ML4Seismic Partners Meeting 2023 Effective Data Selection for Seismic Interpretation through Disagreement

Ryan Benkert, Mohit Prabhushankar, and Ghassan AlRegib Nov. 7th – Nov. 9th

Proposed Uncertainty Framework Our Framework Reflects the Processing Steps of the Entire Interpretation Pipeline

Proposed Uncertainty Framework

Proposed Uncertainty Framework

Our Framework Reflects the Processing Steps of the Entire Interpretation Pipeline

$p(\alpha|X,W)$ Algorithm Informative α_1 **Training Data Model Uncertainty:** Uncertainty in the model Training/ parameters α_2 Inference Depends on the information content of the $p(\alpha|X,W)$ training data Less Informative $\alpha_1 \uparrow$ Heavily influenced by **Training Data** training data selection Interpretations Images $p(\alpha|X,W)$ ·α Model α_2 **Uncertainty**

Proposed Uncertainty Framework

Training Set Selection Severely Impacts the Performance of Deep Neural Networks

Automated Seismic Interpretation Workflow

Section Labeling Unlabeled Volume **Training Set** Selection Neural Network Training/Inference Training Annotated Training Set Inference OLIVES, What Samples must Seismic Interpreters Label? | Ryan Benkert | August 28, 2023 4 of 23

Training Set Selection Severely Impacts the Performance of Deep Neural Networks

Automated Seismic Interpretation Workflow

Unlabeled Volume

Which samples must be labeled to maximize the interpretation performance?

Training Set Selection Severely Impacts the Performance of Deep Neural Networks

Training Set Selection is a Paramount Factor in Prediction Performance

Test Set Prediction

Selected Training Samples (Toy)

- Annotations are limited in seismic datasets
- Naively selected training sets can result in poor performance

Manual Interpretation

Training Set Selection Severely Impacts the Performance of Deep Neural Networks

Training Set Selection is a Paramount Factor in Prediction Performance

Selected Training Samples (Toy)

- Annotations are limited in seismic datasets
- **Selecting efficiently increases** generalization

Manual Interpretation

Contributions: Disagreement for Dataset Selection We Integrate Disagreement into Data-Selection for Seismic Interpretaion

Contributions: Integrating Disagreement in Data-Selection for Seismic Interpretation

Selected Training Set (Toy)

Test Set Prediction

Baseline Contributions: Discuss disagreement as a method to reduce model uncertainty A theoretically grounded definition of disagreement for neural networks An automated selection framework for seismic interpretation Ours

Manual Interpretation

Presentation Structure and Outline Discussion Topics are Active Learning, ATLAS, and Results

Contributions: Integrating Disagreement in Data-Selection for Seismic Interpretation

Background: Active Learning

Unlabeled Volume

Active Learning is a Machine Learning Paradigm for Efficient Data Selection

Conventional Active Learning Workflow

Annotated Training Set

What Samples must Seismic Interpreters Label? | Ryan Benkert | August 28, 2023

Cohn, David A., Zoubin Ghahramani, and Michael I. Jordan. "Active learning with statistical models." *Journal of artificial intelligence research* 4 (1996): 129-145.

Background: Active Learning

Active Learning is a Machine Learning Paradigm for Efficient Data Selection

Conventional Active Learning Workflow

• Active learning selects samples using an acquisition function to rank representations

 $\underset{x_1,\ldots,x_b\in D_{pool}}{\operatorname{argmax}} a(x_1,\ldots,x_b|h_w)$

- For an effective selection, the input representations must be separable based on their information content
- Interesting geological regions are frequently underrepresented and collapse to single datapoints

Background: Active Learning

Active Learning is a Machine Learning Paradigm for Efficient Data Selection

Conventional Active Learning Workflow

Active learning selects samples using an acquisition function to rank representations

```
\underset{x_1,\ldots,x_b\in D_{pool}}{\operatorname{argmax}} a(x_1,\ldots,x_b|h_w)
```

- For an effective selection, the input **representations must be separable** based on their information content
- Interesting geological regions are frequently underrepresented and collapse to single datapoints

Presentation Structure and Outline Discussion Topics are Active Learning, ATLAS, and Results

Contributions: Integrating Disagreement in Data-Selection for Seismic Interpretation

Method: Spatially-Aware Active Learning

Seismic Interpretation Requires Spatial Awareness in Data Selection

Spatially-Aware Active Learning Workflow

Method: Spatially-Aware Active Learning Active Learning is a Machine Learning Paradigm for Efficient Data Selection

Spatially-Aware Active Learning Workflow

• **Spatially-Aware Active Learning** uses a modified acquisition function

 $\underset{x_1,\dots,x_b\in D_{pool}}{\operatorname{argmax}} a(\phi(x_1,h_w),\dots,\phi(x_b,h_w)|h_w)$

where the input is a mask filter

 $\phi(x,h_w) = x * m(x,h_w)$

Method: Active Transfer Learning for Attention Sensitivity (ATLAS) ATLAS is a Simple Implementation of Spatially-Aware Active Learning with Prediction Switches

Method: ATLAS – Full Workflow

ATLAS is a Simple Implementation of Spatially-Aware Active Learning with Prediction Switches

Spatially-Aware Active Learning Workflow

Presentation Structure and Outline Discussion Topics are Active Learning, ATLAS, and Results

Contributions: Integrating Disagreement in Data-Selection for Seismic Interpretation

Results: ATLAS – Qualitative Results ATLAS Matches or Outperforms the Baseline

Qualitative Results – Least Confidence Predictions with or without ATLAS

ATLAS Least Confidence

Least Confidence

Manual Interpretation

ATLAS matches or improves over conventional Active Learning.

Results: ATLAS – Qualitative Results ATLAS Matches or Outperforms the Baseline

Qualitative Results – Areas ATLAS Focuses On

Filtered Regions Across All Rounds

Manual Interpretation

Regions ATLAS Filters:

- Class boundaries
- Difficult structures
- Underrepresented classes

. . .

Regions ATLAS Ignores:

- Well-represented facies
- Monotonous structures
- · ...

٠

Results: ATLAS – Qualitative Results ATLAS Matches or Outperforms the Baseline

Qualitative Results – Least Confidence Predictions with or without ATLAS

Manual Interpretation ATLAS Least Confidence Least Confidence

ATLAS performs especially well on class boundaries

Results: ATLAS – Numerical Results ATLAS Matches or Outperforms the Baseline

Experimental Details:

Query Size: 2 Sections

Initial training size: 2 Sections

Dataset: F3 block

Least Confidence

Algorithm	mloU	Upper N.S.	Mid. N.S.	Lower N.S.	Chalk	Scruff	Zechstein
Entropy	0.591	0.975	0.846	0.950	0.636	0.373	0.461
ATLAS Entropy	0.620	0.976	0.872	0.957	0.651	0.495	0.417
Least Conf.	0.575	0.970	0.808	0.944	0.637	0.388	0.430
ATLAS Least Conf.	0.619	0.974	0.869	0.956	0.653	0.480	0.459

22 of 23

Thanks for Listening Questions?

ML4SEISMIC

lech

Method: Spatially-Aware Active Learning

Active Learning is a Machine Learning Paradigm for Efficient Data Selection

Spatially-Aware Active Learning Workflow

• **Spatially-Aware Active Learning** uses a modified acquisition function

 $\underset{x_1,\ldots,x_b\in D_{pool}}{\operatorname{argmax}} a(\boldsymbol{\phi}(x_1,h_w),\ldots,\boldsymbol{\phi}(x_b,h_w)|h_w)$

where the input is a mask filter

```
\phi(x,h_w) = x * m(x,h_w)
```


Method: Geological Interest as Disagreement

Disagreement Mimics the Manual Interpretation Process and is Beneficial for Data Selection

Method: Geological Interest as Disagreement

Disagreement Mimics the Manual Interpretation Process and Measures Information Content

