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Abstract We introduce convex optimization methods to find upper bounds on
the expected independence number of a random graph, in the vein of the Lovász
theta function’s bound for the independence number of a deterministic graph.
Specifically, we propose a hierarchy of semidefinite programs whose values upper
bound the expected independence number. Our hierarchy can be applied to arbi-
trary random graph models, and only requires bounds on the probabilities that
subsets of vertices are independent in the resulting graph. For symmetric random
graphs, the last level of the hierarchy is equivalent to a linear program whose
optimal value can often be calculated or approximated in closed form. We show
that our methods provide good upper bounds in a number of examples, including
Erdős-Rényi graphs and geometric random graphs.
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1 Introduction

For a simple graph G, an independent set (also called a stable set or a node
packing) is a subset of vertices with no edges between any two vertices in the
subset. The independence number of G, denoted α(G), is the cardinality of the
largest independent set in G. In this paper we are interested in the independence
number of random graphs given by a variety of models. More precisely, we seek
upper bounds on the expected independence number of a random graph that are
analogous to and build on the Lovász theta function bound for the independence
number of a deterministic graph.
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The Lovász theta number ϑ(G) of a graph G with vertex set [n] := {1, . . . , n}
and edge set E is the optimal value of the semidefinite program (SDP):

ϑ(G) = max
Z∈Sn,z∈Rn

tr(Z)

s. t. Zij = 0, ∀ ij ∈ E

Zii = zi, ∀ i ∈ [n](
1 z⊺

z Z

)
⪰ 0.

The theta number was introduced in [13] in a different form; the SDP formulation
above is from [7]. For certain graph classes, notably perfect graphs, ϑ(G) provides
the exact value of α(G) [6].

If G is chosen randomly according to some distribution, the independence
number α(G) is a random variable. The expected independence number has been
the subject of extensive study [1,2], and serves as a dual bound in related dynamic
graph optimization problems [16]. However, many existing results depend on ad
hoc techniques tailored to specific probability models; furthermore, the expected
value of ϑ(G) and similar SDP bounds for deterministic graphs may be far from
the expected independence number [5, 9]. With this motivation, we take a non-
parametric approach that can be applied to arbitrary random graph models. We
introduce an SDP hierarchy that only depends on certain marginal probabilities,
but nevertheless yields optimal or near-optimal results for several notable random
graph classes. This bound sequence is inspired by the Lasserre hierachy for Boolean
quadratic programs, which has also been intently studied for the independent
set [12,14] and similar problems [19].

Suppose G is a random graph with vertex set [n] drawn from a probability
distribution G; that is, the edges of G are a random subset of {(i, j) : i, j ∈ [n]},
and the appearance of the edges need not be independent. We let pij denote
the probability that the edge (i, j) appears in G. We show in Section 2 that the
following variant of the Lovász theta function provides an upper bound on the
expected independence number of G drawn from the distribution G:

ϕ1(G) = max
Z∈Sn,z∈Rn

tr(Z)

s. t. 0 ≤ Zij ≤ 1− pij , ∀ ij ∈
(
[n]
2

)
Zii = zi, ∀ i ∈ [n](
1 z⊺

z Z

)
⪰ 0.

(1)

If pij ∈ {0, 1} for all i, j, this leads to the variant of the deterministic theta
function which includes nonnegativity constrainst on the entries of Z. Our pro-
posed bound hierarchy builds on ϕ1, yielding progressively tighter bounds on the
expected independence number.

Assume now that the random graph is symmetric, i.e. the probability distri-
bution on the edges is invariant under a permutation of the vertices. Formally, we
have that for any fixed graph G and any permutation π ∈ Sn,

Pr
G∼G

(G = T ) = Pr
G∼G

(G = π(T )),
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where π(T ) denotes the graph T with π applied to the vertices. In this case, the
final level of our hierarchy reduces to the linear program (LP)

ψ(G) = max
x∈∆n

n∑
i=1

i · xi (2a)

s. t.
n∑

i=ℓ

(
n−ℓ
i−ℓ

)(
n
i

) xi ≤ qℓ, ∀ ℓ ∈ [n], (2b)

where ∆n :=
{
x ∈ Rn :

∑
i xi = 1, x ≥ 0

}
is the probability simplex and qℓ is the

probability that a subset of size ℓ is independent in G. Intuitively, the variable xi
in this LP represents the probability that α(G) is exactly equal to i, and the last
constraint represents the probability that {1, . . . , ℓ} is contained in a randomly
chosen maximum independent set of G (in which case, it is clearly independent).

We show that this LP captures a number of combinatorial inequalities, and
examine how it behaves in the particular cases of Erdős-Rényi random graphs,
uniformly random spanning trees and geometric random graphs in Section 4. For
example, for Erdős-Rényi random graphs, our LP provides an asymptotically tight
bound, whereas the expected value of the theta function provides a much weaker
bound [9].

2 Semidefinite Hierarchy for General Random Graphs

Here, we introduce the hierarchy that we explore in this paper. Let G be a random
graph with vertex set [n], and fix some t ∈ [n], which represents the level of the
hierarchy. For each subset S ⊆ [n], we let

qS := Pr
G∼G

(S is independent in G).

We then introduce a variable yS for each S ⊆ [n] with |S| ≤ 2t. If S is the singleton
set {i}, then we let yi = yS for shorthand.

Let m =
∑t

s=0

(
n
s

)
be the number of subsets of [n] of size at most t. Let Mt(y)

be the m×m matrix whose rows and columns are indexed by subsets of [n] of size
at most t, so that Mt(y)A,B = yA∪B . This matrix is sometimes referred to as the
moment matrix for the binary vector y. We use the definition given in [18], which
originates from [10, 17]. The idea of using a semidefinite programming hierachy
for the independent set problem was first described in [14], and the connection to
Lasserre’s hierarchy in the context of polynomial optimization was given in [11].
Denote by vT = (1S⊆T )S⊆[n] ∈ R2n

the indicator vector for each T ⊆ [n]. The
important property of this matrix is that if y ∈ R2n

and y∅ = 1, then

µn := {y ∈ R2n

: y∅ = 1, Mn(y) ⪰ 0} = conv(vT : T ⊆ [n]). (3)

This is known as the moment polytope [18]. The above equation implies that

Mn(y) ⪰ 0 ⇐⇒ ∃ distribution π on 2[n] s.t. yS = Pr
T∼π

(S ⊆ T ). (4)
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We consider the following SDP, which forms the t-th level of our hierarchy:

ϕt(G) := max
y

n∑
i=1

yi

s. t. y∅ = 1

0 ≤ yS ≤ qS , ∀ S ⊆ [n] with |S| ≤ 2t.

Mt(y) ⪰ 0.

(5)

Note that when t = 1, we obtain (1).

Theorem 1 The hierarchy defined above satisfies

E[α(G)] ≤ ϕn(G) ≤ · · · ≤ ϕ2(G) ≤ ϕ1(G).

Proof If ℓ ≥ m, ϕℓ(G) ≤ ϕm(G), since there are more constraints on the variables
yi in ϕℓ(G) compared to ϕm(G). So, it suffices to show E[α(G)] ≤ ϕn(G). We define
a random subset T ⊆ [n] as follows: we first sample an instance of the random
graph G and then choose a uniformly random maximum independent set T of G.
Define ŷS to be the probability that the random subset T contains S as a subset.
We claim that ŷ is feasible for the program ϕn(G), and that its objective value is
precisely E[α(G)]. From this, it follows that E[α(G)] ≤ ϕn(G).

We clearly have that ŷ∅ = 1, and for any S ⊆ [n], ŷS ≥ 0. To see that qS ≥ ŷS ,
if S is contained in a maximum independent set, then S is independent, and thus

qS = Pr(S is independent) ≥ Pr(S ⊆ T ) = ŷS .

The fact that Mn(y) ⪰ 0 follows from (4). Hence, ŷ is feasible for the SDP.
Finally, yi is precisely the probability that i ∈ T , so

E[α(G)] = E
[∑
i∈[n]

1i∈T

]
=
∑
i∈[n]

yi. ⊓⊔

The bound ϕn(G) corresponding to the last level of the hierarchy does not
necessarily agree with the expected independence number EG∼G [α(G)]. Nonethe-
less, ϕn(G) is tight with respect to a different random graph G′ constrained by the
same marginal probabilities qS . Indeed, if y is optimal for ϕn, there is a probability
distribution π on 2[n] with yS = PrT∼π(S ⊆ T ). Consider the following random
model G′: sample T from π and let G be the complete graph on n vertices with
edges between vertices in T removed. Then EG∼G′ [α(G)] = ϕn(G), and for any
S ⊆ [n], PrG∼G′(S is independent in G) = yS ≤ qS .

The bounds ϕt(G) require the probabilities qS , which may be difficult to com-
pute in certain cases. However, any known upper bound for qS also yields a bound
on EG∼G [α(G)].

3 Linear Program for Symmetric Random Graphs

A symmetric random graph is one in which the probability of a graph appearing
is invariant under permutations of its vertices. An example is the Erdős-Rényi
random graph Gn,p, defined as a graph on n vertices in which each edge appears
independently with probability p. We show that for symmetric graphs, the last
level of our SDP hierarchy is equivalent to an LP.
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Theorem 2 Let G be a symmetric random graph on n vertices with probability
distribution G. Then ϕn(G) = ψ(G), the optimal value of the LP in (2).

Proof Let µn ⊆ R2n

, vT ∈ R2n

as in (3). We first show that ϕn(G) ≥ ψ(G). Let
x ∈ ∆n be feasible for the LP; consider

y =
n∑

i=1

xi

 1(
n
i

) ∑
T⊆[n],|T |=i

vT

 ∈ R2n

.

Then y ∈ µn, as it is a convex combination of the vT ’s. Moreover, for any subset
S ⊆ [n] of size ℓ, there are precisely

(
n−ℓ
i−ℓ

)
subsets of size i that contain S, so that

yS =
n∑

i=ℓ

(
n−ℓ
i−ℓ

)(
n
i

) xi ≤ qℓ = qS ,

where the last equality uses the fact that the distribution is symmetric. Hence, y
is feasible for the SDP of ϕn(G). The objective value of this y is

n∑
i=1

yi = ny1 = n
n∑

i=1

(
n−1
i−1

)(
n
i

) xi =
n∑

i=1

ixi.

Since any feasible solution of the LP can be mapped into a feasible solution of the
SDP with the same objective value, then ψ(G) ≤ ϕn(G).

We proceed to show that ψ(G) ≥ ϕn(G). Let y ∈ R2n

be feasible for the SDP
of ϕn(G). We have that y ∈ µn, which implies that y =

∑
S⊆[n] λSvS , for some λ

in the probability simplex ∆2n

. Let x ∈ ∆n be such that xi is the sum of all λS
with |S| = i. We claim that x is feasible for the LP.

For a permutation π ∈ Sn, we let πy ∈ R2n

be defined by setting (πy)S = yπS ,
where the permutation simply permutes the elements of each set S. Because G is
symmetric, for any π ∈ Sn, πy is feasible for the SDP. Therefore, the following
average is also feasible for the SDP:

1

n!

∑
π∈Sn

πy =
n∑

i=1

xi

 ∑
S⊆[n],|S|=i

vS

 .

An argument similar to the first part of the proof shows that x is indeed feasible
for the LP, and has the same objective value for the Lk as y, concluding the proof.

⊓⊔

We next prove a family of bounds on the optimal value of (2), including a
particularly simple bound that we use in the next section. Afterwards, we show
that (2) has an optimal solution with at most two nonzero entries.

Theorem 3 Let G be a symmetric random graph on n vertices with probability
distribution G. Fix i ≤ n and ℓ ≤ min{i+ 1, n}; then

ψ(G) ≤ i−
(
i
ℓ

)(
i

ℓ−1

) + (
n
ℓ

)(
i

ℓ−1

)qℓ.
In particular, for any i < n, ψ(G) ≤ i+

(
n

i+1

)
qi+1.
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Proof The second bound follows from considering the case in which ℓ = i + 1, so
we only need to consider the first. Consider the following two constraints in (2):

c1(x) :=
n∑

j=1

xj = 1, c2(x) :=
n∑

j=ℓ

(
n−ℓ
j−ℓ

)(
n
j

) xj ≤ qℓ.

It will be more convenient to work with the inequality

c′2(x) :=
n∑

j=ℓ

(
j

ℓ

)
xj ≤

(
n

ℓ

)
qℓ,

which is equivalent to the inequality c2(x) ≤ qℓ because
(n−ℓ

j−ℓ)(
n

ℓ)
(nj)

=
(
i
ℓ

)
. This

algebraic identity holds because
(
n−ℓ
i−ℓ

)(
n
ℓ

)
=
(
i
ℓ

)(
n
i

)
are both the number of pairs

(S, T ) where S ⊆ T ⊆ [n] with |S| = ℓ and |T | = i.

Combining these inequalities with coefficients i− (iℓ)
( i

ℓ−1)
and 1

( i

ℓ−1)
yields

t(x) :=

(
i−

(
i
ℓ

)(
i

ℓ−1

)) c1(x) + 1(
i

ℓ−1

)c′2(x) ≤ i−
(
i
ℓ

)(
i

ℓ−1

) + (
n
ℓ

)(
i

ℓ−1

)qℓ.
To show the theorem, it suffices to argue that t(x) is an upper bound for the

objective value, i.e. that the coefficient of xj in t(x) is at least j for j ≤ n.

For all j ≤ ℓ− 1, the coefficient of xj in t(x) is i− (iℓ)
( i

ℓ−1)
. This coefficient is

i−
(
i
ℓ

)(
i

ℓ−1

) = i− i− ℓ+ 1

ℓ
=
i+ 1

ℓ
(ℓ− 1) ≥ ℓ− 1 ≥ j.

For j ≥ ℓ, the coefficient of xj in t(x) is i −
(
i
ℓ

)(
i

ℓ−1

)−1
+
(
j
ℓ

)(
i

ℓ−1

)−1. This is
at least j if and only if (j− i)

(
i

ℓ−1

)
≤
(
j
ℓ

)
−
(
i
ℓ

)
. When j ≥ i, there are (j− i)

(
i

ℓ−1

)
subsets of [j] of size ℓ of the form S ∪ {b}, where S is a subset of [i] of size ℓ − 1
and b ∈ {i+ 1, . . . , j}, and none of these are subsets of [i].

When j ≤ i, every subset of [i] of size ℓ that is not in [j] contains an element
of {j +1, . . . , i}; there are (i− j) ways of choosing this element and

(
i

ℓ−1

)
ways of

choosing the remaining elements. ⊓⊔

Theorem 4 Let G be a symmetric random graph. There is an optimal solution to
the LP (2) with at most two nonzero entries.

Proof We construct the desired x explicitly. To begin, let

i∗ = max

{
i : ∀ℓ ≤ i,

(
n

ℓ

)
qℓ ≥

(
i

ℓ

)}
.

The maximum is over a non-empty set, because when i = 1, qℓ = 1, so
(
n
1

)
q1 ≥

(
1
1

)
.

If i∗ = n, qn ≥ 1, so G is a clique on n vertices with probability 1. In this
case, the coordinate vector x = en is an optimal solution to the LP. Now suppose
i∗ < n. For ℓ ≤ i∗ + 1, let

wℓ =

(
i∗+1

ℓ

)
−
(
n
ℓ

)
qℓ(

i∗+1
ℓ

)
−
(
i∗

ℓ

) .
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Define x ∈ Rn such that xi = 0 for i ̸∈ {i∗, i∗ + 1}, xi∗ + xi∗ = 1, and

xi∗ = max{wℓ : ℓ ≤ i∗ + 1}.

We let ℓ∗ satisfy xi∗ = wℓ∗ . We now claim that x is an optimal solution to (2).
We first need to show that xi∗ ∈ [0, 1], in which case x ∈ ∆n. To see that xi∗ ≥ 0,
note that the definition of i∗ implies that there must be some ℓ ≤ i∗ + 1 so that(
n
ℓ

)
qℓ <

(
i∗+1

ℓ

)
, and for this value of ℓ, wℓ ≥ 0. To see that xi∗ ≤ 1, note that for

ℓ ≤ i∗,
(
n
ℓ

)
qℓ ≥

(
i∗

ℓ

)
. This implies that wℓ ≤ 1 for ℓ ≤ i∗. On the other hand, for

ℓ = i∗ + 1, wℓ = 1−
(

n
i∗+1

)
qi∗+1 ≤ 1. This implies that xi∗ = wℓ∗ ≤ 1.

To see that xi∗ satisfies (2b), first note that for ℓ > i∗ + 1, the constraint is
vacuous since xi = 0 for i > i∗ + 1. For ℓ ≤ i∗ + 1, the proof of the previous
theorem showed that the constraint is equivalent to(

i∗

ℓ

)
xi∗ +

(
i∗ + 1

ℓ

)
xi∗+1 ≤

(
n

ℓ

)
qℓ.

Because
(
i∗

ℓ

)
≤
(
i∗+1

ℓ

)
, and wℓ ≤ wℓ∗ , we have that(

i∗

ℓ

)
xi∗ +

(
i∗ + 1

ℓ

)
xi∗+1 =

(
i∗

ℓ

)
wℓ∗ +

(
i∗ + 1

ℓ

)
(1− wℓ∗)

≤

(
i∗

ℓ

)
wℓ +

(
i∗ + 1

ℓ

)
(1− wℓ) =

(
n

ℓ

)
qℓ.

Finally, the objective value of x is

i∗xi∗ + (i∗ + 1)xi∗+1 = i∗ + 1− wℓ∗ = i∗ −
(
i∗

ℓ∗

)(
i∗

ℓ∗−1

) − (
n
ℓ∗

)
qℓ∗(

i∗

ℓ∗−1

) ,
where we use the fact that

(
i∗+1
ℓ∗

)
=
(
i∗

ℓ∗

)
+
(

i∗

ℓ∗−1

)
. This value matches the dual

bound given by Theorem 3 with i = i∗ and ℓ = ℓ∗. ⊓⊔

4 Application to Random Graph Models

4.1 Erdős-Rényi Graphs

Let G = Gn,p be the Erdős-Rényi random graph; the independence number of
this graph is well understood [2]. When p is constant, this independence number
concentrates almost entirely on two numbers κ∗ and κ∗ − 1, where

κ∗ = min

{
κ :

(
n

κ

)
(1− p)(

κ

2) ≤ log(n)

}
.

The number κ∗ is asymptotically equal to 2 log(1−p)−1(n) +O(log log(n)) when p
is constant. Similar asymptotics apply when p is at least n−δ for δ > 0 [8].

We consider the related quantity

k∗ = min

{
k :

(
n

k

)
(1− p)(

k

2) ≤ 1

}
;

k∗ is also asymptotically equal to 2 log(1−p)−1(n) + o(log(n)) when p is constant.
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Theorem 5 If G is the probability distribution of Gn,p, then

ψ(G) ≤ k∗ +

(
n

k∗

)
(1− p)(

k∗
2 ) − 1.

Proof Follows from the simpler bound in Theorem 3 by setting i = k∗ − 1. ⊓⊔

Theorem 5 gives the asymptotically correct answer for large n when p is a constant.
Moreover, the theorem’s bound is a deterministic bound on E[α(Gn,p)] which holds
for any n and p. In contrast, when p is constant the expected value of ϑ(G) is
Ω(

√
n) [9], and even stronger relaxations based on ϑ(G) remain far from tight in

expectation [5].

4.2 Uniformly Random Spanning Trees

Let G be a uniformly random spanning tree with vertex set [n]. Such random
spanning trees are of interest because they can be sampled efficiently [3], and they
have connections to the matrix tree theorem. The expected independence number
of G was computed exactly in [15]; in particular, they showed that

lim sup
n→∞

E[α(G)]

n
= ϱ,

where ϱ ≈ 0.5671 is the unique solution to the equation xex = 1. The LP (2) leads
to the following bound, where we use H(x) := −x log(x) − (1 − x) log(1 − x) to
denote the binary entropy function.

Theorem 6 Let G be the probability distribution of the uniformly random span-
ning tree.

lim sup
n→∞

ψ(G)
n

≤ ϱ′,

where ϱ′ ≈ 0.6399 is the unique solution to the equation 0 = H(x) + x log(1 − x)
in the interval (0, 1).

Before proving this theorem, we establish a lemma.

Lemma 1 The probability that the set [ℓ] is independent in G is precisely

qℓ =

(
1− ℓ

n

)ℓ−1

.

Proof Because we are choosing a uniformly random spanning tree,

qℓ =
Number of spanning trees of [n] so that [ℓ] is independent.

Number of spanning trees of [n]

Kirchoff’s theorem implies that the number of spanning trees of [n] is nn−2. We
then count the number of spanning trees where [ℓ] is independent, using the matrix
tree theorem. Spanning trees where [ℓ] is independent are the same as spanning
trees of the graph with the edge set {{i, j} : i ̸∈ [ℓ] or j ̸∈ [ℓ]}. By the matrix-tree
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theorem, the number of such spanning trees is precisely det(L̃), where L̃ denotes
the graph Laplacian of this graph with a row and corresponding column removed.

In this case, we may take L̃ to be

L̃ =

(
(n− ℓ)Iℓ−1 −1ℓ−1,n−ℓ

−1n−ℓ,ℓ−1 nIn−ℓ − 1n−ℓ,n−ℓ

)
,

where 1a,b denotes the all 1’s matrix with dimensions a × b, and Iℓ denotes the
ℓ× ℓ identity matrix.

By the Schur complement theorem for determinants,

det(L̃) = det((n− ℓ)Iℓ−1) det

(
nIn−ℓ − 1n−ℓ,n−ℓ −

ℓ− 1

n− ℓ
1n−ℓ,n−ℓ

)
.

We obtain det((n− ℓ)Iℓ−1) = (n− ℓ)ℓ−1, and

det

(
nIn−ℓ − 1h−ℓ,n−ℓ −

(
ℓ− 1

n− ℓ
− 1

)
1n−ℓ,n−ℓ

)
= nn−ℓ−1.

The last equality follows because the eigenvalues of nIn−ℓ − n−1
n−ℓ 1n−ℓ,n−ℓ are n

with multiplicity n− ℓ− 1 and 1 with multiplicity 1.
Thus, overall, we have that the number of spanning trees where [ℓ] is indepen-

dent is (n− ℓ)ℓ−1nn−ℓ−1. This implies the lemma. ⊓⊔

Proof (of Theorem 6) We appeal to Theorem 3 with ℓ = cn, for some constant
0 < c < 1 to be determined later. We have

ψ(G) ≤ cn− 1 +

(
n

cn

)(
1− cn

n

)cn−1
.

For large enough n, Stirling’s approximation implies that(
n

cn

)
≤ C2H(c)n,

for some absolute constant C and where H(c) is the binary entropy function.
Thus, for large enough n,

ψ(G) ≤ cn− 1 + C2(H(c)+log(1−c)c)n.

Choosing c so that H(c) + log(1− c)c = 0, for n large enough, ψ(G) ≤ cn− 1+C.
⊓⊔

4.3 Geometric Random Graphs

LetX be a metric space and let π be a probability distribution onX. The geometric
random graph associated to π with radius r is obtained by taking n independent
samples from π as the vertices and connecting any pair of samples which are at
distance at most r. Such graphs have been studied in a variety of different settings,
e.g. [4]. We consider the case in which X is the d-dimensional sphere with the
spherical metric, and π is the uniform distribution on X. We cannot compute the
probabilities qℓ exactly, but we have the following bound.
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Lemma 2 For the geometric random graph defined above, qℓ ≤ e−V (r/2)(ℓ2), where
V (r) is the probability of a point lying in a given ball of radius r.

Proof We proceed by induction on ℓ. In the case ℓ = 1, we have that qℓ = 1 and
the bound is trivial. For ℓ > 1, we let x1, . . . , xℓ denote the points sampled for the
vertices of this graph. Using Bayes’ theorem,

Pr
(
min
i,j≤ℓ

d(xi, xj) > r
)
=

Pr
(

min
i,j≤ℓ−1

d(xi, xj) > r
)
· Pr

(
min

j≤ℓ−1
d(xℓ, xj) > r

∣∣∣ min
i,j≤ℓ−1

d(xi, xj) > r
)
.

By induction,
Pr
(

min
i,j≤ℓ−1

d(xi, xj) > r
)
≤ e−V (r/2)(ℓ−1

2 ).

We also note that

Pr
(

min
j≤ℓ−1

d(xℓ, xj) > r
∣∣∣ min
i,j≤ℓ−1

d(xi, xj) > r
)
≤ 1−(ℓ−1)V (r/2) ≤ e−V (r/2)(ℓ−1).

For this, simply note that if mini,j≤ℓ−1 d(xi, xj) > r, the balls of radius r/2
centered at each of the xi, for i ≤ ℓ−1, are disjoint. If (ℓ−1)V (r/2)) > 1, this is a
contradiction, and if (ℓ−1)V (r/2)) < 1, the probability that xℓ is not contained in
any of the previous balls of radius r/2 is at most 1− (ℓ− 1)V (r/2), as desired. ⊓⊔

Theorem 7 Let ℓ∗ = min{ℓ :
(
n
ℓ

)
e−V (r/2)(ℓ2) < 1}

ψ(G) ≤ ℓ∗ − 1 +

(
n

ℓ∗

)
e−V (r/2)(ℓ

∗
2 ).

Proof Follows directly from Theorem 3. ⊓⊔

5 Numerical Experiments

We begin our numerical experiments with the case G = Gn,p when n is fixed and
p varies. Figure 1 shows results for n = 20, comparing the first two levels of the
hierarchy to the final level of the hierarchy, as well as a simulated estimate of the
expected independence number ᾱ(G). We obtain this estimate by sampling 100
instances and computing the deterministic independence number in each. Observe
that the second-level bound is significantly better than the first-level bound, and
the LP bound is very close to the empirical mean.

Our second example is non-symmetric. Given p ∈ R(
[n]

2 ), consider a random
graph G = Gp where the edge i, j appears independently from the others with
probability pij . We will let Gp be the probability distribution of Gp. We let n = 10

and consider 100 such random models Gp, where each instance of p ∈ R(
[n]

2 ) is
generated by taking independent, uniformly random numbers in the interval [0, 1].
For each p, we compare the bounds ϕt(Gp) in the first three levels of the SDP
hierarchy, as well as the empirical mean of the independence number ᾱ(Gp) (cal-
culated using 100 samples). Figure 2 summarizes the results obtained for different
choices of p. The figure shows a histogram of the ratios ϕt(Gp)/ᾱ(Gp).
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Fig. 1: The plot shows our bounds ϕt(G) for t = 1, 2, n as well as an empirical estimate ᾱ(G)
of the expected independence number for the Erdős-Rényi graph G = Gn,p with n = 20, for
different values of p.

Fig. 2: A histogram of the ratios ϕt(Gp)/ᾱ(Gp) for different non-symmetric random graphs
Gp, where ᾱ denotes an empirical estimate of the expected independence number. We display
the geometric mean of the relative gaps for each round as a vertical line.

The histogram illustrates again a significant gap between the first and the
second level of the relaxation. The gap between the second and third level is
noticeable, but not as large. The computational cost of the SDP increases rapidly
with t, so it is challenging to compute higher levels of the hierarchy. Since the
random graphs Gp are non-symmetric, we cannot compute the final level directly.
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