability of the can-
didate after making an offer is the same value obtained in the model that learns the availability
upon arrival. Therefore, MODEL 2 is a better model to compare our solutions to than MODEL
1.

In the other group, we have policies that are computed with knowledge of the utility function.

• The expected optimal offline value (E[U(OPT(U, n, p))]), which knows the outcome of the of-
fers and the utility function. It can be computed via ∑n

i=1 Ui p(1− p)i−1. For simplicity, we write
OPT when the parameters are clear from the context.

• The optimal rank-based policy if the utility function is known in advance, (Util-Pol(U, n, p)),
computed by solving the optimality equation

v(t,s) = max

{
Ut(s) +

1− p
t + 1

t+1

∑
σ=1

v(t+1,σ),
1

t + 1

t+1

∑
σ=1

v(t+1,σ),

}
,

with boundary condition v(n+1,σ) = 0 for any σ. We write Util-Pol(n, p) when U is clear from
the context. We use a rank-based policy as opposed to a value-based policy for computational
efficiency.

Note that E[U(Rob-Pol)], E[U(Tama-Pol)] ≤ E[U(Util-Pol)] ≤ E[U(OPT)] and by Proposition 1,
E[U(Rob-Pol)] ≥ γ∗n E[U(A)] for any A of the aforementioned policies.

We consider the following decreasing utility functions:

• Top k candidates are valuable (top-k). For k ∈ [n], we consider utility functions of the form
Ui = 1 + εi for i ∈ [k] and Ui = εi for i > k with ε = 1/n. Intuitively, we aim to capture
the notion of an elite set of candidates, where candidates outside the top k are not nearly as
appealing to the decision maker. For instance, renowned brands like to target certain members
of a population for their ads. We test k = 1, 2, 3, 4.
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• Power law population. Ui = i−1/(1+δ) for i ≥ 1 and small δ > 0. Empirical studies have
shown that the distribution of individual performances in many areas follows a power law or
Pareto distribution (Clauset et al., 2009). If we select a random person from [n], the probability
that this individual has a performance score of at least t is proportional to t−(1+δ). We test
δ ∈ {10−2, 10−1, 2 · 10−1}.

We run experiments for n = 200 candidates and range the probability of acceptance p from p =
10−2 to p = 9 · 10−1.

8.1 Results for top-k utility function

In this subsection, we present the results for utility function that has largest values in the top k
candidates, where k = 1, 2, 3, 4. In Figure 2, we plot the ratio between the value collected by A
and E[U(OPT)], for A being Util-Pol, Rob-Pol and Tama-Pol.
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Figure 2: Approximation factors for the top k utility function, for k = 1, 2, 3, 4.

Naturally, of all sequential policies, Util-Pol attains the largest approximation factor of E[U(OPT)].
We observe empirically that Rob-Pol collects larger values than Tama-Pol for smaller values of k.
Interestingly, we observe in the four experiments that the approximation factor for Rob-Pol is al-
ways better than Tama-Pol for small values of p. In other words, robustness helps online selection
problems when the probability of acceptance is relatively low. In general, for this utility func-
tion, we observe in the experiments that Rob-Pol collects at least 50% of the optimal offline value,
except for the case k = 1. As n increases (not shown in the figures), we observe that the approx-

22



imation factors of all three policies decrease; this is consistent with the fact that γ∗n, the optimal
robust ratio, is decreasing in n.

8.2 Results for power law utility function

In this subsection, we present the result of our experiments for the power law utility function
Ui = i−(1+δ) for δ = 10−2, 10−1 and 2 · 10−1. In Figure 3, we display the approximation factors of
the three sequential policies.
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Figure 3: Approximation factor for the power law utility function. The function has the form
Ui = i−(1+δ). Experiments are run for δ ∈ {10−2, 10−1, 2 · 10−1}.

Again, we note that Util-Pol collects the largest fraction of all sequential policies. We also observe
a similar behavior as in the case of the top-k utility function. For small values of p, Rob-Pol
empirically collects more value than Tama-Pol. As p increases, the largest valued candidate is
more willing to accept an offer; hence, Tamaki’s 1991 policy is able to capture that candidate.

In general, our experiments suggests that Rob-Pol is better than Tama-Pol for smaller values of
p. This may be of interest in applications where the probability of acceptance is small, say 20%
or less. For instance, some sources state that click-through rates (the fraction of time that an ad
is clicked on) are typically less than 1% (Farahat and Bailey, 2012). Therefore, ad display policies
based on Rob-Pol may be more appropriate than other alternatives.
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9 Concluding Remarks

We have studied the SP-UA, which models an online selection problem where candidates can re-
ject an offer. We introduced the robust ratio as a metric that tries to simultaneously maximize the
probability of successfully selecting one of the best k candidates given that at least one of these will
accept an offer, for all values of k. This objective captures the worst-case scenario for an online pol-
icy against an offline adversary that knows in advance which candidates will accept an offer. We
also demonstrated a connection between this robust ratio and online selection with utility func-
tions. We presented a framework based on MDP theory to derive a linear program that computes
the optimal robust ratio and its optimal policy. This framework can be generalized and used in
other secretary problems (Section 4.1), for instance, by augmenting the state space. Furthermore,
using the MDP framework, we were able to show that the robust ratio γ∗n is a decreasing func-
tion in n. This enabled us to make connections between early works in secretary problems and
recent advances. To study our LP, we allow the number of candidates to go to infinity and obtain
a continuous LP. We provide bounds for this continuous LP, and optimal solutions for large p.

We empirically observe that the robust ratio γ∗n(p) is convex and decreasing as a function of p, and
thus we expect the same behavior from γ∞(p), though this remains to be proved (see Figure 1).
Based on numerical values obtained by solving (LP)n,p, we conjecture that limp→0 γ∗∞(p) = 1/β ≈
0.745. This limit is also observed in a similar model (Correa et al., 2024), where a fraction of the
input is given in advance to the decision maker as a sample. In our model, if we interpret the
rejection from a candidate as a sample, then in the limit both models might behave similarly.
Numerical comparisons between our policies and benchmarks suggest that our proposed policies
perform especially well in situations where the probability of acceptance is small, say less than
20%, as in the case of online advertisement.

A natural extension is the value-based model, where candidates reveal numerical values instead
of partial rankings. Our algorithms are rank-based and guarantee an expected value at least a frac-
tion γ∗n(p) of the optimal offline expected value (Proposition 1). Nonetheless, algorithms based
on numerical values may attain higher expected values than the ones guaranteed by our algo-
rithm. In fact, a threshold algorithm based on sampling may perhaps be enough to guarantee
better values, although this requires an instance-dependent approach. The policies we consider
are instance-agnostic, can be computed once and used for any input sequence of values. In this
value-based model, we would like to consider other arrivals processes. A popular arrival model
is the adversarial arrival, where an adversary constructs values and the arrival order in response
to the DM’s algorithm. Unfortunately, a construction similar to the one in Marchetti-Spaccamela
and Vercellis (1995) for the online knapsack problem shows that it is impossible to attain a finite
competitive ratio in an adversarial regime.

Customers belonging to different demographic groups may have different willingness to click on
ads (Cheng and Cantú-Paz, 2010). In this work, we considered a uniform probability of accep-
tance, and our techniques do not apply directly in the case of different probabilities. In ad display,
one way to cope with different probabilities depending on customers’ demographic group is the
following. Upon observing a customer, a random variable (independent of the ranking of the can-
didate) signals the group of the customer. The probability of acceptance of a candidate depends
on the candidate’s group. Assuming independence between the rankings and the demographic
group allows us to learn nothing about the global quality of the candidates beyond what we can
learn from the partial rank. Using the framework presented in this work, with an augmented state
space (time, partial rank, group type), we can write an LP that solves this problem exactly. Never-
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theless, understanding the robust ratio in this new setting and providing a closed-form policy are
still open questions.

Another interesting extension is the case of multiple selections. In practice, platforms can display
the same ad to more than one user, and some job posts require more than one person for a position.
In this setting, the robust ratio is less informative. If k is the number of possible selections, one
possible objective is to maximize the number of top k candidates selected. We can apply the
framework from this work to obtain an optimal LP. Although there is an optimal solution, no
simple closed-form strategies have been found even for p = 1; see e.g. Buchbinder et al. (2014)).
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A Appendix

A.1 Missing proofs from Section 3

Proof of Proposition 1. Let ALG be a γ-robust algorithm. Fix any algorithm ALG and any U1 ≥ · · · ≥ Un ≥
0. Let ε > 0 and let Ûi = Ui + εi. Thus Ûi > Ûi+1 and so rank and utility are in one-to-one correspondence.
Then

E[Û(ALG)]

E[Û(OPT)]
≥ min

x∈{Û1,...,Ûn}

P(Û(ALG) ≥ x)
P(Û(OPT) ≥ x)

= min
k≤n

P(ALG collects a top k candidate)
P(A top k candidate accepts)

≥ γ

where we used the fact that ALG is γ-robust. Notice that E[U(OPT)] ≤ E[Û(OPT)], and also E[Û(ALG)] ≤
E[U(ALG)] + ε. Thus doing ε→ 0 we obtain

E[U(ALG)]

E[U(OPT)]
≥ γ (14)

for any nonzero vector U with U1 ≥ U2 ≥ · · · ≥ Un ≥ 0. This finishes the first part. For the second part, let

γn = min
ALG

max
{

E[U(ALG)]

E[U(OPT)]
: U : [n]→ R+, U1 ≥ · · · ≥ Un

}
.

Note that the RHS of Inequality (14) is independent of U, thus minimizing in U in the LHS and then
maximizing in ALG on both sides we obtain γn ≥ γ∗n.

To show the reverse inequality, fix k ∈ [n] and let Û : [n] → R+ given by Ûi = 1 for i ≤ k and Ûi = 0 for
i > k. Then,

P(ALG collects a top k candidate)
P(A top k candidate accepts)

=
E[Û(ALG)]

E[Û(OPT)]
≥ min

U:[n]→R+
U1≥···≥Un

E[U(ALG)]

E[U(OPT)]
.

This bound holds for any k, thus minimizing over k and then maximizing over ALG on both sides, we
obtain γ∗n ≥ γn, which finishes the second part.
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A.2 Missing proofs from Section 4

Here we present a detailed derivation of Theorem 1 and Theorem 2 by revisiting Section 4.

As stated in Section 4, we are going to proceed in two stages: (1) First, using a generic utility function, we
uncover the space of policies POL. (2) Second, we show that our objective is a concave linear function of the
variables of the space of policies that allows us to optimize it over POL.

A.2.1 Stage 1: The space of policies

Let U : [n] → R+ be an arbitrary utility function and suppose that a DM makes decisions based on partial
rankings and her goal is to maximize the utility obtained, where she gets Ui if she is able to collect a
candidate of ranking i. Let v∗(t,s) be the optimal value obtained by a DM in {t, t + 1, . . . , n} if she is currently
observing the t-th candidate and this candidate has partial ranking rt = s, i.e., the current state of the
system is st = (t, s). The function v∗(t,s) is called the value function. We define v∗(n+1,σ) for any σ ∈ [n + 1].
Then, by optimality equations (Puterman, 2014), we must have

v∗(t,s) = max

{
pUt(s) + (1− p)

1
t + 1

t+1

∑
σ=1

v∗(t+1,σ),
1

t + 1

t+1

∑
σ=1

v∗(t+1,σ)

}
(15)

with v∗(n+1,s) = 0 for any s ∈ [n + 1]. The first part in the max operator corresponds to the expected
value obtained by selecting the current candidate, while the second part in the operator corresponds to the
expected value collected by passing to the next candidate. Here Ut(s) = ∑n

i=1 Ui P(Rt = i | rt = s) is the
expected value collected by the DM given that the current candidate has partial ranking rt = s and accepts
the offer. Although an optimal policy for this arbitrary utility function can be computed via the optimality
equations, we are more interested in all the possible policies that can be obtained via these formulations.
For this, we are going to use linear programming. This has been used in MDP theory (Puterman, 2014;
Altman, 1999) to study the space of policies.

(D) min
v≥0

v(1,1) (P) max
x,y≥0

n

∑
t=1

t

∑
s=1

Ut(s)xt,s

s.t.
v(t,s) ≥ pUt(s) +

1− p
t + 1

t+1

∑
σ=1

v(t+1,σ)

∀t ∈ [n], s ∈ [t] (16)

v(t,s) ≥
1

t + 1

t+1

∑
σ=1

v(t+1,σ)

∀t ∈ [n], s ∈ [t] (17)

s.t.
x1,1 + y1,1 ≤ 1 (18)

xt,s + yt,s ≤
1
t

(
t−1

∑
σ=1

yt−1,σ + (1− p)xt−1,σ

)
∀t ∈ [n], s ∈ [t] (19)

Figure 4: Linear program that finds value function v∗ for SP-UA and its dual.

The following proposition shows that the solution of the optimality equations (15) solves the LP (D) in
Figure 4. We denote by v(D) the value of the LP (D).

Proposition 4. Let v∗ = (v∗(t,s))t,s be a solution of (15), then v∗ is an optimal solution of the problem of (D) in
Figure 4.

Proof. Since v∗ satisfies the optimality equation (15) then it clearly satisfies constraints (16) and (17). Thus,
v∗ is feasible and so v∗(1,1) ≥ v(D).

To show the optimality of v∗, we show that any solution v of the LP is an upper bound for the value
function: v∗ ≤ v. To show this, we proceed by backward induction in t = n + 1, n, . . . , 1 and we prove that
v∗(t,s) ≤ v(t,s) for any s ∈ [t].

29



We start with the case t = n + 1. In this case v∗(n+1,s) = 0 for any s and since v(n + 1, s) ≥ 0 for any s, then
the result follows.

Suppose the result is true for t = τ + 1, . . . , n + 1 and let us show it for t = τ. Using Constraints (16)-(17)
we must have

v(τ,s) ≥ max

{
pUτ(s) + (1− p)

1
τ + 1

τ+1

∑
σ=1

v(τ+1,σ),
1

τ + 1

τ+1

∑
σ=1

v(τ+1,σ)

}

≥ max

{
pUτ(s) + (1− p)

1
τ + 1

τ+1

∑
σ=1

v∗(τ+1,σ),
1

τ + 1

τ+1

∑
σ=1

v∗(τ+1,σ)

}
(backward induction)

= v∗(τ,s)

where the last line follows by the optimality equations (15). Thus, v(D) = v(1,1) ≥ v∗(1,1).

The dual of the LP (D) is depicted in Figure 4 and named (P). The crucial fact to notice here is that the
feasible region of (P) is oblivious of the utility function (or rewards) given initially to the MDP. This suggest
that the region

POL =

{
(x, y) ≥ 0 : x1,1 + y1,1 = 1, xt,s + yt,s =

1
t

t−1

∑
σ=1

(yt−1,σ + (1− p)xt−1,σ) , ∀t ∈ [n], s ∈ [t]

}
codifies all possible policies. The following two propositions formalize this.

Proposition 5. For any policy P for the SP-UA, consider xt,s = P(P reaches state (t, s), selects candidate) and
yt,s = P(P reaches state (t, s), does not select candidate). Then (x, y) belongs to POL.

Proof. Consider the event Dt = {t-th candidate turns down offer}. Then p = P(Dt). Consider also the
events

Ot = {P reaches t-th candidate and extends an offer}
and

Ot = {P reaches t-th candidate and does not extend offer}.
Then Ot and Ot are disjoint events and Ot ∪Ot equals the event of P reaching stage t. Thus

1Ot∩{St=(t,s)} + 1Ot∩{St=(t,s)} = 1{P reaches state St=(t,s)}. (20)

Note that xt,s = P(Ot ∩ {St = (t, s)}) and yt,s = P(Ot ∩ {St = (t, s)}). For t = 1, then S1 = (1, 1) and
{P reaches state S1 = (1, 1)} occurs with probability 1. Thus

x1,1 + y1,1 = 1.

For t > 1, by the dynamics of the system, the only way that P reaches state t is by reaching stage t− 1 and
not extending an offer to the t− 1 candidate or extending an offer but this was turned down. Thus,

1{P reaches state St=(t,s)} =
t−1

∑
σ=1

1Ot−1∩{St−1=(t−1,σ)}∩{St=(t,s)} + 1Ot−1∩{St−1=(t−1,σ)}∩Dt−1∩{St=(t,s)} (21)

Note that

P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ {St = (t, s)})
= P(Ot−1 ∩ {St−1 = (t− 1, σ)} | St = (t, s)) P(St = (t, s))

= P(Ot−1 ∩ {St−1 = (t− 1, σ)})1
t

=
1
t

yt−1,σ.
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Note that we use that P ’s action at stage t− 1 only depends on St−1 and not what is observed in the future.
Likewise we obtain

P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ Dt−1 ∩ {St = (t, s)})
= P(Dt−1) P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ {St = (t, s)})
= (1− p) P(Ot−1 ∩ {St−1 = (t− 1, σ)} ∩ {St = (t, s)})

=
1− p

t
xt−1,σ.

Using the equality between (20) and (21) and taking expectation, we obtain

xt,s + yt,s =
t−1

∑
σ=1

1
t

yt−1,σ +
1− p

t
xt−1,σ

which shows that (x, y) ∈ POL.

Conversely

Proposition 6. Let (x, y) be a point in POL. Consider the (randomized) policy P that in state (t, s) makes an offer
to the candidate t with probability x1,1 if t = 1 and

txt,s

∑t−1
σ=1 yt−1,σ + (1− p)xt−1,σ

,

if t > 1. Then P is a policy for SP-UA such that xt,s = P(P reaches state (t, s), selects candidate) and yt,s =
P(P reaches state (t, s), does not select candidate) for any t ∈ [n] and s ∈ [t].

Proof. We use the same events Ot, Ot and Dt as defined in the previous proof. Thus, we need to show that
xt,s = P(Ot ∩ {St = (t, s)}) and yt,s = P(Ot ∩ {St = (t, s)}) are the right marginal probabilities. For this, its
is enough to show that

P(Ot | St = (t, s)) = txt,s and P(Ot | St = (t, s)) = tyt,s

for any t ∈ [n] and for any s ∈ [t]. We prove this by induction in t ∈ [n]. For t = 1, the result is true by
definition of the acceptance probability and the fact that x1,1 + y1,1 = 1. Let us assume the result is true for
t− 1 and let us show it for t. First we have

P(Ot | St = (t, s)) = P(Reach t,P(St) = offer | St = (t, s))
= P(Reach t | St = (t, s)) P(P(St) = offer | St = (t, s))

= P(Reach t | St = (t, s)) · txt,s(
∑t−1

σ=1 yt−1,σ + (1− p)xt−1,s

)
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Now, we have

P(Reach t | St = (t, s)) = P((Ot−1 ∩ Dt−1) ∪Ot−1 | St = (t, s))

= (1− p)
t−1

∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ), St = (t, s)) P(St−1 = (t− 1, σ) | St = (t, s))

+
t−1

∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ), St = (t, s)) P(St−1 = (t− 1, σ) | St = (t, s))

= (1− p)
t−1

∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ))
1

t− 1

+
t−1

∑
σ=1

P(Ot−1 | St−1 = (t− 1, σ))
1

t− 1
(P only makes decisions at stage t− 1 based on St−1)

= (1− p)
t−1

∑
σ=1

xt−1,σ + yt−1,σ (induction)

Note that we used

P(St−1 = (t− 1, σ) | St = (t, s)) =
P(St = (t, s) | St−1 = (t− 1, σ)) P(St−1 = (t− 1, σ))

P(St = (t, s))
=

1
t− 1

.

Thus, the induction holds for P(Ot | St = (t, s)) = txt,s. Similarly, for

P(Ot | St = (t, s)) = P(Reach t,P(St) = pass | St = (t, s))
= P(Reach t | St = (t, s)) P(P(St) = pass | St = (t, s))

=

(
t−1

∑
σ=1

yt−1,σ + (1− p)xt−1,σ

)1− txt,s(
∑t−1

σ=1 yt−1,σ + (1− p)xt−1,s

)


= tyt,s

where we used the fact that (x, y) ∈ POL.

A.2.2 Stage 2: The robust objective

Proposition 7. Let P be any policy for SP-UA and let (x, y) ∈ POL be its corresponding vector as in Proposition 5.
Then, for any k ∈ [n],

P(P collects a top k candidate) =
n

∑
t=1

t

∑
s=1

pxt,s P(Rt ≤ k | rt = s).

Proof. We use the same events as in the proof of Proposition 5. Then,

P(P collects a top k candidate) =
n

∑
t=1

t

∑
s=1

P(Ot ∩ Dt ∩ {St = (t, s)} ∩ {Rt ≤ k})

=
n

∑
t=1

t

∑
s=1

pxt,s P(Rt ≤ k | Ot ∩ Dt ∩ {St = (t, s)})

=
n

∑
t=1

t

∑
s=1

pxt,s P(Rt ≤ k | rt = s)

Note that Rt only depends on St and St = (t, s) is equivalent to rt = s.
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We are ready to prove of Theorem 2.

Theorem 7 (Theorem 2 restated). The largest robust ratio γ∗n corresponds to the optimal value of the LP

(LP)n,p

max
x≥0

γ

s.t.
xt,s ≤

1
t

(
1− p

t−1

∑
τ=1

τ

∑
σ=1

xτ,σ

)
∀t ∈ [n], s ∈ [t]

γ ≤ p
1− (1− p)k

n

∑
t=1

t

∑
s=1

xt,s P(Rt ≤ k | rt = s) ∀k ∈ [n],

Moreover, given an optimal solution (x∗, γ∗n) of (LP)n,p, the (randomized) policy P∗ that at state (t, s) makes an offer

with probability tx∗t,s/
(

1− p ∑t−1
τ=1 ∑τ

σ=1 x∗τ,σ

)
is γ∗n-robust.

Proof. We have

γ∗n = max
P

min
k∈[n]

P(P collects a candidate with rank ≤ k)
1− (1− p)k

= max
(x,y)∈POL

min
k∈[n]

p ∑n
t=1 ∑t

s=1 xt,s P(Rt ≤ k | rt = s)
1− (1− p)k (Propositions 5, 6 and 7)

Now note that the function γ : (x, y) 7→ mink∈[n]
p ∑n

t=1 ∑t
s=1 xt,s P(Rt≤k|rt=s)
1−(1−p)k is constant in y. Thus any point

(x, y) satisfying Constraints (18)-(19) has an equivalent point in (x′, y′) ∈ POL with x′ = x, y′ ≥ y so all
constraints tighten and the objective of γ is the same for both points. Thus, γ∗n equals the optimal value of
the LP (P′):

(P′)

max
x≥0

γ

s.t. x1,1 + y1,1 ≤ 1

xt,s + yt,s ≤
1
t

(
t−1

∑
σ=1

yt−1,σ + (1− p)xt−1,σ

)
∀t ∈ [n], s ∈ [t]

γ ≤ p ∑n
t=1 ∑t

s=1 xt,s P(Rt ≤ k | rt = s)
1− (1− p)k ∀k ∈ [n]

where we linearized the objective with the variable γ. By projecting the feasible region of (P′) onto the
variables (x, γ) we obtain (LP)n,p. This is a routine procedure that can be carried out using Fourier-
Motzkin (Schrijver, 1998) but we skip it here for brevity.

For the second part, we can take an optimal solution (x∗, γ∗n) and its corresponding point (x∗, y∗) ∈ POL.
A routine calculation shows that 1− p ∑τ<t ∑τ

σ=1 x∗τ,σ = ∑t−1
σ=1 y∗t−1,σ + (1− p)x∗t−1,σ. Thus by Proposition 6

we obtain the optimal policy.

A.3 Missing proofs from Section 4: γ∗n is decreasing in n

Proof of Lemma 1. We know that γ∗n equals the value

min
u:[n]→R+

∑i ui≥1

v(1,1)

(DLP) s.t. v(t,s) = max

{
pUt(s) +

1− p
t + 1

t=1

∑
σ=1

v(t+1,σ),
1

t + 1

t=1

∑
σ=1

v(t+1,σ)

}
∀t ∈ [n], s ∈ [t]

v(n+1,s) = 0 ∀s ∈ [n + 1]
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where Ut(s) = ∑n
i=1

uk
1−(1−p)k P(Rt ∈ [k] | rt = s) = ∑n

j=1 ∑k≥j

(
uk

1−(1−p)k

)
P(Rt = j | rt = s). Thus the

utility collected by the policy if it collects a candidate with rank i is Ui = ∑k≥i
uk

1−(1−p)k . Let u : [n] → [0, 1]

such that ∑n
i=1 ui = 1 and extend u to û : [n + 1] → [0, 1] by ûn+1 = 0 and define Ût(s) accordingly.

Consider the optimal policy that solves the program

v̂(t,s) = max

{
pÛt(s) +

1− p
t + 1

t+1

∑
σ=1

v̂(t+1σ),
1

t + 1

t+1

∑
σ=1

v̂(t+1,σ)

}
, ∀t ∈ [n + 1], s ∈ [t]

with the boundary condition v̂(n+2,s) = 0 for all s ∈ [n + 2]. Call this policy P̂ . Note that when policy P̂
collects a candidate with rank i, then it gets a utility of

Ûi = ∑
k≥i

ûk

1− (1− p)k = ∑
k≥i

uk

1− (1− p)k = Ui,

for i ≤ n and Ûn+1 = 0. By the choice of P̂ , the expected utility collected by P is val(P̂) = v̂(1,1). We can
obtain a policy P for n elements out of P̂ by simulating an entry of n + 1 elements as follows. Policy P
randomly selects a time t∗ ∈ [n + 1] and its availability b: we set b = 0 (unavailable) with probability 1− p
and b = 1 (available) with probability p. Now, on a input of length n, the policy P will squeeze an item of
rank n + 1 in position t∗ and it will run the policy P̂ in this input, simulating appropriately the new partial
ranks. That is, before stage t∗ policy P behaves exactly as P̂ in the original input of P . When the policy
leaves the stage t∗ − 1 to transition to stage t∗, then the policy P simulates the simulated candidate t∗ (with
real rank n + 1) that P̂ would have received and does the following: ignores the candidate and moves to
stage t∗ if the simulated candidate is unavailable (b = 0) or if P̂((t∗, t∗)) = pass, while if P̂((t∗, t∗)) = offer
and the simulated candidate accepts (b = 1) then the policy P accepts any candidate from that point on.

Coupling the input of length n + 1 for P̂ and the input of length n with the random stage t∗ for P , we

can see that the utilities collected by P and P̂ coincide, i.e., U(P) = ̂̂P = v̂(1,1). Thus the optimal utility
v(1,1) collected by a policy for n candidates and utilities given by U : [n] → R+, holds v(1,1) ≥ v̂(1,1). Since
v̂(1,1) ≥ γ∗n+1, by minimizing over u we obtain γ∗n ≥ γ∗n+1.

A.4 Missing proofs from Section 5

In this subsection we show that |γ∗n − γ∗∞| ≤ O((log n)2/
√

n) for fixed p (Lemma 2). The proof is similar to
other infinite approximation of finite models and we require some preliminary results before showing the
result. First, we introduce two relaxations, one for (LP) and one for (CLP). We show that the relaxations
have values close to their non-relaxed versions. After these preliminaries have been introduced we present
the proof of Lemma 2.

Consider the relaxation of (LP)n,p to the top q candidate constraints:

γ∗n,q = max
x≥0

γ

(LP)n,p,q xt,s ≤
1
t

(
1− p ∑

τ<t

τ

∑
s′=1

xτ,s′

)
∀t, s (22)

γ ≤ p
(1− (1− p)k)

n

∑
t=1

t

∑
s=1

xt,s P(Rt ∈ [k] | rt = s) ∀k ∈ [q] (23)

Note that γ∗n ≤ γ∗n,q since (LP)n,p,q is a relaxation of (LP)n,p. The following result gives a bound on γ∗n
compared to γ∗n,q.

Proposition 8. For any q ∈ [n], γ∗n ≥ (1− (1− p)q) γ∗n,q.
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Proof. Let (x, γ∗n,q) be an optimal solution of (LP)n,p,q. Let fk = p
1−(1−p)k ∑n

t=1 ∑t
s=1 xt,s P(Rt ∈ [k] | rt =

s). Then γ∗n,q = mink=1,...,q fi. It is enough to show that fi ≥
(

1−(1−p)q

1−(1−p)n

)
fq for i ≥ q because γ∗n ≥

mini=1,...,n fi ≥
(

1−(1−p)q

1−(1−p)n

)
mini=1,...,q fi ≥ (1− (1− p)q) γ∗n,q.

For any j we have

f j+1 =
p

1− (1− p)j+1

n

∑
t=1

t

∑
s=1

xt,s P(Rt ∈ [j + 1] | rt = s) ≥
(

1− (1− p)j

1− (1− p)j+1

)
f j.

Thus, iterating this for j > q we get f j ≥
(

1−(1−p)q

1−(1−p)j

)
fq and we obtain the desired result.

Likewise we consider the relaxation of (CLP)p to the top q candidates:

γ∗∞,q = max
α:[0,1]×N→[0,1]

γ≥0

γ

(CLP)p,q α(t, s) ≤ 1
t

(
1− p

∫ t

0
∑
σ≥1

α(τ, σ)dτ

)
∀t ∈ [0, 1], s ≥ 1

(24)

γ ≤ p
(1− (1− p)k)

∫ 1

0
∑
s≥1

α(t, s)
k

∑
`=s

(
`− 1
s− 1

)
ts(1− t)`−s dt ∀k ∈ [q] (25)

We have γ∗∞,q ≥ γ∗∞ and we have the approximate converse

Proposition 9. For any q ≥ 1, γ∗∞ ≥ (1− (1− p)q) γ∗∞,q.

Proof. Let (α, γ∞,q) be a feasible solution of (CLP)p,q. Let

fk =
p

1− (1− p)k

∫ 1

0
∑
s≥1

α(t, s)
k

∑
`=s

(
`− 1
s− 1

)
ts(1− t)`−s dt

Assume that γ∞,q ≤ mink≤q fk. As in the previous proof, we aim to show that fi ≥ (1− (1− p)q) fq for
i ≥ q, since this will imply γ∗∞ ≥ (1− (1− p)q)γ∞,q for any (α, γ∞,q) feasible for (CLP)p,q.

Now, for any j we have

f j+1 =
p

1− (1− p)j+1

∫ 1

0
∑
s≥1

α(t, s)
j+1

∑
`=s

(
`− 1
s− 1

)
ts(1− t)`−s dt

≥ p
1− (1− p)j+1

∫ 1

0
∑
s≥1

α(t, s)
j

∑
`=s

(
`− 1
s− 1

)
ts(1− t)`−s dt

=

(
1− (1− p)j

1− (1− p)j+1

)
f j.

Iterating the inequality until reaching q we deduce that for any j ≥ q we have f j ≥
(

1−(1−p)q

1−(1−p)j

)
fq. From

here the result follows.

Remark 2. If we set q = (log n)/p, both results imply that γ∗n ≥ (1− 1/n) γ∗n,q and γ∗∞ ≥ (1− 1/n) γ∗∞,q. Thus
we lose at most 1/n by restricting the analysis to the top q candidates.
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Proposition 10. There is n0 such that for n ≥ n0, for any t such that
√

n log n ≤ t ≤ n−
√

n log n, ` ≤ log(n)/p
and ` ≥ s it holds that for any τ ∈ [t/n, (t + 1)/n] we have

1− 10
p
√

n
≤

(`−1
s−1)(

n−`
t−s )/(

n
t)

(`−1
s−1)τ

s(1− τ)`−s
≤ 1 +

10
p
√

n
.

Proof. We only need to show that

1− 10
p
√

n
≤

(n−`
t−s )/(

n
t)

τs(1− τ)`−s ≤ 1 +
10

p
√

n
.

We have

(n−`
t−s )

(n
t)

=
t!

(t− s)!
1
n!

(n− `)!(n− t)!
(n− t− (`− s))!

=

(
t · (t− 1) · · · (t− s + 1)

n · (n− 1) · · · (n− s + 1)

)(
(n− t)(n− t− 1) · · · (n− t− (`− s) + 1)
(n− s)(n− s− 1) · · · (n− s− (`− s) + 1)

)

=

(
t
n

)s (
1− t

n

)`−s

︸ ︷︷ ︸
A

 1 ·
(

1− 1
t

)
· · ·
(

1− (s−1)
t

)
1 ·
(

1− 1
n

)
· · ·
(

1− (s−1)
n

)


︸ ︷︷ ︸
B

 1 ·
(

1− 1
n−t

)
· · ·
(

1− (`−s)−1
n−t

)
(
1− s

n
)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)


︸ ︷︷ ︸
C

We bound terms A, B and C separately. Since s ≤ ` and we are assuming that ` ≤ (log n)/p and t ≥√
n log n for n large, then we will implicitly use that s, ` ≤ min{t/2, n/2}.

Claim. It holds
(
1− 4/(p

√
n)
)

τs(1− τ)`−s ≤ A = (t/n)s (1− t/n)`−s ≤
(
1 + 4/(p

√
n)
)

τs(1− τ)`−s.

Proof. For the upper bound we have(
t
n

)s (
1− t

n

)`−s
≤ τs

(
1− τ +

1
n

)`−s
(τ ∈ [t/n, (t + 1)/n])

= τs(1− τ)`−s
(

1 +
1

(1− τ)n

)`−s

≤ τs(1− τ)`−se(`−s)/((1−τ)n)

≤ τs(1− τ)`−se`/(n−t−1)

≤ τs(1− τ)`−s
(

1 + 2
`

n− t− 1

)
(Using ex ≤ 1 + 2x for x ∈ [0, 1])

The upper bound now follows by using the information over ` and t and that (1 + 2`/(n− t− 1)) ≤ 1 +
2(log n)p−1(

√
n log n− 1)−1 ≤ 1 + 4/(p

√
n) for n large.

For the lower bound we have(
t
n

)s (
1− t

n

)`−s
≥
(

τ − 1
n

)s
(1− τ)`−s

= τs(1− τ)`−s
(

1− 1
τn

)s

≥ τs(1− τ)`−se−
s

τn−1

≥ τs(1− τ)`−s (1− s/(τn− 1))

Since s/(τn− 1) ≤ log(n)/(p(t− 1)) ≤ 2/(p
√

n) for n large, the lower bound follows.
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Claim. We have 1− 2s2/t ≤ B ≤ 1 + 2s2/n

Proof. For the upper bound we upper bound the denominator 1 ·
(

1− 1
t

)
· · ·
(

1− (s−1)
t

)
1 ·
(

1− 1
n

)
· · ·
(

1− (s−1)
n

)
 ≤ 1

1 ·
(

1− 1
n

)
· · ·
(

1− (s−1)
n

)
≤ e∑s−1

k=1 k/(n−k)

≤ es2/n (Function x 7→ x/(n− x) is increasing)

≤ 1 + 2
s2

n
For the lower bound we lower bound the numerator: 1 ·

(
1− 1

t

)
· · ·
(

1− (s−1)
t

)
1 ·
(

1− 1
n

)
· · ·
(

1− (s−1)
n

)
 ≥ 1 ·

(
1− 1

t

)
· · ·
(

1− (s− 1)
t

)
≥ e−∑s−1

k=1 k/(t−k) (Using 1− k/t = (1 + k/(t− k))−1 ≥ e−k/(t−k))

≥ 1− s2

t− s
≥ 1− 2

s2

t
.

Claim. We have 1− 2`2/(n− t) ≤ C ≤ 1 + 2`2/n

Proof. Similar to the previous claim, we bound denominator for an upper bound and numerator for a lower
bound. 1 ·

(
1− 1

n−t

)
· · ·
(

1− (`−s)−1
n−t

)
(
1− s

n
)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)
 ≤ 1(

1− s
n
)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)
≤ e∑`−s−1

k=0 (k+s)/(n−k) ≤ 1 + 2
`2

n
,

and  1 ·
(

1− 1
n−t

)
· · ·
(

1− (`−s)−1
n−t

)
(
1− s

n
)
·
(

1− (s+1)
n

)
· · ·
(

1− (s+(`−s)−1)
n

)
 ≥ 1 ·

(
1− 1

n− t

)
· · ·
(

1− (`− s)− 1
n− t

)

≥ e−∑`−s−1
k=0 k/(n−t−k) ≥ 1− 2

`2

n− t
.

We can now upper bound ABC as

ABC ≤ τs(1− τ)`−s
(

1 +
4

p
√

n

)(
1 + 2

s2

n

)(
1 + 2

`2

n

)
≤ τs(1− τ)`−s

(
1 +

4
p
√

n

)(
1 + 2

(log n)2

p2n

)2

(Using t ≤ n−
√

n log n and s ≤ ` ≤ (log n)/p)

≤ τs(1− τ)`−s
(

1 +
4

p
√

n

)(
1 + 6

(log n)2

p2n

)
(Using (1 + x)2 ≤ 1 + 3x if x ∈ [0, 1])

≤ τs(1− τ)`−s
(

1 +
10

p
√

n

)
.
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Recall that we are assuming p constant and n large, thus the dominating term is 1/
√

n. Similarly, we can
lower bound ABC as

ABC ≥ τs(1− τ)`−s
(

1− 4
p
√

n

)(
1− 2

s2

t

)(
1− 2

`2

n− t

)
≥ τs(1− τ)`−s

(
1− 4

p
√

n

)(
1− 2

(log n)2

p2t

)(
1− 2

(log n)2

p2(n− t)

)
≥ τs(1− τ)`−s

(
1− 4

p
√

n

)(
1− 2

(log n)
p2
√

n

)2

≥ τs(1− τ)`−s
(

1− 10
p
√

n

)
.

Proof of Lemma 2. We are going to show |γ∗n − γ∗∞| ≤ O((log n)2/
√

n). Since we can only guarantee good
approximation of the binomial terms in Proposition 10 for ` ≤ (log n)/p, we need to restrict our analysis to
γ∗n,q and γ∗∞,q for q = (log n)/p. This is enough since these values are withing 1/n of γ∗n and γ∗∞ respectively
due to Propositions 8 and 9 (see Remark 2).

Before proceeding, we give two technical results that allow us to control an error for values of t not consid-
ered by Proposition 10. The deduction is a routine calculation and it is skipped for brevity.

Claim. For any x feasible for Constraints (22) and such that xt,s = 0 for s > q, we have for k ≤ q

• ∑
√

n log n
t=1 ∑t

s=1 xt,s P(Rt ∈ [k] | rt = s) ≤ 10(log n)2/(p
√

n).

• ∑n
t=n−

√
n log n ∑t

s=1 xt,s P(Rt ∈ [k] | rt = s) ≤ 10(log n)2/(p
√

n).

Claim. For any α feasible for Constraints (24), we have for k ≤ q

•
∫ 1

1−(log n)/
√

n ∑k
s=1 α(τ, s)∑k

`=s (
`−1
s−1)τ

s(1− τ)`−sdτ ≤ (log n)2/(p
√

n).

•
∫ (log n)/

√
n

0 ∑k
s=1 α(τ, s)∑k

`=s (
`−1
s−1)τ

s(1− τ)`−sdτ ≤ (log n)2/(p
√

n).

First, we show that γ∗n,q ≥ γ∗∞ − 40(log n)2/(p
√

n). Let (α, γ) be a feasible solution of the continuous LP
(CLP)p. We construct a solution of the (LP)n,p,q as follows. Define

xt,s =
t− (1− p)

t

∫ t/n

(t−1)/n
α(τ, s)dτ ∀t ∈ [n], ∀s ∈ [t],

and γn,q = mink≤q
p

1−(1−p)k ∑n
t=1 ∑t

s=1 xt,s P(Rt ∈ [k] | rt = s). Let us show that (x, γn,q) is feasible for

(LP)n,q, i.e., it satisfies Constraints (22)-(23). First, for τ ∈ [(t− 1)/n, t/n] we have

τα(τ, s) + p
∫ τ

(t−1)/n
α(τ′, s)dτ′ ≤ 1− p

∫ τ

0
∑
σ≥1

α(τ′, σ)dτ′ + p
∫ τ

(t−1)/n
α(τ′, s)dτ′

≤ 1− p
∫ (t−1)/n

0
∑
σ≥1

α(τ′, σ)dτ′ ≤ 1− p
t−1

∑
τ′=1

τ′

∑
σ=1

xτ′ ,σ.

We now integrate in [(t− 1)/n, t/n] on both sides of the inequality. After integration, the RHS equals(
1− p ∑t

τ=1 ∑τ
σ=1 xτ,σ

)
/n. On the LHS we obtain,∫ t/n

(t−1)/n

(
τα(τ, s) + p

∫ τ

(t−1)/n
α(τ′, s)dτ′

)
dτ =

t
n

∫ t/n

(t−1)/n
α(τ, s)dτ − (1− p)

∫ t/n

(t−1)/n

(
t
n
− τ

)
α(τ, s)dτ

≥ (t− (1− p))
n

∫ t/n

(t−1)/n
α(τ, s)dτ (Using t/n− τ ≤ 1/n)

=
t
n

xt,s.
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Thus Constraints (22) hold. By definition of γn,q, Constraints (23) also hold.

Now, note that for t ≥
√

n log n we have

xt,s ≥
(

1− 1√
n log n

) ∫ t/n

(t−1)/n
α(τ, s)dτ.

Then,

γn,q = min
k≤q

p
1− (1− p)k

n

∑
t=1

t

∑
s=1

xt,s

k∧(n−t+s)

∑
`=s

(`−1
s−1)(

n−`
t−s )

(n
t)

(Definition of P(Rt ∈ [k] | rt = s))

≥ min
k≤q

p
1− (1− p)k

n−
√

n log n

∑
t=
√

n log n

t

∑
s=1

∫ t/n

(t−1)/n
α(τ, s)dτ

k∧(n−t+s)

∑
`=s

(`−1
s−1)(

n−`
t−s )

(n
t)

(
1− 1√

n log n

)

≥ min
k≤q

p
1− (1− p)k

n−
√

n log n

∑
t=
√

n log n

k

∑
s=1

∫ t/n

(t−1)/n
α(τ, s)

k

∑
`=s

(
`− 1
s− 1

)
τs(1− τ)`−s dτ

(
1− 20

p
√

n

)
(Since n− t + s ≥

√
n log n ≥ k and t ≤ k and using Proposition 10)

= min
k≤q

p
1− (1− p)k

n−
√

n log n

∑
t=
√

n log n

∫ t/n

(t−1)/n

k

∑
`=1

`

∑
s=1

α(τ, s)
(
`− 1
s− 1

)
τs(1− τ)`−s dτ

(
1− 20

p
√

n

)

≥ min
k≤q

(
p

1− (1− p)k

∫ 1

0

k

∑
`=1

`

∑
s=1

α(τ, s)
(
`− 1
s− 1

)
τs(1− τ)`−s dτ − 2

(log n)2

p
√

n

)(
1− 20

p
√

n

)
(Claim A.4)

≥
(

γ− 2
(log n)2

p
√

n

)(
1− 10

p
√

n

)
≥ γ− 20

p
√

n
− 2

log n√
n

.

With this, we have proved that (x, γn,q) is a feasible solution of (LP)n,p,q with an objective value γn,q at least
γ− 20/p

√
n− 2log n/

√
n. Hence, the optimal value of (LP)n,p,q, γ∗n,q is at least γ− 20/p

√
n− 2log n/

√
n.

Since, (α, γ) is any feasible solution of (CLP)p,q, and γ∗∞,q ≥ γ∗∞, we obtain γ∗n,q ≥ γ∗∞ − 40log(n)/
(

p
√

n
)

for n large.

Now, we show that γ∗∞,q ≥ γ∗n,q− 40(log n)2/(p
√

n). Let (x, γn,q) be a solution of (LP)n,p,q. Let us construct
a solution of (CLP)p,q. Note that we can assume xt,s = 0 for s > q as (LP)n,p,q does not improve its objective
function by allocating any mass to these variables. Consider α defined as follows: for τ ∈ [0, 1] let

α(τ, s) =

{
nxt,s

(
1− log(n)/

√
n
)

t = dτne ≥
√

n, s ≤ min{t, log n/p}
0 t = dτne <

√
n or s > min{t, log n/p}

Let γ∞,q = mink≤q
p

1−(1−p)k

∫ 1
0 ∑s≥1 α(τ, s)∑k

`=s (
`−1
s−1)τ

s(1− τ)`−s dτ. We show first that (α, γ∞,q) is feasible

for (CLP)p,q, and for this it is enough to show that α holds Constraints (22). For τ < 1/
√

n we have
α(τ, s) = 0 for any s, thus Constraint (24) is satisfied in this case. Let us verify that for τ ≥ 1/

√
n the

constraint also holds. Let t = dτne and s ≥ 1. Then

τα(τ, s) + p
∫ τ

0
∑
σ≥1

α(τ′, σ)dτ′ ≤ τα(τ, s) + p
t−1

∑
t′=1

∫ t′
n

t′−1
n

t′

∑
s=1

α(τ′, s)dτ′ + p
∫ τ

t−1
n

log n
p

∑
σ=1

α(τ′, σ)dτ′

≤
(

1− log n√
n

)(
txt,s + p

t−1

∑
t′=1

t′

∑
s=1

xt′ ,s + p
log n

pt

)
(Since xt,s ≤ 1

t always)

≤
(

1− log n√
n

)(
1 +

log n
t

)
≤
(

1− log n√
n

)(
1 +

log n√
n

)
. (t ≥

√
n)
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The last term is < 1. Thus (α, γ∞,q) is feasible for (CLP)p,q. Now,

γ∞,q = min
k≤q

p
1− (1− p)k

∫ 1

0
∑
s≥1

α(τ, s)
k

∑
`=s

(
`− 1
s− 1

)
τs(1− τ)`−s dτ

≥ min
k≤q

p
1− (1− p)k

n−
√

n log n

∑
t=
√

n log n

∫ t
n

t−1
n

∑
s≥1

α(τ, s)
k

∑
`=s

(
`− 1
s− 1

)
τs(1− τ)`−s dτ

≥ min
k≤q

p
1− (1− p)k

n−
√

n log n

∑
t=
√

n log n

∫ t
n

t−1
n

∑
s≥1

α(τ, s)
k

∑
`=s

(`−1
s−1)(

n−`
t−s )

(n
t)

dτ

(
1− 10

p
√

n

)
(Proposition 10)

≥ min
k≤q

p
1− (1− p)k

n−
√

n log n

∑
t=
√

n log n

t

∑
s=1

xt,s

k

∑
`=s

(`−1
s−1)(

n−`
t−s )

(n
t)

dτ

(
1− log n√

n

)(
1− 10

p
√

n

)

≥
(

min
k≤q

p
1− (1− p)k

n

∑
t=1

t

∑
s=1

xt,s

k

∑
`=s

(`−1
s−1)(

n−`
t−s )

(n
t)

dτ − 20
(log n)2

p
√

n

)(
1− log n√

n

)(
1− 10

p
√

n

)
(Claim A.4)

≥ γn,q − 40
(log n)2

p
√

n
.

With this, we have formed a feasible solution (α, γ∞,q) of (CLP)p,q. Hence, γ∗∞,q ≥ γn,q − 40(log n)2/p
√

n.
Since (x, γn,q) is any feasible solution of (LP)n,p,q, we can optimize over (x, γn,q) and obtain the inequality
γ∗∞,q ≥ γ∗n,q − 40(log n)2/(p

√
n).

Using Propositions 8 and 9 we can conclude that, for n large, γ∗∞ − 50(log n)2/
(

p
√

n
)
≤ γ∗n ≤ γ∗∞ +

50(log n)2/
(

p
√

n
)
, where the additional constant factors appear as a byproduct of choosing q = log n/p in

both propositions.

A.5 Missing proofs from Section 6

The following result is the reduction from SP-UA to i.i.d. prophet inequality propblem

Lemma 8. Then there is an algorithm A′ for the i.i.d. prophet inequality problem that for any ε, δ > 0 satisfying

(1 + ε)p < 1, n ≥ 2
pε2 log

(
2
δ

)
, m = b(1 + ε)pnc,

ensures

E
[
Val(A′)

]
+ δ ≥ γ(1− 4ε− δ) E

[
max
i≤m

Xi

]
,

for any X1, . . . , Xm sequence of i.i.d. random variables with support in [0, 1], where Val(A′) is the profit obtained by
A′ from the sequence of values X1, . . . , Xm in the prophet problem.

Proof. The input of the i.i.d. prophet inequality problem corresponds to a known distribution D with sup-
port in [0, 1]. The DM sequentially accesses at most m samples from D and upon observing one of these
values, she has to decide irrevocably if to take it and stop the process or continue. We are going to use A to
design a strategy for the prophet problem. We assume that the samples from D are all distinct. Indeed, we
can add some small Gaussian noise to the distribution and consider a continuous distribution D′ instead.

Note that A runs on an input of size n where a fraction p of the candidates accept an offer. We interpret
pn ≈ m as the set of samples for the prophet inequality problem, while the remaining (1− p)n items are
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used as additional information for the algorithm. By concentration bounds, we are going to argue that we
only need to run A in at most (1 + ε)pn positive samples.

Formally, we proceed as follows. Fix n and ε > 0 and consider the algorithm B that receives an online
input of n numbers x1, . . . , xn. The algorithm flips n coins with probability of heads p and marks item i as
available if the corresponding coins that turn out heads. Algorithm B feeds algorithm A with the partial
rankings given by the ordering given by x1, . . . , xn. If A selects a candidate but the candidate is marked as
unavailable, then B moves to the next item. If A selects a candidate i and it is marked as available, then the
process ends with B collecting the value xi. Let us denote by Val(B, x1, . . . , xn) the value collected by B in
the online input x1, . . . , xn. Then we have the following claim.

Claim. EX1,...,Xn
S

[Val(B, X1, . . . , Xn)] ≥ γ EX1,...,Xn
S

[maxi∈S Xi], where S is the random set of items marked as

available and X1, . . . , Xn are n i.i.d. random variables with common distribution D.

Proof. Fix x1, . . . , xn points in the support of D. Then, a simple application of Proposition 1 shows

ES,π

[
Val(B, xπ(1), . . . , xπ(n))

]
ES [maxi∈S xi]

≥ γ

Note that we need to feed B with all permutations of x1, . . . , xn in order to obtain the guarantee of A. From
here, we obtain ES ,π [Val(B, xπ(1), . . . , xπ(n))] ≥ γ ES [maxi∈S xi] and the conclusion follows by taking
expectation in X1 = x1, . . . , Xn = xn.

For ease of notation, we will refer by Val(·) to Val(·, X1, . . . , Xn). We modify slightly B. Consider B′ that
runs normally B if |S| ≤ (1 + ε)pn or simply return 0 value if |S| > (1 + ε)pn. Then, we have

Claim. Let ε, δ > 0. For n ≥ 2 log (2/δ) /(pε2) we have EX1,...,Xn
S

[maxi∈S Xi] ≥ (1− δ) E

[
max

i≤(1−ε)pn
Xi

]
and

E [Val(B′)] + δ ≥ E [Val(B)].

Proof. Using standard Chernoff concentration bounds (see for instance (Boucheron et al., 2013)) we get
PS (||S| − pn| ≥ εpn) ≤ 2e−pnε2/2 = δ. Hence, for n ≥ 2 log (2/δ) /(pε2), we can guarantee that

EX1,...,Xn
S

[
max
i∈S

Xi

]
≥ (1− δ) E

[
max

i≤(1−ε)pn
Xi

]
.

For the second part we have E [Val(B)] ≤ δ + E [Val(B) | |S| ≤ (1 + ε)pn] = δ + E [Val(B′)].

Claim. For any ε > 0 we have E

[
max

i≤(1−ε)pn
Xi

]
≥ (1− ε)2 E

[
max

i≤(1+ε)pn
Xi

]
.

Proof. Since P (maxi≤k Xi ≤ x) = P(X1 ≤ x)k, then we have

E

[
max

i≤(1−ε)pn
Xi

]

E

[
max

i≤(1+ε)pn
Xi

] =

∫ ∞
0

(
1− P(X1 ≤ x)pn(1−ε)

)
dx∫ ∞

0

(
1− P(X1 ≤ x)pn(1+ε)

)
dx
≥ inf

x≥0

1− P(X1 ≤ x)pn(1−ε)

1− P(X1 ≤ x)pn(1+ε)
≥ inf

v∈[0,1)
f (v)

where f (v) = (1− v1−ε)/(1− v1+ε). Now the conclusion follows by using the fact that the function f is
nonincreasing and that infv∈[0,1) f (v) = limv→1 f (v) = (1− ε)/(1 + ε) ≥ (1− ε)2.
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Putting together these two claims, we obtain an algorithm that checks at most (1 + ε)pn items and guaran-
tees

γ(1− ε)2(1− δ) E

[
max

i≤(1+ε)pn
Xi

]
≤ E

[
Val(B′)

]
+ δ.

Now, fix ε > 0 small enough such that (1 + ε)p < 1. We know that the set {b(1 + ε)pnc}n≥1 contains all
non-negative integers. Thus, for n ≥ 2 log (2/δ) /(pε2) algorithm B′ in an input of length m = b(1 + ε)pnc
guarantees

γ(1− ε)2(1− δ) E
[

max
i≤m

Xi

]
≤ E

[
Val(B′)

]
+ δ.

for any distribution D with support in [0, 1]. This finishes the proof.

The next result uses notation from the work by Hill & Kertz. For the details we refer the reader to the
work (Hill and Kertz, 1982). The result states that there is a hard instance for the i.i.d. prophet inequality
problem where E[maxi≤m Xi] is away from 0 by a quantity at least 1/m3. The importance of this reformu-
lation of the result by Hill & Kertz is that e−Θ(n)/ E[maxi≤m Xi] → 0 which is what we needed to show
that γ ≤ 1/β. Recall that β ≈ 1.341 is the unique solution of the integral equation

∫ 1
0 (y(1− log y) + β−

1)−1dy = 1 (Kertz, 1986).

Proposition 11 (Reformulation of Proposition 4.4 by Hill and Kertz (1982)). Let am be the sequence constructed
by Hill & Kertz, i.e, such that am → β and for any sequence of i.i.d. random variables X1, . . . , Xm with support in
[0, 1] we have

E
[

max
i≤m

Xi

]
≤ am sup {E[Xt] : t ∈ Tm} ,

where Tm is the set of stopping rules for X1, . . . , Xm. Then, for m large enough, there is a sequence of i.i.d. random
variables X̂1, . . . , X̂m with support in [0, 1] such that

• E
[
maxi≤m X̂i

]
≥ 1/m3, and

• E
[
maxi≤m X̂i

]
≥ (am − 1/m3) sup

{
E[X̂t] : t ∈ Tm

}
.

Proof. In Proposition 4.4 (Hill and Kertz, 1982), it is shown that that for any ε′ sufficiently small, there is
a random variable X̂ with p̂0 = P(X̂ = 0), p̂j = P(X̂ = Vj(X̂)) for j = 0, . . . , m− 2, P(X̂ = Vm−1(X̂)) =

p̂m−1− ε′ and P(X̂ = 1) = ε′ such that E[maxi≤m X̂i] ≥ (am− ε′) sup
{

E[X̂t] : t ∈ T̂m

}
, where X̂1, . . . , X̂m are

m independent copies of X̂. Here Vj(X̂) = E[X̂ ∧ E[Vj−1(X̂)]] corresponds to the optimal value computed

via dynamic programming and one can show that sup
{

E[X̂t] : t ∈ T̂m

}
= Vm(X̂) (see Lemma 2.1 in (Hill

and Kertz, 1982)). We only need to show that we can choose ε′ = 1/m3. The probabilities p̂0, . . . , p̂m−1 are
computed as follows: Let ŝj = (ηj,m(αm))1/m for j = 1, . . . , n− 2 where αm ∈ (0, 1) is the (unique) solution
of ηm−1,m(αm) = 1, then p̂0 = ŝ0, p̂j = ŝj − ŝj−1 for j = 1, . . . , n− 2 and p̂n−1 = 1− ŝn−2. One can show that

ŝm−2 = (1− 1/m)1/(m−1) (1− αm/m)1/(m−1) and αm holds 1/(3e) ≤ αm ≤ 1/(e− 1) (see Proposition 3.6
in (Hill and Kertz, 1982)). For m large we have

e−1/(m−1) ≤ ŝm−2 ≤ e−1/(3em2)

then p̂m−1 = 1− ŝm−2 ≥ 1− e−1/(m−1) ≥ 1/m2 for m large. Thus we can set ε′ = 1/m3 and p̂m−1 − ε′ > 0
and the rest of the proof follows. Furthermore, E[maxi≤m Xi] ≥ ε′ · 1 ≥ 1/m3.
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A.6 Missing proofs from Section 7

Proof of Lemma 3. For p ≥ p∗ and ` = 0, 1, . . . , 4, we calculate tight lower bounds for the expression in the
letf-hand side of the inequality in the claim, and we show that these lower bounds are at least one, with the
lower bound attaining equality with 1 for ` = 1, 2. For ` ≥ 5 we can generalize the previous bounds and
show a universal lower bound of at least 1.

• For ` = 0, we have ∫ 1

p1/(1−p)

1
tp dt =

1
1− p

(1− p) = 1 = (1− p)0.

• For ` = 1, we have∫ 1

p1/(1−p)

(1− t)
tp dt = 1−

∫ 1

p1/(1−p)
t1−p dt = 1− 1

2− p

(
1− p(2−p)/(1−p)

)
.

The last value is at least 1− p if an only if p(2− p) ≥ 1− p(2−p)/(1−p) iff p(2−p)/(1−p) ≥ (1− p)2. The
last inequality holds iff p ≥ p∗ ≈ 0.594134 where p∗ is computed numerically by solving (1− p)2 =

p(2−p)/(1−p).

• For ` = 2, we use the approximation p1/(1−p) ≤ (1 + p)/(2e) that follows from the concavity of the
function p1/(1−p) and the first-order approximation of the function at p = 1. With this we can lower
bound the integral

∫ 1

p1/(1−p)

(1− t)2

tp dt ≥
∫ 1

(1+p)/(2e)

(1− t)2

tp dt

=
∫ 1−(1+p)/(2e)

0
u2(1− u)−p du (change of variable u = 1− t)

≥
∫ 1−(1+p)/(2e)

0
u2
(

1 + pu + p(p + 1)
u2

2

)
du

(Using the series (1− u)−p = ∑k≥0 (
−p
k )(−u)k)

=
1
3

(
1− 1 + p

2e

)3
+

p
4

(
1− 1 + p

2e

)4
+

p(p + 1)
10

(
1− 1 + p

2e

)5
.

By solving the polynomial we see that the last expression is ≥ (1− p)2 if and only if p ≥ 0.585395, thus
the inequality holds for p ≥ p∗.

• For ` = 3, 4 we can use a similar approach to get

∫ 1

p1/(1−p)

(1− t)`

tp dt ≥ 1
`+ 1

(
1− 1 + p

2e

)`+1
+

p
`+ 2

(
1− 1 + p

2e

)`+2
.

The last expression is ≥ (1− p)` for ` = 3, 4 if and only if p ≥ 0.559826.

• For ` ≥ 5, we have ∫ 1

p1/(1−p)

(1− t)`

tp dt ≥ (1− (1 + p)/(2e))`+1

`+ 1
.

We show that (1− (1 + p)/(2e))`+1/(`+ 1) ≥ (1− p)`. This is equivalent to(
1− (1 + p)/(2e)

1− p

)` (
1− 1 + p

2e

)
≥ `+ 1.
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Note that the function f (p) = (1− (1 + p)/(2e))/(1− p) is increasing since f ′(p) = (1− 1/e)/(1− p)2 >
0. For p = (2e− 1)/(4e− 3) ≈ 0.56351 we have f (p) = 2− 1/e. Thus for p ≥ p∗ > p and ` = 5 we have
f (p)5 (1− (1 + p)/(2e)) ≥ (2− 1/e)5(1− 1/e) ≥ 7.32 ≥ 6. By an inductive argument, we can show that
f (p)` (1− (1 + p)/(2e)) ≥ `+ 1 for any ` ≥ 5 and this finishes the proof.

Proof of Lemma 7. During the proof, we assume that 1/p /∈ N. This is an assumption that is easy to remove
with a density argument. We divide the proof into a series of propositions and lemmas.

Taking logarithm on both sides of Identity (13) we obtain

log tk+1 − log tk =
1

1− kp
log
(

Ak(1− p)
Ak−1

)
.

From here, we obtain

log tb1/pc+1 − log t2 =
b1/pc

∑
j=2

1
1− jp

log

(
Aj(1− p)

Aj−1

)

=
b1/pc

∑
j=2

1
1− jp

∫ (1−p)Aj

Aj−1

1
x

dx.,

and also

log tk+1 − log tb1/pc+1 =
k

∑
j=b1/pc

1
jp− 1

log

(
Aj−1

Aj(1− p)

)

=
k

∑
j=b1/pc

1
jp− 1

∫ Aj

Aj(1−p)

1
x

dx.

Proposition 12. We have

1. For k < 1/p,
γp(1− kp)
Ak(1− p)

≤
∫ Ak(1−p)

Ak−1

1
x

dx ≤ γp(1− kp)
Ak−1

2. For k > 1/p,
γp(kp− 1)

Ak−1
≤
∫ Ak−1

Ak(1−p)

1
x

dx ≤ γp(kp− 1)
Ak(1− p)

Proof. Both results follow by using the monotonicity of 1/x and that

Ak(1− p)− Ak−1 = t1(1− p)−k+1 + γpk(1− p)− t1(1− p)−k+1 − γp(k− 1) = γp(1− kp).

The next result shows bound over log tk+1. We use this result to interpret the bounds as Riemann sums.

Proposition 13 (Bounds on log tk+1). For k ≥ 1/p, we have

k−1

∑
j=2

γp
Aj
≤ log tk+1 − log t2 ≤

k

∑
j=1

γp
Aj

+
p

1− p

k

∑
j=b1/pc+1

γp
Aj

.
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Proof. For the upper bound we have

log tk+1 ≤ log t2 +
b1/pc

∑
j=2

γp
Aj−1

+
1

1− p

k

∑
j=b1/pc+1

γp
Aj

≤ log t2 +
k

∑
j=1

γp
Aj

+
p

1− p

k

∑
j=b1/pc+1

γp
Aj

For the lower bound we have

log tk+1 ≥ log t2 +
1

1− p

b1/pc

∑
j=2

γp
Aj

+
k

∑
j=b1/pc+1

γp
Aj−1

≥ log t2 +
k−1

∑
j=2

γp
Aj

.

For p > 0 but small enough, t1ejp + γpj ≤ Aj ≤ t1ejp/(1−p) + γpj. Using this in the bounds of the previous
proposition, we obtain∫ ∞

2

γp
t1exp/(1−p)+γxp

dx ≤ lim
k→∞

log tk+1 − log t2 ≤
γp
A1

+
∫ ∞

1

γp
t1exp + γxp

dx +
p

1− p

∫ ∞

b1/pc

γp
t1epx + γpx

dx.

Note that
p

1− p

∫ k

b1/pc

γp
t1epx + γpx

dx ≤ p
1− p

∫ ∞

1

γ

t1
e−x dx =

p
1− p

γ

t1
e−1.

Then, taking p→ 0, we obtain ∫ ∞

0

γ

t1ex + γx
dx = lim

k→∞
log tk − log t1

where we used that t2 = t1 (1 + γp(1− p)/t1)
1/(1−p) → t1 when p → 0. This concludes the proof of

Lemma 7.
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