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QOutline

Modeling high-dimensional spatio-temporal discrete data

@ Approach #1: Interactive Categorical Point Process

@ Approach #2: Marked spatio-temporal Hawkes Process and
Conformal Prediction on dependent data (Ongoing Work)

[1] Solar Radiation Anomaly Events Modeling Using Spatial-Temporal Mutually
Interactive Processes. Minghe Zhang, Chen Xu, Andy Sun, Feng Qiu, Yao Xie.
Submitted to Annals of Applied Statistics. 2020.
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Problem setup and Goal

@ Assume wq,wy, ... are categorical random vectors in R,

where wy, indicates the event type at location k£ and time ¢.

@ Examples includes the type of crime, magnitude of seismic
activity, etc.

@ Goal: Model the conditional distribution wy|w;—1,wi—2,. ..
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Motivating applications
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Literature

@ Stochastic event modeling: Hawkes process model (Hawkes,
1971), self-correcting point process model (Isham and
Westcott, 1979), event propagation (Wu et al., 2020),
attention-based point processes (Zhu et al., 2020). ..

@ Parametric and nonparametric spatio-temporal processes:
non-parametric Hawkes process (Moller and Waagepetersen
2003), estimation in Bayesian framework (Python et al., 2016),
sparse model estimation for point processes (Hansen et al.,
2015)...
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Modeling

@ Assume each wy, € {0,1,..., M} for M non-zero categories.
Denote w; ¢ = [wi_1,...,wi_d].

@ We model the conditional probability as

K

P Wtk = P | w;d:| = /Bk(p) + ZZB}L:;Z (pvw(t—s)e) .

s=1 /=1

6/23



Modeling

@ Assume each wy, € {0,1,..., M} for M non-zero categories.
Denote w;d = [wi—1,. .., wWt_g].

@ We model the conditional probability as

Plwg =p| w;ﬂ = Brk(P) + YD Biv (p:wi—s)e) -

s=1 1

K
f—
@ Compare with generalized linear models.

@ Parameters to be estimated are 34 (birthrate) and /3,
(interaction), subject to probability constraints.

[2] Convex Parameter Recovery for Interacting Marked Processes. Anatoli Juditsky,
Arkadi Nemirovski, Liyan Xie, Yao Xie. IEEE Journal on Selected Areas in Information
Theory. 2020
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Parameter Estimation with Guarantee

@ Estimation via constrained (1) Maximum Likelihood Estimation

or (2) Least-square Estimation.
Both are convex programming and (2) is equivalent to solving a
special case of variational inequality (Details see [1, 2]).
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Parameter Estimation with Guarantee

@ Estimation via constrained (1) Maximum Likelihood Estimation
or (2) Least-square Estimation.
Both are convex programming and (2) is equivalent to solving a
special case of variational inequality (Details see [1, 2]).

@ Guarantee: Suppose we have N observations of w; and let k be
total number of parameters. With probability at least 1 — ¢,

In(2k/€)

For (1), H,C:}LS — ,BHp < CLPT.

ln(QK,/E)'

o 0 [ -] < o P

@ Proof Ingredients: Martingale-difference, Concentration
inequality, Properties of variational inequality (Details see [1,

2)).
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Experiment: Solar ramping event prediction

@ Ramping events are anomalies in the time-series, due to extremely
high/low observations.

@ Some raw radiation values come from K = 10 sparsely distributed
sensors over two years (Fig (a)).

@ We define ramping events via comparing with lower/upper quantiles
of past values (Fig (b)).

@ We also fit models by season for better estimation (Details in [1]).
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Parameter estimation results

@ Birthrate and Interactions (Temporal view)
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Parameter estimation results

@ Birthrate and Interactions (Temporal view)
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Prediction performance

@ Conditional probabilities when M =

2 (e.g. up and down ramping
events).
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Prediction performance

@ Conditional probabilities when M = 2 (e.g. up and down ramping
events).
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@ Precision, Recall, and F under static and dynamic thresholds
(Details see [1]).

Least Square Maximum Likelihood

Location T Precision Recall Fy Precision Recall Fy
Adanta Static 0.79 0.95 0.86 0.97 0.98 0.97

Dynamic 0.82 0.95 0.88 0.96 0.96 0.96
Los Angeles Static 091 0.78 0.84 091 0.81 0.86

Dynamic 0.91 0.83 0.87 0.85 0.91 0.88
Palo Alto Static . 0.95 0.60 0.73 0.94 0.52 0.67

Dynamic 0.78 0.89 0.83 0.76 0.88 0.82
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Extension to continuous processes

@ The model can be naturally extended to model continuous
random vectors (below is ongoing work).
@ In particular, we can assume w; ~ N (u¢, ©¢), where

d d
He = ZAswtf& O, = ZFS © (wtfswgf—s) :
s=1 s=1

@ Similar parameter estimation and guarantee hold.
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Extension to continuous processes

@ The model can be naturally extended to model continuous
random vectors (below is ongoing work).
@ In particular, we can assume w; ~ N (u¢, ©¢), where

d d
He = ZAswtf& O, = ZFS © (wtfswgf—s) :
s=1 s=1

@ Similar parameter estimation and guarantee hold.
@ Prediction result on earlier raw solar data
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QOutline

Modeling high-dimensional spatio-temporal discrete data

@ Approach #1: Interactive Categorical Point Process

@ Approach #2: Marked Spatio-temporal Hawkes Process and
Conformal Prediction on dependent data (Ongoing Work)
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Motivation

@ More complex marks/features are available (e.g. weather
variables for predicting natural hazard).

@ Events happen in continuous time (e.g. influence changes over
time and could not be captured by fixed parameters).

@ For prediction purposes, classification methods are more widely
used than point processes, whose uncertainty analyses remain
largely unexplored.
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Problem setup

@ Assume each observed datum
xr; = (ti,ui,mi),ti c [O,T],ui c Rz,mi € Rd

is a tuple consisting of time, location, and marks.
In particular, m; = (z;, m}) contains both static marks z; and
dynamic marks m.
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Problem setup

@ Assume each observed datum
xr; = (ti,ui,mi),ti c [O,T],ui c Rz,mi € Rd

is a tuple consisting of time, location, and marks.
In particular, m; = (z;, m}) contains both static marks z; and
dynamic marks m.

@ We have two tasks:

© Model the probability of a new event occurring after time 7.
Solution: Marked spatio-temporal Hawkes process models

@ Suppose each event is of type y; € {0,..., M}. Predict the
type of new event that occurs.
Solution: Machine learning classifiers, which are calibrated to
provide uncertainty sets for true event types.
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Method—Marked Spatio-temporal Hawkes process

@ The point process intends to model the conditional intensity

_ o E[N({t+ A x B(u, Au) | H]
At u | He) = At}gﬂﬁo At x B(u, Au) .

@ In particular, we assume the intensity has the form

)\(t,u | Ht) = fu,z + Z fu (u,uj) - fi (t7tj) S (m;) s (1)

jitj<t
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Method—Marked Spatio-temporal Hawkes process

@ The point process intends to model the conditional intensity

L E [N ([t,t 4+ At) x B(u, Au) | H]
At u | Hy) = ALIEBHO At x B(u, Au) .

@ In particular, we assume the intensity has the form

)‘(tvu | Ht) = fu,z + Z fu (U,Uj) : ft (tatj) : fm’ (m;) ’ (1)
jitj <t
o fu, . is the baseline rate, assuming location is discretized. It may
include influence from static marks.

o fu(u,u;) captures interactions, which can be bi-variate kernels
and/or graph neural networks.

o fi (t,t;) denotes temporal influence from past events.
o [ (m;) measures contribution from dynamic marks,

@ Please see [3] in the references for a survey of Hawkes process models.
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Estimation—Marked Spatio-temporal Hawkes process

@ Let O denote parameters. The full log-likelihood can be derived as

n T
(0) = Y Tog (A (i, 1) - /0 /U Mo Bdudt,  (2)

whereby parameters are solved via maximum likelihood estimation.

@ In general, (2) is non-convex in © with high computational cost.
However, our work parametrizes A(t, k|H;) so that £(©) is convex in

all but one parameter. The estimates can thus be found via simple
iterative procedures.

@ Once parameters are estimated, they are substituted in (1) for
prediction.
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Method—Conformal Prediction for Dependent Data

@ Typical classification setting, where X; € R!*2+4 (time, location,
feature dimension) is used to predict the type Y;.

@ Predictor f can be generic machine learning models.

@ In particular, we want to produce uncertainty sets C¢* for future
observations, so that marginal coverage holds:

P(Y; € C%) > 1 — a. (3)

Importantly, we want C§* to be distribution-free.
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Method—Conformal Prediction for Dependent Data

Typical classification setting, where X; € R!*2+4 (time, location,
feature dimension) is used to predict the type Y;.

Predictor f can be generic machine learning models.

In particular, we want to produce uncertainty sets C¢* for future
observations, so that marginal coverage holds:

P(Y; € C%) > 1 — a. (3)

Importantly, we want C§* to be distribution-free.

One solution is conformal prediction [4], which includes in Cf* all
possible types that conform to past observed types.
Limitation: Data must be exchangeable.

Remedy: Inspired by our recent work [5], we design methods that
achieve (3) approximately.

Specifically, we carefully design the conformity metrics and efficiently
train leave-one-out ensemble predictors to maximize power.
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Literature

@ Hawkes Process: Origin (Hawkes, 1971), Cluster process
(Daley and Vere-Jones, 2003, Section 6.3; Gonzalez et al.,
2016), Spatial point processes (Diggle, 2014), Applications in
finance (Bauwens and Hautsch, 2009; Bacry, Mastromatteo
and Muzy, 2015) and in neuron activity (Johnson, 1996). ..

@ Conformal Prediction: Regression (Papadopoulos et al., 2007;
Barber et al., 2019; Kim, Xu, and Barber, 2020) and
Classification (Angelopoulos et al., 2020; Romano et al., 2020).
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Experiment—Marked Spatio-temporal Hawkes

process

@ We model the occurrence of California wildfire, which
is known to have strong dependencies.
Figure on the right shows the distribution of fire
events, with different clustering patterns.

@ Estimated parameters

Top 3 Largest Estimates

Bottom 3 Smallest Estimates

Taseline cstimates G027 0010 0017 [ [ 0001

grid location 127 4 152 121 36 86

static mark estimates 0.605 0.424 0.093 0.002 0.002 0.001

feature name PGLE  Fire Tierl  Fire Tier2 | PHYS=Exotic PHYS=Hardwood PHYS=Grassland
Tree-Shrub

dynamic mark cstmates 0371 0358 0315 0202 0107 0038

feature name Summer Temperature Relative | LFP Spring Winter

Humidity
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Experiment—Marked Spatio-temporal Hawkes

process (cont.)

@ Prediction with dynamic hedging thresholds, which take into account

the accuracy of past predictions and historical patterns.
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Experiment—Conformal Prediction for Dependent

Data

@ Our method is named ERAPS. The current results are under random

forest classifiers.
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Summary

Approach #1

@ Model high-dimensional categorical random vectors with a flexible
categorical point process model.

@ The problem is convex, with provable performance guarantee on
estimated parameters.

@ Can be generalized to Gaussian processes and beyond.
Approach #2

@ Model the conditional intensity of correlated observations with a
flexible marked spatio-temporal Hawkes process.

@ Design the process to yield convex likelihood with efficient solving
procedures.

@ Provide uncertainty quantification for machine learning classifiers
using recent advances in conformal prediction.
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