The Role of the Fuzzy

in a Techie World
 in

 One time she was Kate in The Taming of the Shrew. Another time she was Adelaide in Guys and Dolls. Bur on her own stage, Katelyn Gleason is the founder and CEO of Eligible, an innovative health-care technology company. A theater arts major at Long Island's Stony Brook University, she never anticipated that she would become an entrepreneur, let alone a tech entrepreneur. But ач јо әшок шод [еп!

 skills, confidence, and talent for sales, which were all instrumental in launching Eligible.
Katelyn became a health-tech entrepreneur by chance. She could have been a poster child for the argument against a liberal arts education made so often in recent years: that it doesn't prepare students for the jobs the economy needs filled. Indeed, once she determined that acting might not work out and that she should search for other work, she had no clear idea what kind of job to
 lege she had supported herself by working as a sales director for a company that published a business directory.

Katelyn says that her acting experience helped with that work by teaching her how to be persuasive in her sales pitches, and also how to deal with the emotional impact of people telling her no again and again. Acting taught her how to quiet her self-doubt and forge ahead despite rejections. She proved so talented at selling that by the time she was twenty, she was managing a sales force of forty. As she looked for job openings in a wide-ranging job search, she was drawn to an advertisement on Craigslist for a job in sales for a web-based startup providing services for health care practices, called DrChrono. The company provided scheduling, billing, and order management for clinical tests and prescriptions. Despite knowing nothing about the health care industry, she knew sales, and she felt confident she could learn what she needed to know to get the job done.

DrChrono hired her as a contract salesperson, and Katelyn began learning about health care and about building a business. She discovered that she was fascinated by the process of innovating a business and loved being part of a small entrepreneurial team. The founders also loved having her. Her sales ability was so impressive that the founders asked her to join them in pitching the company at the highly competitive contest for startups held annually by Y Combinator (YC), a Silicon Valley startup incubator. Winning startups are admitted to a rigorous three-month program, during which time YC founder Paul Graham and a team of successful entrepreneurs and investors offer guidance about how to develop their businesses. DrChrono won a coveted spot, and Katelyn impressed Paul Graham so much that when she decided
5
The Role of the Fuzzy in a Techie World

 knowing that her company helps process over ten million health insurance eligibility claims per month, bringing efficiency and savings to an industry ripe for improvement.
 experience would prove so valuable in teaching her to dig in and learn what she needed to know about the technology to build her company, or how transferable the skills she had learned about being a confident, highly persuasive communicator would be to entrepreneurship. Rather than be a poster child for the impracticality of getting a liberal arts degree, she became a representative of how applicable the fuzzy skills developed by the liberal arts are, as well as how important they are as complements to technological expertise. Many other successful founders of innovative technology-driven businesses also credit their liberal arts educa-
 the power of technology. Founder of corporate communications platform Slack, Stewart Butterfield credits his ability to develop

 the University of Victoria and the University of Cambridge, but
 his master's degree in philosophy at Oxford University. Billionaire venture capitalist and cofounder of PayPal Peter 'Thiel studied philosophy and law, and his cofounder of Palantir, CEO Alex Karp, earned a law degree and then a PhD in neoclassical social theory.
 political science at Yale, while Airbnb founders Joe Gebbia and Brian Chesky earned bachelor of fine arts degrees at the Rhode Island School of Design. Steve Loughlin, founder of RelateIQ, which

THE FUZZY AND THE TECHIE
and spent her days in the public library devouring books. She forced herself to read Apple's software developer kit from start to finish, and asked questions she had on the developer collaboration website Stack Overflow. With that basic knowledge under her belt, she hired two freelance software engineers, and as they built a prototype, she began seeking angel investment. "As a woman with no technical background," she recalled, "I met lots of skepticism, but again, my acting experience developed my resilience to keep forging ahead in the face of so many turndowns." Her acting work also helped her understand how to craft a compelling story about the company, which is essential to convincing investors to provide support. "In theater, the playwright gives you the play, but you have to tell the story," she explained to me in 2016. "I knew I just had to figure out how to tell the right story. When you start rehearsal, you're completely lost. You don't know the characters at all. When you start to build a product, when you start to build a company and you don't even know what your product is going to be, it's exactly the same feeling. You're completely lost. I learned in the rehearsal process that if I worked hard enough, I could gain that internal clarity where I would start to take off like a rocket ship."

In the summer of 2012, Katelyn found herself back at Y Combinator, pitching Paul Graham and team, but this time as a startup founder. She won their backing, and on the heels of their support, she was able to quickly raise $\$ 1.6$ million to continue building Eligible's product. After launch, the company took off, with a growth rate of 60 percent week over week. In 2013, Katelyn was selected by Fast Company magazine as one of its top one hundred most creative people, and in 2015, she was named one of Forbes's 30 Under 30 innovators in health care.

Being CEO of a company is just the latest way Katelyn is under

 technology, such as Technology in National Security, and the Entrepreneurial Thought Leadership seminar, for which top technol-

 Harvard's Berkman Center for Internet and Society. Ultimately 1 чวune [
 and grow successfully. My education at Stanford taught me that I эงоч 01 sा!

 how important the humanities and social sciences are to creat-

 that yields us the result that make our heart sing."

 as self-driving cars and robots Institute of Technology (MIT) econ-
 Mats Age" in their influential 2014 book of the same title. This line of argument suggests that the skills that will secure people gainful employment in this emerging era are those learned by an
bots will assume more and more tasks that can be fully automated, as they've already done with jobs on the assembly lines of so many manufacturers. But the proportion of jobs that can be fully automated is more limited than suggested by forecasts. In many jobs, a number of tasks that can be automated, because they are routine or can be better performed by crunching vast amounts of data, will be taken over by machines. But in many cases, the result will not be to displace human workers; rather it will be liberate peo-
 uniquely human skills-nonroutine tasks and complex problem solving that machines can't perform and may never be able to do.
 making. In 2015, MIT labor economist Frank Levy coauthored a
 of Law called "Can Robots Be Lawyers? Computers, Lawyers, and the Practice of Law." The paper examined the notion that the le-

 ments during the discovery process.

After an extensive analysis of the time spent on individual tasks performed by attorneys, Levy and Remus found that they spend the majority of their time analyzing documents, counseling clients, and appearing in court, and many of the skills that make a legal professional especially effective, such as being able to think on their feet and interacting with clients, are, and will remain, uniquely human. They estimate that around 13 percent of legal work could one day be automated-a measurable amount, but relatively modest, especially since the change will happen over the course of many years. Instead of replacing lawyers, automation

THE FUZZY AND THE TECHIE
education in the STEM fields-science, technology, engineering, and math. Earning a liberal arts degree is characterized as an impractical extravagance the workers of the future simply can't afford.

Reading novels and poems, revisiting the debates of ancient philosophy, or studying the history of the French Revolution or the culture of a remote island community isn't likely to get you a decent job in today's more tech-driven economy, and certainly not in the future, or so the argument goes. Microsoft founder Bill Gates caused a stir in a speech to the National Governors Association that state funding in support of liberal arts education should be cut and more money dedicated to higher education in the STEM fields because those are the skills that will get people well-paying jobs. Billionaire cofounder of Sun Microsystems Vinod Khosla, now a leading venture capitalist investing in technology startups, has gone so far as to say that "little of the material taught in liberal arts programs today is relevant to the future." Silicon Valley venture capitalist and software pioneer who created the search engine Netscape Marc Andreessen quipped that those who learn the "soft skills" of the liberal arts in college, rather than the "hard skills" of science and tech, "likely will end up working in shoe stores."

Be Concerned, Not Fearful

The alarm about the future of work, and about the prospects of liberal arts graduates, is clearly founded in genuine concern, but it is also sorely misguided for a number of reasons. First of all, as we'll explore more fully in Chapter 8, though increasingly "smart" and nimble machines will likely be taking the place of some workers, the extent of likely job displacement has been greatly exaggerated. The threat to some jobs is not only clear; it is already present. Ro- programming jobs, there is a current shortfall of candidates to fill them in the U.S. labor force, and the pace of change is rapid. In addition, analysis of the future needs of the job market has indicated that this shortfall will worsen significantly in the coming years. The Bureau of Labor Statistics approximates that there will be one million more computer science job openings by 2020 than domestic candidates qualified to fill them. This is a driving force behind the calls for more STEM majors, and we can't deny that there is a very real need for more techies.
 veloped, and we might look to countries like Estonia that mandate all first graders learn to code. But the emphasis should not be on teaching these skills exclusively, and not only on this nearer-term skills gap. Those being taught the STEM skills should also be afforded the opportunity to develop the proficiencies fostered by the liberal arts, which will make them more agile and employable
 Michael Higgins said in November 2016 that "the teaching of philosophy is one of the most powerful tools we have at our disposal to empower children." Rather than training legions of people to perform narrowly prescribed vocational tech tasks, we should be balancing this with a liberal arts education that develops more rounded skills and wider perspectives, instilling strengths in both the technical and the fuzzy abilities. The debate over STEM versus liberal arts has obscured the fact that the so-called pure sciences, such as biology, chemistry, physics, and mathematics, are a core
 has in many cases also been added to the canon. A false dichotomy has been established between liberal arts and STEM education; students can very well get both at once.
software will make lawyers more efficient. Machines will handle routine tasks; lawyers will do the rest.

Agreat irony of the discussion of job displacement is that among the jobs vulnerable to dislocation and automation are many in computer programming-currently hailed as both higher paying and in the highest demand. How might this happen? First, many of these jobs will be transferred overseas to developing economies invested in training masses of highly qualified programmersplaces like India, China, and Nigeria. These programmers are no longer simply an inexpensive workforce hired just to do the relatively simple work of building websites; they are being trained to great proficiency. Andela, a startup that aims to train one hundred thousand African programmers over the next decade, has so many applicants that its acceptance rate is under 1 percent. Andela invests as much as $\$ 10,000$ to train each fellow in the latest sof
 woman who already had a degree in computer science and electrical engineering from Lagos State University. The fellows are then matched with global companies. Due to the high pay programmers can demand, sending a good deal of programming work overseas

 whereas today it's fewer than one in ten. The flight of routine computing work will likely follow a similar pattern. Technical skill is important, but a technical education on its own will not automatically ensure employment in the Second Machine Age.
‘иопиеэпра WGLS ^и! inq 'sə9ensure su! a rigorous grounding in one of the hard sciences or fields of engi-

13 can become a web designer by simply selecting a template and then tailoring it as they like by dragging predesigned elements into it. These sites can also be easily connected to payment services, inventory control systems, and customer relationship management systems. While 3-D printing sounded like a futuristic fantasy just a decade ago, powerful printers are now available to the public at low cost and effortlessly programmed to create any manner of objects, such as custom-designed furniture and clothing. Even just a few years ago, building and maintaining the capacity to store the large volumes of data required for many types of tech-based businesses was prohibitively technical and expensive for all but the savviest of people who came up with an idea for such a business. Now, one need not understand the technical details about how servers work sajunas qวM uozeury to aseions elep paseq-pnop aseyjund ol
 available; many still require a high level of expertise to make use of
 tise more readily, and the trend of democratization will continue.
 speed bicycle at over twenty miles per hour and landed on his

 web-based company provides engaging, gamelike exercises for building skills in language, computation, memory, and logic. My father accessed the exercises through Lumosity's mobile phone

 earned a master's degree from Virginia Commonwealth University, who was not a trained programmer, but he taught himself how to use a programming language called LiveCode, and quickly

THE FUZZY AND THE TECHIE

Gu!|le」 edv Kulug of sdelueg

But what exactly is the value of a liberal arts education, especially if someone wants to meaningfully participate in pushing the boundaries of the frontiers of technological innovation? Are liberal arts majors truly shut out from the exciting possibilities of the future? A number of misconceptions are involved in that argument. The first part of the discussion includes an overlooked yet rapidly progressing development in technology where well-educated people who are not schooled in the STEM fields can now nonetheless play important roles, and even take the leading role, in applying new technologies to innovating products and services,

 *saminas pue sampord mau jo uop̣enouu!

 technologically based products and services. Tech experts have

15

 current and future innovation.
One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly moti-
 -! lies and our public institutions-such as our schools and legal sys-
 and economies work or, as is so often the case, are plagued by dysле[пэ!
 leading problems to be tackled, and various approaches for analyzing and addressing those problems.
The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and politcal corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; improving health care and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts educa-

 build. Using a freelancer website called UpWork, he hired an ios developer in India to help him. My father released a player-ranking iPhone application just in time for the 2014 FIFA World Cup. He is a shining example of how anyone who is motivated to participate
 technical training. Though my father opted to learn LiveCode, an evolution of a very early Apple Mac program called HyperCard
 quired, and throughout this book, we'll hear the stories of many

 our lives by collaborating with techies to harness the power of sophisticated new capabilities.

The Liberal Arts Skills

 ipate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to ap-
 are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts

 skills, such as critical thinking, logical argumentation, and com-
 of a Liberal Education, highlights "creativity, problem solving, decision making, persuasive arguing, and management" as the skills

17
The Role of the Fuzzy in a anoqe sұuәum
 Like his older sister Randi, he studied psychology, and in building
 connect with one another. While Zuckerberg also possessed prodi-

development, he tapped into human psychology with Facebook.

 be considered in developing products, and in marketing them. In a newspaper interview a few years ago, Florida governor Rick Scott said he was seeking to shift state funding away from support for

 "Is it a vital interest of the state to have more anthropologists? OI иәz!!

 for most professions, and on par with the current growth rates for computer software engineers.

Anthropologists in Self-Driving Cars

 gist from Rice University, to evaluate its design and lead company research into human-machine interaction at the Nissan Technical
 of the ways in which self-driving cars and humans will likely interact and what the implications of those complexities are for how the cars should be designed and controlled. To consider why her

One of the most immediate needs in technology innovation is
 more sensitivity to human needs and desires. Steve Jobs brilliantly recognized this, and he created one of the most highly valued companies on the planet by focusing intensively on that mission. Companies and entrepreneurs that want to succeed today and in the future must learn to follow his lead and consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Jobs drew, in particular, on the insights of the humanities discipline of design. The Macintosh was the first computer to offer users a selection of beautiful typography, which Jobs learned an appreciation of by taking a course in calligraphy at Reed College, in Portland, Oregon. In his Stanford commencement address, he described typography as "beautiful, historical, artistically subtle in a way that science can't capture."

Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Consider the runaway success of Facebook to appreciate how expertise in understanding "the human factor" can make a difference in the creation of new products, programs, and services. Most of us know Mark Zuckerberg as the lightning-fast coder who lacked social skills and had a hard time with interpersonal relationships. What's been overlooked is that he was a liberal arts student at Phillips Exeter
 teaching happens through the Socratic exploration of ideas rather than through lectures, and then at Harvard University, where he loved learning Latin and Greek. He even aced an art history final by creating a website that displayed two hundred works of
on the go-a hand wave here, a rude gesture there, some inching
 Sapir wrote about the nuanced human communication system of gestures, which is "an elaborate and secret code that is written nowhere, known by none, and understood by all." An autonomous vehicle can't yet perceive and understand gestures. The machine knows only to stop at the sign; it's up to Cefkin to figure out what it should do from there and how to manage the complex dance that is human interaction.
To do that, Cefkin needs to identify patterns in human behavior that can help programmers understand how autonomous cars ought to behave on the road. In searching for those patterns, she's borrowing many tools from the world of anthropology-such as the ethnographic practices of close observation of people out in
 Nissan design a communication system for autonomous cars in interacting with pedestrians and other drivers. Color-coded lights might signal the car's intent to start or stop or stay in place, while some kind of ocular apparatus could be created to let people know whether or not the car is aware of them. Perhaps a video screen can be placed on the front of the cars so that text could be displayed, communicating the messages hand signals once did. In addition to these communication issues, figuring out how autonomous vehicles can be safely introduced to our roads will require accounting for the psychology of drivers, such as some people's irritation when a car is driving slower than the speed of traffic in the "fast lane," not to mention road rage. According to Hans-Werner Kaas, a senior partner at McKinsey \& Company, "There is an increasing awareness across all automakers that they have to deal with the psychological issues of these vehicles. They're beefing up their skillset."
input is necessary, let's take a brief look at the prospects, and the potential pitfalls, of self-driving vehicles.
The engineering feat of getting this technology deployed has been a stunning accomplishment, but many thorny questions remain to be answered about safety. In 2016, the tragic death of a driver of a Tesla car equipped with autonomous navigation autopilot technology highlighted the current limitations automotive designers face when accounting for all dangers. His death occurred in the least complex driving environment-the open highway-
 lanes, moving in front of the Tesla. Analysis later revealed that the truck's white body was eclipsed against a bright spring sky. The driver may have failed to spot the truck because he had put his faith in autopilot, taking his eyes off the road to watch a Harry
 autonomous vehicles might encounter on roads are beyond their ability to safely navigate, such as flooded roads, large potholes, road debris, and temporary traffic controls, for example, detour signs. Now, Cefkin is studying the challenges of self-driving cars navigating within our even more crowded and inherently unpredictable, nonroutine, and complex urban environments.
Dealing with mixed human-machine environments is one of the most difficult challenges facing autonomous car designers today. Ultimately, these environments may be homogenously machine-operated, but for the foreseeable future, these environments will be pluralistic. Where machines could be programmed to be efficient and rule-abiding, humans are messy rule-breakers who analyze situations on a case-by-case basis using a complex set of interpretations that are hard to teach to a machine. Take a busy intersection with stop signs but no stoplights: cars proceed in a way that is determined less by rules than by subtle choreography
 the car be in charge? Should the option for the human driver to

 ләиษ ¿шәчч 8u! all, we've required companies to accelerate the development of improving fuel efficiency and decreasing their carbon emissions. These questions only begin to scratch the surface of the issues that

 same way that they might accept terms and conditions when downloading the latest ad-blocker software? Is this sufficient? Harvard psychologist Joshua Greene describes the root of the complexi-
 decision-making is "more philosophical than technical. Before we

 ethicists and litigators out there, welcome to a burgeoning field

 the practice, already considering many of these questions.

Tapping Into Liberal Arts Grads

səл!! גпо рие әәиә̊!!ןəu! әu! become increasingly populated by the Internet of Things, and as
 more discoveries about our behavior, consideration of how new products and services can be crafted for the optimal enhancement

 әчд рәึ̊в modern relevance of a 1967 thought experiment put forth by British philosopher Philippa Foot, known as the "trolley problem."
 workers. Another worker looking on could switch the trolley to

 -deч בхәи әчд
 by programmers, chaperoned by code.

 software be "recalled" the way failing airbags might today? If the car is capable of a faster response and of calculating all options

 of deconstructing digital dualism and hired Jurgenson. Today Jur-
 Snap-funded online magazine called Real Life, which publishes essays about living with technology.
The wildly successful corporate communications startup Slack, which offers software that allows employees on a team to communicate more efficiently than with email, employs theater majors to help make the messages Slack sends to users more engaging. Just as Siri offers humorous or sassy responses when you pressure her

 whimsy. When you join Slack as a new user, rather than input your

 streamline hiring conversations between candidates and recruiters. Its programmers attempt to codify fluid conversations into static code based on the research and analysis provided by Tommy
 sical liberal arts education based on reading original texts at St. John's College in Annapolis, Maryland.
Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are "soft" and unscientific, whereas those who study STEM fields learn the

 these skills can be derives from mischaracterizations of how rarefied, or esoteric, the liberal arts subjects are. Critics love to trot out what New York Times writer Charles McGrath called "apoc-
 of pre-World War I Croatian folk dance." My father used to warn
 we chose comparative literature and political science instead. In

 subjects, either through a core curriculum that all students must take, or more commonly through taking a number of electives that complement their work in their major.
 arts disciplines, not of undergraduate studies. An irony about this criticism is that it is actually in the STEM fields that specialization is more of a problem, with the course loads for many degrees leaving little room for wider-ranging pursuit of intellectual passions or simple curiosities. What's more, computer science programs often churn out graduates who are not versed in the coding languages
 one needs to know to do product development rapidly change. Many such students require additional online training. In fact, Zach Sims, a political science major at Columbia University, cofounded Codecademy, which offers online programming classes, specifically because of this failure of traditional programs. "We found that you can be a good Computer Science major, but not a good programmer. So early on we interviewed people for Harvard
 programmer," he explained in 2013. Former president of the Col-

THE FUZZY AND THE TECHIE
 terviewing in ways that hard science adherents don't always ap -л
 -дәұи! Кэ! about conducting raical trials, with 1оу s, groups like the Poverty Action at Yale leading the way.

 cal understanding," he neglected to account for how widely these methods of inquiry are being taught to liberal arts majors.

It's also important to debunk the fallacy that liberal arts stu-

 - п

Central to the philosophy of a liberal arts education is that we
 like to devote ourselves to, without exposure to a broad range of

 much about learning to do a job as it is about learning to learn, and to love learning. It is both about intellectual adventure and about building the fundamental intellectual skills that equip students to continue to pursue new interests for the rest of their lives, whether or not they have a formal education in those pursuits. These fundamental skills-critical thinking, reading comprehension, logical analysis, argumentation, clear and persuasive communicationalso prepare students very well for work life.

Georgia Nugent reported in an August 2015 essay for the Council of Independent Colleges that "time and again, graduates in all walks of life (from corporate leadership to crime prevention, from diplomacy to dentistry, from medicine to media) speak passionately of the value of having been introduced to art, anthropology,
 matter what their college major or their career path. In fact, they often attribute the success they have attained to this undergraduate exposure to many different modes of thought." The innovation of technology-driven products and services also belongs on that list. In a July 2015 Forbes article by George Anders, Slack's Butterfield admitted that philosophy taught him well. "I learned how to write really clearly. I learned how to follow an argument all the way down, which is invaluable in running meetings. And when I studied the history of science, I learned about the ways that every-
 dependent Colleges, Georgia Nugent noted in an article for Fast Company, "Why Top Tech CEOs Want Employees with Liberal Arts Degrees," that with technology evolving so fast and the needs of businesses shifting in unpredictable ways, "it's a horrible irony that at the very moment the world has become more complex, we're encouraging our young people to be highly specialized in one task. We are doing a disservice to our young people by telling them that life is a straight path. The liberal arts are still relevant because they prepare students to be fiexible and adaptable to changing circumstances." In our ever-faster-changing world, the demand for intellectual agility, creativity, and the curiosity to explore new terrain is higher than ever.

A core aim of liberal arts education is to allow students to pur-
 Exposing students to new areas of scholarship and to other cultures, belief systems, methods of investigation and argumentation is at the heart of this mission. The ideal is that a broad liberal arts exposure tugs on the mind, forcing a student to consider positions and opinions that make him or her question perspectives and biases, often fueling late-night debates with classmates. Students are encouraged to select a major based on their intellectual interests as much as, if not more than, on a clear idea of the field of work they will ultimately pursue. A student may enter college expecting to major in economics or English literature, but take a class in urban sociology as an elective and discover an intense interest in urban planning, perhaps deciding to go into urban studies and a career in city planning or government. Perhaps that student will one day bring that knowledge to collaborate with technology experts in order to innovate an efficient urban transportation system
29
62
ring their expertise in design, sales, brand building, and customer
elations management to product development and marketing. What's new today is how fuzzies are playing central roles in com-
 ideas and driving core product development. Some of them are applying the specific methods of investigation and analysis they learned in their major field of study, whether economics, sociology, linguistics, or psychology, and some of them are doing work they had no special training for, like Katelyn Gleason. Fuzzies are helping to bridge divides between specialties, making unexpected connections between problems and the technological means of
 to pursue the most promising areas of innovation. They are sharing vital insights about how the human factor can and should be accounted for, and how the new technologies can be best used to improve our lives.
The most exciting and influential innovations today-those referred to as "zero to one" innovations by influential startup investor Peter Thiel in his 2014 book with Blake Masters called Zero to
 producing more powerful ways to solve the most important problems across a wide range of domains like education, health care, retail, manufacturing, policing, and international security. As Mark Zuckerberg argued in an August 2016 interview with Y Combinator president Sam Altman, "I always think that you should start with the problem that you're trying to solve in the world and not start with deciding that you want to build a company ... The best companies that get built are things that are trying to drive some kind of social change." These innovators are improving the ways in which we foster our children's engagement in learning. They are harnessing knowledge of human psychology and the powers
 of ether in the air propagating gravitational forces-until they realized that it wasn't true," he recalled.

The development of these foundational skills is the reason that so many employers are intent on hiring liberal arts graduates, despite the dire warnings of certain tech titans. In a survey published in Liberal Education in 2013, 74 percent of employers polled responded that a liberal arts education "is the best way to prepare for success in today's global economy." Employers in the technology sector are very much included. LinkedIn, which owns a treasure trove of data about what kind of people are being hired for which jobs, conducted a study in 2015 revealing that "liberal arts grads are joining the tech workforce more rapidly than technical grads. Between 2010 and 2013, the growth of liberal arts majors entering the technology industry from undergrad outpaced that of computer science and engineering majors by 10 percent."
 technical expertise. Staying competitive with the pace of innovation today demands it. We'll see again and again in this book how people who earned "fuzzy" liberal arts degrees made bold leaps into totally unknown terrain, connecting the dots between fields, perceiving problems overlooked by experts, and feeling confident in their ability to get up to speed with whatever knowledge they need in order to push forward with an innovative idea. This is not to say that only a liberal arts education fosters this dexterity; many of those who train in technical fields are immensely creative. The point is that a liberal arts education actively encourages such abilities and is of equal importance.
 large numbers of staff with little or no technological knowledge, and often no prior experience working at a tech-based company, to
On May 2, 2014, the USS Blue Ridge, the command ship of the U.S.
 the South China Sea. Intelligence detected what looked to be a

 lance devices deployed in the region was displayed on the Global
 Andreas Xenachis was on duty that day, leading six analysts on
 analyze the flood of data coming in from the larger fleet $\mathrm{C}_{4} \mathrm{I}$ which stands for command, control, communication, computers, and intelligence-operation. His team was responsible for keeping apprised of all data on Geeks, which meant a complex dance of receiving, retrieving, and displaying data about ship movements, satellite data, radar signatures, and newswires. They were also responsible for providing the fleet commander a first-line situational awareness of what the data was indicating and the possible danger to any of the eighty ships, hundreds of aircraft, and tens of thousands of people under his command.
of persuasion to make headway in preventive medicine. They are helping to make government more transparent and democratic, and facilitating higher-quality and more efficient interpersonal communication. Innovators are tapping the potential of the deluge of "big data" and ingeniously making use of the power of such cutting-edge technologies as natural language processing and machine learning. And this era of transformative innovation has only just begun.

Opportunities abound, but so do threats. Any business that is not purposefully spearheading better collaboration between its fuzzy and techie staffs-mringing in people with the right set of skills in understanding the human factor and the possibilities of the new tech tools-risks rapid obsolescence. As leading business strategy specialist Michael Porter wrote with James Heppelmann in the Harvard Business Review in 2015, "The evolution of products into intelligent, connected devices . . is radically reshaping companies and competition," requiring the evolution of new business models and collaboration across the tech and nontech functions. Every able-bodied working person wants to stay relevant as this wave of innovation builds; college students considering their careers; parents who want to steer their children to success; and entrepreneurs and corporate managers, no matter what sector, must understand the extraordinary potential of merging the fuzzy with the techie. While the rise of robots has been persuasively heralded, the Second Machine Age is less about machines taking over human roles than it is about humans making machines better serve us.

