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Outline

Modeling high-dimensional spatio-temporal discrete data

Approach #1: Interactive Categorical Point Process

Approach #2: Marked spatio-temporal Hawkes Process and
Conformal Prediction on dependent data (Ongoing Work)

[1] Solar Radiation Anomaly Events Modeling Using Spatial-Temporal Mutually
Interactive Processes. Minghe Zhang, Chen Xu, Andy Sun, Feng Qiu, Yao Xie.
Submitted to Annals of Applied Statistics. 2020.
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Problem setup and Goal

Assume ω0, ω1, . . . are categorical random vectors in RK ,
where ωtk indicates the event type at location k and time t.

Examples includes the type of crime, magnitude of seismic
activity, etc.

Goal: Model the conditional distribution ωt|ωt−1, ωt−2, . . .
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Motivating applications

Solar Ramping event detection

8:00 a.m. 9:00 a.m. 10:00 a.m.
Wind power prediction

Crime Pattern Analysis

Seismic Activity

4 / 23



Literature

Stochastic event modeling: Hawkes process model (Hawkes,
1971), self-correcting point process model (Isham and
Westcott, 1979), event propagation (Wu et al., 2020),
attention-based point processes (Zhu et al., 2020). . .

Parametric and nonparametric spatio-temporal processes:
non-parametric Hawkes process (Moller and Waagepetersen
2003), estimation in Bayesian framework (Python et al., 2016),
sparse model estimation for point processes (Hansen et al.,
2015). . .
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Modeling

Assume each ωtk ∈ {0, 1, . . . ,M} for M non-zero categories.
Denote ω−d

t = [ωt−1, . . . , ωt−d].

We model the conditional probability as

P
[
ωtk = p | ω−d

t

]
= β̄k(p) +

d∑

s=1

K∑

`=1

β̄sk`
(
p, ω(t−s)`

)
.

Compare with generalized linear models.

Parameters to be estimated are β̄k (birthrate) and β̄sk`
(interaction), subject to probability constraints.

[2] Convex Parameter Recovery for Interacting Marked Processes. Anatoli Juditsky,
Arkadi Nemirovski, Liyan Xie, Yao Xie. IEEE Journal on Selected Areas in Information
Theory. 2020
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Parameter Estimation with Guarantee

Estimation via constrained (1) Maximum Likelihood Estimation
or (2) Least-square Estimation.
Both are convex programming and (2) is equivalent to solving a

special case of variational inequality (Details see [1, 2]).

Guarantee: Suppose we have N observations of ωt and let κ be
total number of parameters. With probability at least 1− ε,

For (1),
∥∥∥β̂LS − β

∥∥∥
p
≤ C1,p

ln(2κ/ε)

N
.

For (2),
∥∥∥β̂MLE − β

∥∥∥
p
≤ C2,p

√
ln(2κ/ε)

N
.

Proof Ingredients: Martingale-difference, Concentration
inequality, Properties of variational inequality (Details see [1,
2]).
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Experiment: Solar ramping event prediction

Ramping events are anomalies in the time-series, due to extremely
high/low observations.

Some raw radiation values come from K = 10 sparsely distributed
sensors over two years (Fig (a)).

We define ramping events via comparing with lower/upper quantiles
of past values (Fig (b)).

We also fit models by season for better estimation (Details in [1]).
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Parameter estimation results

Birthrate and Interactions (Temporal view)
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(c) California

Interactions (Spatio-temporal view, s ∈ {1, 5, 10}).
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FIG 7. Visualization of ML birthrate (red circles) and interactions (black lines) recovery (shown in Figure 6 over
time and locations) on terrain map. To make sure the edges are visible when s > 1, we magnify edge weight of
Atlanta (a-c) and Northern California (g-i) estimates 5 times, and of Los Angeles (d-f) estimates 3 times.

We also plot the probability estimates, dynamic thresholds, and the prediction intervals
in Figure 8. We can see that dynamic thresholds closely follow the pattern in our point pre-
dictions and our point predictions (red/blue dots) highly correlate with the actual ramping
events (black dots). Together with Table 2 discussed earlier, it is thus clear that unless the
predicted ramping probabilities are clearly separated from the predicted normal probability
(e.g. in Downtown Atlanta), prediction accuracy is higher using dynamic threshold. When
these two sets of probabilities intersect each other a lot (e.g. in Palo Alto), only predictions
under dynamic thresholds perform satisfactorily. Also, we use the bootstrap confidence in-
terval for �, which was shown in Figure 6, to compute the confidence interval for ptk. We
can see that the confidence intervals at 95% confidence level are not wide, even if Bonferroni
correction was used.

In general, we note that picking the best static threshold is quite hard when data are highly
non-stationary, so that in the long run, it may not be practical to stick to one single thresh-
old for prediction. Furthermore, different sensor locations will lead to various different best
static threshold values, so it is also computationally efficient when we can quickly generate
static thresholds for multiple locations. Thus, we can conclude that unless our abnormal and
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Prediction performance

Conditional probabilities when M = 2 (e.g. up and down ramping
events).

SPATIO-TEMPORAL PROCESSES FOR SOLAR RADIATION RAMPING EVENTS 13

ramping predicted probabilities can be clearly separated, using dynamic threshold is more
efficient and accurate, helping us reduce non-stationarity as well.

TABLE 2
Sequential prediction performance for single-state model: precision, recall, and F1 score in three downtown

under static vs. dynamic threshold after tuning. The highest value among the four methods (LS or MLE
combined with static or dynamic threshold) is in bold.

Least Square Maximum Likelihood
Location ⌧ Precision Recall F1 Precision Recall F1

Atlanta
Static 0.79 0.95 0.86 0.97 0.98 0.97
Dynamic 0.82 0.95 0.88 0.96 0.96 0.96

Los Angeles
Static 0.91 0.78 0.84 0.91 0.81 0.86
Dynamic 0.91 0.83 0.87 0.85 0.91 0.88

Palo Alto
Static 0.95 0.60 0.73 0.94 0.52 0.67
Dynamic 0.78 0.89 0.83 0.76 0.88 0.82

(a) Palo Alto (Static)
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FIG 8. Confidence intervals for online point prediction of probabilities for single-state ramping events using
LS (red dots) and ML (blue dots), compared with true ramping events (black dots). Left column is generated
using static threshold and right column uses dynamic threshold. Dynamic thresholds separate the set of predicted
ramping vs. normal probabilities better than static thresholds do.

4.6. Extension: Multi-state Modeling. We perform a similar set of experiments as we
did in the single-state section. Figures appear in the appendix and we summarize our findings
below.
Visualize these influences on terrain map: Similar as we did in the last section, we only dis-
cuss MLE results. In the following analyses, we first discuss influences from positive ramp-
ing events to positive ramping events i.e., positive-to-positive influences. Then we discuss
negative-to-negative influences. Estimates of negative-to-positive or positive-to-negative are
essentially zero so they are omitted. In particular, upon analyzing these recovered parameters
on map, we find the following patterns:

Positive-to-positive influences, Figure 10: In Atlanta, only the lower left sensor has strong
birthrate. Regarding influence parameters, at s = 1, horizontal estimates are strong at all lat-
itudes. At s = 5, some estimates that are strong at beginning disappeared, but overall direc-
tions and relative magnitude stay the same. At s = 10, the pattern persists. Some influences
from west to east disappear.

In Los Angeles, sensors closer to downtown have stronger birthrates. Regarding influence
parameters, at s = 1, influences flow toward middle from all directions. At s = 5 and 10,
interactions decay but exist almost everywhere, especially west of downtown.

In Northern California, we observe high birthrates on the northwest side and east side
of the valley but other places have small birthrates. Regarding influence parameters, at s =
1, influences flow towards the direction of silicon valley (i.e. north west). There are clear

Precision, Recall, and F1 under static and dynamic thresholds
(Details see [1]).
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ramping vs. normal probabilities better than static thresholds do.

4.6. Extension: Multi-state Modeling. We perform a similar set of experiments as we
did in the single-state section. Figures appear in the appendix and we summarize our findings
below.
Visualize these influences on terrain map: Similar as we did in the last section, we only dis-
cuss MLE results. In the following analyses, we first discuss influences from positive ramp-
ing events to positive ramping events i.e., positive-to-positive influences. Then we discuss
negative-to-negative influences. Estimates of negative-to-positive or positive-to-negative are
essentially zero so they are omitted. In particular, upon analyzing these recovered parameters
on map, we find the following patterns:

Positive-to-positive influences, Figure 10: In Atlanta, only the lower left sensor has strong
birthrate. Regarding influence parameters, at s = 1, horizontal estimates are strong at all lat-
itudes. At s = 5, some estimates that are strong at beginning disappeared, but overall direc-
tions and relative magnitude stay the same. At s = 10, the pattern persists. Some influences
from west to east disappear.

In Los Angeles, sensors closer to downtown have stronger birthrates. Regarding influence
parameters, at s = 1, influences flow toward middle from all directions. At s = 5 and 10,
interactions decay but exist almost everywhere, especially west of downtown.

In Northern California, we observe high birthrates on the northwest side and east side
of the valley but other places have small birthrates. Regarding influence parameters, at s =
1, influences flow towards the direction of silicon valley (i.e. north west). There are clear
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Extension to continuous processes
The model can be naturally extended to model continuous
random vectors (below is ongoing work).
In particular, we can assume ωt ∼ N(µt,Θt), where

µt =

d∑

s=1

Asωt−s, Θt =

d∑

s=1

Γs ◦
(
ωt−sω

T
t−s

)
.

Similar parameter estimation and guarantee hold.

Prediction result on earlier raw solar data

      Data from the GGLM, d=15 Data from the baseline, d=15True Data
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Outline

Modeling high-dimensional spatio-temporal discrete data

Approach #1: Interactive Categorical Point Process

Approach #2: Marked Spatio-temporal Hawkes Process and
Conformal Prediction on dependent data (Ongoing Work)
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Motivation

More complex marks/features are available (e.g. weather
variables for predicting natural hazard).

Events happen in continuous time (e.g. influence changes over
time and could not be captured by fixed parameters).

For prediction purposes, classification methods are more widely
used than point processes, whose uncertainty analyses remain
largely unexplored.
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Problem setup

Assume each observed datum

xi = (ti, ui,mi), ti ∈ [0, T ], ui ∈ R2,mi ∈ Rd

is a tuple consisting of time, location, and marks.
In particular, mi = (zi,m

′
i) contains both static marks zi and

dynamic marks m′
i.

We have two tasks:
1 Model the probability of a new event occurring after time T .

Solution: Marked spatio-temporal Hawkes process models
2 Suppose each event is of type yi ∈ {0, . . . ,M}. Predict the

type of new event that occurs.
Solution: Machine learning classifiers, which are calibrated to
provide uncertainty sets for true event types.
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Method–Marked Spatio-temporal Hawkes process

The point process intends to model the conditional intensity

λ (t, u | Ht) := lim
∆t,∆u→0

E [N ([t, t+ ∆t)×B(u,∆u) | Ht]
∆t×B(u,∆u)

.

In particular, we assume the intensity has the form

λ (t, u | Ht) = fu,z +
∑

j:tj<t

fu (u, uj) · ft (t, tj) · fm′
(
m′
j

)
, (1)

fu,z is the baseline rate, assuming location is discretized. It may
include influence from static marks.
fu (u, uj) captures interactions, which can be bi-variate kernels
and/or graph neural networks.
ft (t, tj) denotes temporal influence from past events.
fm′

(
m′
j

)
measures contribution from dynamic marks,

Please see [3] in the references for a survey of Hawkes process models.
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Estimation–Marked Spatio-temporal Hawkes process

Let Θ denote parameters. The full log-likelihood can be derived as

`(Θ) =

n∑

i=1

log (λ (ui, ti))−
∫ T

0

∫

U

λ(u, t)dudt, (2)

whereby parameters are solved via maximum likelihood estimation.

In general, (2) is non-convex in Θ with high computational cost.
However, our work parametrizes λ(t, k|Ht) so that `(Θ) is convex in
all but one parameter. The estimates can thus be found via simple
iterative procedures.

Once parameters are estimated, they are substituted in (1) for

prediction.
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Method–Conformal Prediction for Dependent Data

Typical classification setting, where Xi ∈ R1+2+d (time, location,
feature dimension) is used to predict the type Yi.

Predictor f̂ can be generic machine learning models.

In particular, we want to produce uncertainty sets Cαt for future
observations, so that marginal coverage holds:

P(Yt ∈ Cαt ) ≥ 1− α. (3)

Importantly, we want Cαt to be distribution-free.

One solution is conformal prediction [4], which includes in Cαt all
possible types that conform to past observed types.
Limitation: Data must be exchangeable.

Remedy: Inspired by our recent work [5], we design methods that
achieve (3) approximately.

Specifically, we carefully design the conformity metrics and efficiently

train leave-one-out ensemble predictors to maximize power.
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Literature

Hawkes Process: Origin (Hawkes, 1971), Cluster process
(Daley and Vere-Jones, 2003, Section 6.3; Gonzalez et al.,
2016), Spatial point processes (Diggle, 2014), Applications in
finance (Bauwens and Hautsch, 2009; Bacry, Mastromatteo
and Muzy, 2015) and in neuron activity (Johnson, 1996). . .

Conformal Prediction: Regression (Papadopoulos et al., 2007;
Barber et al., 2019; Kim, Xu, and Barber, 2020) and
Classification (Angelopoulos et al., 2020; Romano et al., 2020).
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Experiment–Marked Spatio-temporal Hawkes
process

We model the occurrence of California wildfire, which
is known to have strong dependencies.
Figure on the right shows the distribution of fire
events, with different clustering patterns.

Estimated parameters

(a) Fire observations
on a terrain map.

Colors indicate events
happening in the

same region.

A
(b) Kernel density
estimation of fire

distributions

Figure 1: Fire events on map and the kernel
density estimation.

Suppose we have a sequence of n spatial-
temporal-contextual observations, where
each observation consists of time, location,
static location-specific marks, and dynamic
marks:

xi = (ti, ui, zi, mi), i = 1, . . . , n

In particular, we require ti 2 [0, T ] 8i, ti <
ti+1, ui 2 {1, . . . , K} for K locations2, zi 2
Z ⇢ Rq, and mi 2 M ⇢ Rp. Note that zi

is fixed for a given location k so it can also
be denoted as zk. Similarly, mi only depend
on time and location (e.g. it is weather in-
formation), so that it can also be denoted as
mtk

We model these event data using multi-
variate marked Hawkes processes [? ]. In
particular, given the �-algebra Ht that denotes all historical data before time t, the condi-
tional intensity function of the Hawkes process is the probability of an event occurring at
time t and location k, with current mark m := {mtk, zk}:

�(t, k, m|Ht) = lim
�t,�u!0

E [N([t, t + �t)⇥ B(u,�u)⇥ B(m,�m) | Ht]

�t⇥ B(u,�u)⇥ B(m,�m)
, (1)

where B(a,�a) is a ball centered at a with radius �a and N is the counting measure. The
ball around u, which is a discrete integer, is around the actual geographic location in longitude
and latitude which u represents.

For notation simplicity, we drop Ht in (1) from now on. A concrete formulation of (1) is

�(t, k, m) = �g(t, k)f(m|t, k)

=

0
@f(k) +

X

j:tj<t

f(uj, k, tj, t)

1
A f(mtk, zk), (2)

which factors the conditional intensity into product of ground process �g(t, k) and conditional
density f(m|t, k). In (2), f(k) is the baseline intensity, f(uj, k, tj, t) measures spatial and
temporal influence from event happening at tj in uj till current time t, and f(mtk, zk) measures
the influence of marks on current density.

In general, functions f(k), f(uj, k, tj, t), and f(mtk, zk) can take many forms, including
kernel functions [15] or neural networks [7]. Such choices often depend on the application of

2For example, for fire data, we discretize the total space into K disjoint regions

4

region). Fire events in these regions contribute to 90% of total occurrences. To do so, we
discretize each region into disjoint square grids that cover the region and use data located
inside the region for parameter estimation. Upon consulting power delivery infrastructures,
we set grid sides to be 0.24-degree for both longitude and latitude. Figure 2 illustrates the
resulting 453 grids for the 1st region, by cutting o↵ most space in ocean. Note that most
grids have no fire in the entire 5-year horizon, since fires seem to cluster at specific location.
Parameter Interpretation: Recall that A records interaction parameters between grids,
� represents inherent fire risks at each location, ✓ (resp. d) measures the e↵ect of static
(resp. dynamic) marks on fire risks. Figure ?? plots A on the grid map, where we assume no
interaction between grids beyond 3 diagonal length apart. The density and distribution of
interactions is very similar to that of the actual fire events in Figure 1a. Most interactions are
small and negative, indicating inhibitory e↵ects from past events, likely because infrastructures
refurnish equipments that are damaged (Verify by presenting a new figure that removes the
non-negativity constraint on A). Meanwhile, Table ?? records the three largest and three
smallest entries in parameters �, ✓, d. In particular, one can examine feature importance, as
high magnitude of estimates (e.g. Fire Tier in ✓ and Temperature/Himidity in d) contributes
more significantly to fire hazard. Noticeably, the two most important features in d (excluding
summer) identified by our model are also used in computing the Fire Danger Index, which is
one of the most commonly used index for fire hazard monitoring and is explained here4.

Furthermore, one can also perform counterfactual analyses as follows. Suppose a decision
maker is interested in knowing the increase in risk when an external condition change from
A to B, whose e↵ect is measured by parameter � 2 {�, ✓, A, �, d}. Such condition includes
changes in existing vegetation physiology (e.g. grassland to exotic tree–shrub, parametrized by
vector ✓) and changes in weather (e.g. winter to summer, parametrized by vector d). Then, the
change in risk at a certain location and time is computed as �(A, B) := �(t, k, B)��(t, k, A).
The similar analyses can be performed on a change in location from k1 to k2. By repeated
analyzing such changes, one can better study the additional e↵ect of di↵erent factors on fire
risks to properly manage them.

Top 3 Largest Estimates Bottom 3 Smallest Estimates

baseline estimates 0.027 0.019 0.017 0.001 0.001 0.001

grid location 127 41 152 121 36 86

static mark estimates 0.605 0.424 0.093 0.002 0.002 0.001

feature name PG&E Fire Tier1 Fire Tier2 PHYS=Exotic
Tree-Shrub

PHYS=Hardwood PHYS=Grassland

dynamic mark estimates 0.374 0.358 0.345 0.202 0.107 0.038

feature name Summer Temperature Relative
Humidity

LFP Spring Winter

Fire Occurrence Predictor: The conditional intensity �(t, k, m) is a measure of instanta-
neous fire risk and can thus be directly used to predict fire occurrences, when it is compared
against past and/or nearby intensities. Figure 3 presents the prediction results in terms of
precision, recall, and F1 score at several locations with di↵erent fractions of fire data. In each
subfigure, we fix location k and compare the intensities against dynamic thresholds from
Algorithm 3. Meanwhile, each intensity is updated daily (i.e. stays constant within 24 hours

4http://learnline.cdu.edu.au/units/env207/fundamentals/weather.html
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Experiment–Marked Spatio-temporal Hawkes
process (cont.)

Prediction with dynamic hedging thresholds, which take into account

the accuracy of past predictions and historical patterns.

(a) Risk At location with many fire incidents.

(b) Risk At location with no fire incidents. (c) Risk At location with very few fire incidents.

Figure 3: Predicted probabilities, on top of actual data and dynamic thresholds. Figures 3b
and 3c show that the predicted risks are almost always zero, so that the model predicts no
fire in these locations with very few to zero incidents.
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Experiment–Conformal Prediction for Dependent
Data

Our method is named ERAPS. The current results are under random

forest classifiers.

Figure 5: Marginal coverage and width of ERAPS under Random Forest Classifer. The total
possible number of states/labels of fire sizes is 5. ERAPS slightly under-covers for small ↵ and
over-cover for large ↵.

Table 1: Conditional coverage and set size of ERAPS under Random Forest Classifer, where
we condition on the di↵erent fire sizes. ERAPS significantly over-cover on small fire sizes
and under-cover on small fire sizes. Because most fire events have small sizes, the marginal
coverage is nearly valid at 1� ↵ as shown in Figure 5.

Conditional Coverage

↵ [0,.25Acres) [.25Acres,10Acres) [10Acres,100Acres) [100Acres,1000Acres) [1000Acres,É)
0.01 1.00 1.00 0.43 0.06 0.00
0.02 1.00 0.94 0.04 0.00 0.00
0.05 1.00 0.85 0.04 0.00 0.00
0.10 1.00 0.70 0.00 0.00 0.00
0.12 0.99 0.63 0.00 0.00 0.00
0.15 0.99 0.56 0.02 0.00 0.00
0.20 0.98 0.43 0.00 0.00 0.00

Conditional Set Size

↵ [0,.25Acres) [.25Acres,10Acres) [10Acres,100Acres) [100Acres,1000Acres) [1000Acres,É)
0.01 2.65 2.53 2.53 2.56 2.67
0.02 1.93 1.95 1.84 1.94 2.00
0.05 1.83 1.86 1.78 2.00 1.83
0.10 1.66 1.70 1.69 1.88 1.83
0.12 1.58 1.63 1.71 1.94 1.83
0.15 1.46 1.56 1.61 2.00 1.67
0.20 1.29 1.42 1.47 1.56 1.67
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Summary

Approach #1

Model high-dimensional categorical random vectors with a flexible
categorical point process model.

The problem is convex, with provable performance guarantee on
estimated parameters.

Can be generalized to Gaussian processes and beyond.

Approach #2

Model the conditional intensity of correlated observations with a
flexible marked spatio-temporal Hawkes process.

Design the process to yield convex likelihood with efficient solving
procedures.

Provide uncertainty quantification for machine learning classifiers

using recent advances in conformal prediction.
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