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E�cient Predictive Inference with Jackknife+

under Ensemble Learning

Abstract

Ensemble learning is widely used in applications to make predictions in complex
decision problems—for example, averaging models fitted to a sequence of samples
bootstrapped from the available training data. While such methods o↵er more accurate,
stable, and robust predictions and model estimates, much less is known about how to
perform valid, assumption-lean inference on the output of these types of procedures.
In this paper, we compare the previously proposed jackknife+-after-bootstrap (J+aB)
with another variant called the jackknife+-with-bootstrap (J+wB), both of which are
computationally e�cient and theoretically valid methods for distribution-free predictive
inference under ensemble learning. Both methods o↵er predictive coverage guarantee
that holds with minimal assumptions. In particular, we do not assume the distribution of
the data, the nature of the fitted model, or how the individual bootstrap estimators are
aggregated—at worst, the failure rate of the predictive interval is non-asymptotically
inflated by either a factor of 2 for J+aB or a factor of 2 plus an explicit analytic
expression that can be made arbitrarily small for J+wB. Our numerical experiments
verify the coverage and accuracy of the resulting predictive intervals on real data.

Keywords: Assumption-free inference; Bagging; Bootstrapping; Conformal inference; En-
semble learning; Exchangeability; Jackknife; Predictive inference; Stability
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1 Introduction

1.1 Distribution-Free Predictive Interval/Set

First, we introduce the problem of quantifying uncertainty in regression by providing a
distribution-free predictive inference interval around the predicted value µ̂(Xn+1). Formally,
we state the problem as follows:

Suppose we are given n independent and identically distributed (i.i.d.) observations

(X1, Y1), . . . , (Xn, Yn)
iid⇠ P

for some probability distribution P on Rp⇥R. Given the available training data, we would now
like to predict the value of the response Yn+1 for a new data point with features Xn+1, where
we assume that (Xn+1, Yn+1) is drawn from the same probability distribution P . One common
strategy is to fit a regression model µ̂ : Rp ! R by applying some regression algorithm to the
training data {(Xi, Yi)}ni=1, and then predicting µ̂(Xn+1) as our best estimate of the unseen
test response Yn+1. Yet, we are interested in quantifying the accuracy or error level of this
prediction and in particular, we want to use the available information to build an interval
around our estimate µ̂(Xn+1)± (some margin of error) that we believe is likely to contain
Yn+1.

In general, we call Ĉ := Ĉ(Xn+1) ✓ R a predictive interval/set if it maps Xn+1 to a
interval/set that is believed to contain Yn+1.

Moreover, Ĉ satisfies distribution-free predictive coverage at level 1� ↵ if

P
h
Yn+1 2 Ĉ(Xn+1)

i
� 1� ↵

for any distribution P of the data. This probability is with respect to the distribution of the
n+ 1 training and test data points, as well as any additional source of randomness used in
obtaining Ĉ as Ĉ is implicitly a function over the training data as well. The bound must
hold uniformly over all distributions P .

1.2 The Jackknife and Jackknife+ Methods

In this subsection, we briefly go over common strategies to obtain Ĉ in distribution-free
fashions and in particular, introduce the Jackknife and Jackknife+ methods that serve as
motivations for our proposed methods.

Distribution-free prediction methods have garnered attention in recent years as wrapper
methods for complex machine learning algorithms such as neural networks. The use of
holdout or validation sets is a common, and computationally inexpensive, way to avoid
overfitting and ensure distribution-free predictive coverage [Papadopoulos, 2008, Vovk, 2013,
Lei et al., 2018], while methods such as cross-validation or leave-one-out cross-validation
(also called the “jackknife”) stabilize the results in practice but require some assumptions to
analyze theoretically [Steinberger and Leeb, 2016, 2018, Barber et al., 2019]. Distribution-free
guarantees are also obtained by the conformal prediction methodology of Vovk et al. [2005]
[see also Lei et al., 2018].
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Our method, as will be described in later sections, is inspired by the recent jackknife+ of
Barber et al. [2019]. As suggested by the name, the jackknife+ is a simple modification of
the jackknife approach to constructing predictive confidence intervals.

To briefly explain jackknife and jackknife+, we first define some notations.

1. R denotes any regression algorithm that maps a collection of training data set to a fitted
regression function µ̂, which maps any new data X to a predicted value Ŷ := µ̂(X).

Compactly, if we have n training data points, µ̂ = R({(Xi, Yi)}ni=1) and µ̂\i =
R({(Xj, Yj)}nj=1,j 6=i) is the algorithm fitted on all but the i-th data point in the training
data.

2. Given a collection of n numerical values indexed by i, q+↵,n{vi} and q�↵,n{vi} are the
upper and lower ↵-quantiles, namely,

q+↵,n{vi} = the d(1� ↵)(n+ 1)e th smallest value of v1, . . . , vn,

q�↵,n{vi} = the d↵(n+ 1)e th smallest value of v1, . . . , vn,

Under these notations, the usual jackknife prediction interval is given by

ĈJ
↵,n(x) = µ̂(x)± q+↵,n{Ri} =

⇥
q�↵,n{µ̂(x)�Ri}, q+↵,n{µ̂(x) +Ri}

⇤
, (1)

where Ri = |Yi� µ̂\i(Xi)| is the i-th leave-one-out residual. The intuitive reason why this con-
struction should work is that the Ri’s can well approximate the test residual |Yn+1�µ̂\i(Xn+1)|,
because µ̂\i is trained without using (Xi, Yi). Surprisingly, however, fully assumption-free
theoretical guarantees are impossible to achieve for the jackknife construction [see Barber
et al., 2019, Theorem 2].

As an improvement, the jackknife+ replaces µ̂ in (1) with µ̂\i’s:

ĈJ+
↵,n(x) =

⇥
q�↵,n{µ̂\i(x)�Ri}, q+↵,n{µ̂\i(x) +Ri}

⇤
.

It can be shown that ĈJ+
↵,n(Xn+1) satisfies

P
h
Yn+1 2 ĈJ+

↵,n(Xn+1)
i
� 1� 2↵

for any sample size n, irrespective of the data distribution and the choice of regression method,
achieving an assumption-free, non-asymptotic coverage guarantee.

Intuitively, jackknife fails to achieve such a guarantee without additional assumptions
because the test residual |Yn+1 � µ̂(Xn+1)| can be incomparable with the leave-one-out
residuals |Yi� µ̂\i(Xi)|. The former predictor µ̂ always uses one more observation to train the
regression algorithm compared to the latter, so that for R that is sensitive to the perturbation
of training data, the resulting predicted values by µ̂ can di↵er dramatically from those by µ̂\i.
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1.3 Ensemble Learning Basics

After briefly introducing the problem and common strategies to solve it, we introduce our
main interest in this paper, which is to apply jackknife+ for R' that is an ensemble regression
algorithm with aggregation function '. Specifically, ensemble predictions are obtained after
applying a base regression method R to di↵erent training sets generated from the training
data by a resampling procedure and then aggregate the predictions via '.

Mathematically, we begin by creating multiple training data sets of size m,

S1 = (i1,1, . . . , i1,m), . . . , SB = (iB,1, . . . , iB,m),

so that each Sb is a multiset of the original training data. For each b, we then compute a
fitted function µ̂b on the b-th training data set Sb. These B fitted regression functions are
finally aggregated using some aggregation function ', which maps a collection of predictions
µ̂1(x), . . . , µ̂B(x) to a single final prediction µ̂'(x) for any feature vector x 2 Rp. This
ensembled construction is formalized in Algorithm 1 below.

Algorithm 1 Ensembled learning
Input: Data {(Xi, Yi)}ni=1

Output: Ensembled regression function µ̂'

for b = 1, . . . , B do

Draw Sb = (ib,1, . . . , ib,m) by sampling uniformly at random, with or without replacement,
from {1, . . . , n}.
Compute µ̂b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for

Define µ̂' = '(µ̂1, . . . , µ̂B).

Here are some concrete examples:
• Two common ways to obtain the training data sets Sb are either bootstrapping or
subsampling. The former subsamples m indices from {1, . . . , n} uniformly with replace-
ment and the latter does so without replacement. It is typical to choose m = n in
bootstrapping and m = 0.5n in subsampling.

• Common choices of the baseline regression algorithm R are linear or generalized linear
regression, penalized linear regression such as Ridge or Lasso, a neural network, or a
regression tree.

• The aggregation function ' is often chosen to be the median, mean, or trimmed mean,
but other choices also exist, as we will see in Section 3 where we introduce the J+aB2
method.

For any base algorithm R, when ' is chosen to be mean aggregation, the ensembled
method run with bootstrapped Sb’s is referred to as bagging [Breiman, 1996].

We remark that ensemble learning is a popular technique for enhancing the performance
of machine learning algorithms. It is used to capture a complex model space with simple
hypotheses which are often significantly easier to learn, or to increase the accuracy of an
otherwise unstable procedure [see Hastie et al., 2009, Polikar, 2006, Rokach, 2010, and
references therein].
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1.4 Quantifying Uncertainty for Ensemble Learning

While ensembling is generally understood to provide a more robust and stable prediction as
compared to the underlying base algorithm, there are substantial di�culties in developing
inference procedures for ensemble methods with theoretical guarantees. For one thing,
ensemble methods are frequently used with highly discontinuous and nonlinear base learners,
and aggregating many of them leads to models that defy an easy analysis. For concreteness,
consider regression trees such as CART that split nodes based on variance reduction. The
problem is compounded by the fact that ensemble methods are typically employed in settings
where good generative models of the data distribution are either unavailable or di�cult to
obtain. Thus, we would naturally want to use distribution-free predictive inference methods
as introduced in Section 1.2 whose validity does not depend on knowing the distribution of
the data or characterizing the behavior of the regression algorithm.

We might therefore consider applying a distribution-free method such as jackknife+ to
the ensembled model. However, the computational cost of such a procedure is prohibitive,
if it is applied naively. Under jackknife+, each ensembled model requires B many calls to
the underlying base algorithm R to produce a single ensemble predictor µ̂',\i that leaves
out the ith training data, after which this procedure is repeated n many times to produce
the full set of ensembled leave-one-out residuals R',i—hence, Algorithm 1 is run once for
each leave-one-out regression—for a total of Bn many calls to R. Therefore, we should not
naively apply the jackknife+ “wrapper” to an ensembled regression.

1.5 Related Work

Many ensemble methods can be cast as particular instances of bootstrap aggregating or
bagging [Breiman, 1996]. Some of the earlier theoretical works were concerned with studying
the impact of bagging on improving accuracy compared to the base method [Bühlmann and
Yu, 2002, Buja and Stuetzle, 2006, Friedman and Hall, 2007]. These works are primarily
focused on quantifying the improvement over the base (non-ensembled) algorithm.

The literature that deals with precise uncertainty quantification of ensembled estimators is
substantially leaner. Meinshausen [2006], Athey et al. [2019], Lu and Hardin [2019] proposed
methods for estimating conditional quantiles derived from the popular random forests [Ho,
1995, Breiman, 2001]. These methods can be used to construct valid prediction intervals,
but their guarantees are necessarily approximate or asymptotic, and rely on additional
conditions. By contrast, Sexton and Laake [2009], Wager et al. [2014], Mentch and Hooker
[2016] studied methods for estimating the variance of the random forest estimator of the
conditional mean by applying, in order, the jackknife-after-bootstrap (not jackknife+) [Efron,
1992] or the infinitesimal jackknife [Efron, 2014] or U-statistics theory. Roy and Larocque
[2019] propose a heuristic for constructing prediction intervals with such variance estimates.
For a comprehensive survey of statistical work related to random forests, we refer the reader
to the literature review by Athey et al. [2019].

While our proposed methods are designed to be deployed in conjunction with bootstrap
or ensemble methods, in flavor they are more closely linked to the growing literature on
assumption-free predictive inference [see Vovk et al., 2005, Lei et al., 2018, and references there
in]. Our paper is most closely related to the jackknife+ of Barber et al. [2019]. More recently,
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Kuchibhotla and Ramdas [2019] looked at aggregating conformal inference after subsampling
or bootstrapping. Their work proposes ensembling multiple runs of an inference procedure,
while in contrast our present work seeks to provide inference for ensembled methods.

As mentioned in Section 1.4, applying jackknife+ (or, equivalently, jackknife) as a “wrapper”
around an ensembled algorithm is computationally burdensome, with Bn many calls to the
base learner (where B is the number of samples used for constructing an ensemble, and n
is the sample size). To reduce this computational burden while ensuring distribution-free
theoretical guarantees, we can instead consider using a holdout set to assess the predictive
accuracy of an ensembled model, as studied by, e.g., Papadopoulos et al. [2002], Papadopoulos
and Haralambous [2011]. However, when the sample size n is limited, we will achieve more
accurate predictions with a cross-validation or jackknife type method, which avoids reducing
the sample size in order to obtain a holdout set.

Finally, our work is most closely related to the idea of “out-of-bag” prediction intervals
proposed for the jackknife, as a computationally e�cient alternative to the naive idea of
applying jackknife directly to an ensembled algorithm and thus requiring Bn calls to the
base learner. Specifically, defining the function

µ̂'\i = '({µ̂b : b = 1, . . . , B, Sb 63 i}),

which ensembles all models µ̂b whose subsample Sb does not train on the ith data point,
Johansson et al. [2014] propose a prediction interval of the form

µ̂'(Xn+1)± q+↵,n(Ri) where Ri = |Yi � µ̂'\i(Xi)|. (2)

Zhang et al. [2019] provide a theoretical analysis of this type of prediction interval, ensuring
that predictive coverage holds asymptotically under additional assumptions. Devetyarov and
Nouretdinov [2010], Löfström et al. [2013], Boström et al. [2017b,a], Linusson et al. [2019]
study variants of this type of method, but distribution-free coverage is not guaranteed in any
of these proposed methods.

The rest of the paper is organized as follows. Section 2 presents the method called the
jackknife+-after-bootstrap (J+aB), which performs e�cient predictive inference for ensemble
learning. The J+aB algorithm, theoretical guarantees, and proofs are included. Section 3
considers and analyzes theoretically an alternative method to integrate J+ with ensembling,
titled the jackknife+-with-bootstrap (J+wB). Section 4 empirically compares and contrasts
the performance of J+aB and J+wB on real datasets and Section 5 discusses the empirical
performance of these two methods in greater detail.

2 Jackknife+-after-bootstrap

In this section, we address the problem of inference for ensemble predictions, by proposing
the jackknife+-after-bootstrap (J+aB) method1, which only makes the necessary B many
calls rather than Bn calls to the base regression algorithm, and is therefore highly e�cient in

1The work in this section is a collaborative research with Professor Rina Barber and colleague Byol Kim.
This preprint is titled Predictive Inference Is Free with the Jackknife+-after-Bootstrap [Kim, Xu, and Barber,
2020]
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terms of the cost of model fitting. Specifically, J+aB obtains n many ensembled leave-one-out
regressors with the same number of calls to the baseline regression method.

When run at a target predictive coverage level of 1�↵, the method also provably provides
at least 1 � 2↵ coverage in the worst case. In terms of assumption, J+aB requires only
independent and identically distributed data and symmetric base algorithm and aggregation
function.

2.1 The Method and Algorithm

To obtain the i-th leave-one-out fitted predictor µ̂'\i, we will simply aggregate the original
models µ̂1, . . . , µ̂B with the caveat that we exclude any µ̂b whose training data set Sb includes
data point i.

Algorithm 2 Jackknife+-after-bootstrap (J+aB)

Input: Data {(Xi, Yi)}ni=1

Output: Predictive interval ĈJ+aB
↵,n,B

for b = 1, . . . , B do

Draw Sb = (ib,1, . . . , ib,m) by sampling uniformly at random (with or without replacement,
as desired) from {1, . . . , n}.
Compute µ̂b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for

for i = 1, . . . , n do

Aggregate µ̂'\i = '({µ̂b : b = 1, . . . , B, Sb 63 i}).
Compute the residual, Ri = |Yi � µ̂'\i(Xi)|.

end for

Compute the jackknife+-after-bootstrap prediction interval: at each x 2 R,

ĈJ+aB
↵,n,B(x) =

⇥
q�↵,n{µ̂'\i(x)�Ri}, q+↵,n{µ̂'\i(x) +Ri}

⇤
.

To run the jackknife+-after-bootstrap (J+aB) method given in Algorithm 2, we can
see that all n leave-one-out models µ̂'\i are computed by aggregating subsets of the same

underlying list of fitted models µ̂1, . . . , µ̂B. Therefore, the cost of J+aB is essentially the same
as that of ensembled learning (Algorithm 1) in any setting where the dominant computational
cost comes from model training rather than model aggregation or function evaluation. For
example, this will hold if ' is the mean or median while R is an expensive method such as a
neural net.

Thus, for a prediction task, instead of a point estimate obtained by ensemble learning
(Algorithm 1), we can provide a more informative prediction interval via jackknife+-after-
bootstrap (Algorithm 2), essentially “for free.”

2.2 Theory

To give guarantee for J+aB, we make two assumptions, one on the data distribution and the
other on the base and aggregation algorithms.
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Assumption 1 (i.i.d. data). The training and test data are i.i.d.: (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)
iid⇠

P , where P is any distribution on Rp ⇥ R.

Assumption 2 (symmetric algorithms). For k � 1, any fixed k-tuple ((x1, y1), . . . , (xk, yk)) 2
Rp ⇥ R, and any permutation � on {1, . . . , k}, it holds that R((x1, y1), . . . , (xk, yk)) =
R((x�(1), y�(1)), . . . , (x�(k), y�(k))) and '(y1, . . . , yk) = '(y�(1), . . . , y�(k)).

In other words, the base regression algorithm R and the aggregation ' are both invariant
to the ordering of the input arguments.2

Assumption 1 is fairly standard in the distribution-free prediction literature [Vovk et al.,
2005, Lei et al., 2018, Barber et al., 2019] (in fact, as in the conformal prediction literature,
our results only require exchangeability of the n + 1 data points—the i.i.d. assumption is
a familiar special case). Assumption 2 is a natural condition in the setting where the data
points are i.i.d. and therefore should logically be treated symmetrically.

Under these assumptions, we establish a coverage guarantee for the jackknife+-after-
bootstrap prediction interval, with no assumptions on the data, the base algorithm, or the
aggregation procedure. One interesting requirement is that the number of subsamples, B, is
required to be random for this result to hold—we discuss this point later on.

Theorem 1. Fix any integers B̃ � 1 and m � 1, any base algorithm R, and any ag-

gregation function '. Suppose jackknife+-after-bootstrap (Algorithm 2) is run with B ⇠
Binomial(B̃, (1� 1

n+1)
m) (in the case of sampling with replacement) or B ⇠ Binomial(B̃, 1�

m
n+1) (in the case of sampling without replacement). Then, under Assumptions 1 and 2, the

jackknife+-after-bootstrap prediction interval satisfies

P
h
Yn+1 2 ĈJ+aB

↵,n,B(Xn+1)
i
� 1� 2↵,

where the probability holds with respect to the random draw of the training data (X1, Y1), . . . , (Xn, Yn),
the test data point (Xn+1, Yn+1), and B.

2.3 Proof Sketch

2.3.1 Why Do We Need a Random B?

To see why B needs to be random in order to establish Theorem 1, it is instructive to go over
the jackknife+ theory and understand how exchangeability is used in the proof to obtain a
lower-bound on the coverage. The proof of the jackknife+ coverage guarantee [Barber et al.,
2019, Theorem 1] is based on the observation that the event that the predictive interval fails to
cover Yn+1, implies the event that for at least d(1� ↵)(n+ 1)e leave-one-out fitted predictors
µ̂\i, the residual for the new observation exceeds the residual for the i-th observation in

2If R and/or ' involve any randomization—for example if ' operates by sampling from the collection of
predictions—then we can require that the outputs are equal in distribution under any permutation of the input
arguments, rather than requiring that equality holds deterministically. In this case, the coverage guarantees
in our theorems hold on average over the randomization in R and/or ', in addition to the distribution of the
data.
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magnitude. In other words, if Yn+1 /2 ĈJ+
↵,n(Xn+1) then

nX

i=1

1I
h ��Yn+1 � µ̂\i(Xn+1)

�� >
��Yi � µ̂\i(Xi)

��
i
� (1� ↵)(n+ 1).

Initially, it may seem that we cannot use exchangeability of the training and test data to
study this event, since each training data point i appears in every µ̂\j where j 6= i, while the
test point n+ 1 is not used in any fitted model.

However, we can embed these n leave-one-out models (µ̂\i)ni=1 into a larger collection in
order to restore exchangeability. Consider the (n+ 1)⇥ (n+ 1) array of leave-two-out fitted
predictors (µ̃\i,j)1i 6=jn+1. Since the n+1 data points are assumed to be i.i.d., and this array
constructs leave-two-out fitted models for each possible pair, the resulting (n+ 1)⇥ (n+ 1)
array is exchangeable, i.e., its distribution does not change if we permute the rows/columns.
As µ̃\n+1,i = µ̂\i for i = 1, . . . , n, any statement we make with µ̃\n+1,i’s, which are embedded
in the (n+1)⇥ (n+1) exchangeable array, is related back to µ̂\i’s, and thus, to the jackknife+
interval. This construction underlies the theory for the jackknife+.

If we attempt to apply the jackknife+ proof for the J+aB algorithm, however, issues arise
immediately. For example, define µ̃'\i,j = '({µ̂b : Sb 63 i, j}), the aggregation of all fitted
models µ̂b whose underlying subsampled or bootstrapped data set Sb does not include either
i or j. For each i = 1, . . . , n, we have µ̃'\n+1,i = µ̂'\i, exactly as for the jackknife+ proof,
and so it would seem that we can prove coverage of the jackknife+-after-bootstrap method
by way of this larger (n+ 1)⇥ (n+ 1) array of µ̃'\i,j’s.

Unfortunately, though, this larger array is not exchangeable—the jackknife+-after-
bootstrap algorithm subtly violates symmetry even though R and ' are themselves symmetric.
This is mostly easily seen by noting that there are always exactly B many subsampled or
bootstrapped training data sets Sb that do not include the test observation n+ 1, whereas
for any training observation i = 1, . . . , n the number of Sb’s that do not contain i is usually
smaller. It turns out that this issue can easily be addressed by simply drawing B from a
Binomial distribution, as we will see next.

2.3.2 Proof of Theorem 1

We now prove the distribution-free guarantee of Theorem 1. Our proof follows the main
idea of the jackknife+ guarantee [Barber et al., 2019, Theorem 1]—we lift the jackknife+-
after-bootstrap method, which requires the construction of n many leave-one-out ensembled
models µ̂'\i, to an (n + 1) ⇥ (n + 1) array of leave-two-out models. Unlike the jackknife+
theory, here we must take care to ensure exchangeability within the collection of subsamples
Sb. Here we sketch the argument; for completeness, full details are given in Appendix A.

Consider the “lifted” Algorithm 3. We can see that Algorithm 3 treats the n+1 data points
symmetrically, and therefore the resulting array of residuals (Rij : i 6= j 2 {1, . . . , n+ 1}) is
exchangeable. Now, for each i = 1, . . . , n+ 1, define Ẽi as the event that

X

j2{1,...,n+1}\{i}

1I [Rij > Rji] � (1� ↵)(n+ 1).

By a simple counting argument and exchangeability, it can be shown that P[Ẽn+1]  2↵,
but we need to relate the event Ẽn+1, defined based on the lifted jackknife+-after-bootstrap
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Algorithm 3 Lifted jackknife+-after-bootstrap residuals

Input: Data {(Xi, Yi)}n+1
i=1

Output: Residuals (Rij : i 6= j 2 {1, . . . , n+ 1})
for b = 1, . . . , B̃ do

Draw S̃b = (ib,1, . . . , ib,m) uniformly at random, with or without replacement, from
{1, . . . , n+ 1}.
Compute µ̃b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for

for pairs i 6= j 2 {1, . . . , n+ 1} do

Aggregate µ̃'\i,j = '({µ̃b : S̃b 63 i, j}).
Compute the residual, Rij = |Yi � µ̃'\i,j(Xi)|.

end for

construction, back to the original jackknife+-after-bootstrap interval ĈJ+aB
↵,n,B(Xn+1). Let

B =
PB̃

b=1 1I[S̃b 63 n + 1], the number of S̃b’s containing only training data, in the lifted
construction, and let 1  b1 < · · · < bB  B̃ be the corresponding indices. Note that the
distribution of B is Binomial, as specified in the theorem. Now, for each k = 1, . . . , B, define
Sk = S̃bk . We can observe that each Sk is an independent uniform draw from {1, . . . , n} (with
or without replacement). Therefore, we can equivalently consider running J+aB (Algorithm 2)
with these particular subsamples or bootstrapped samples S1, . . . , SB. Furthermore, for each
i = 1, . . . , n, this ensures that µ̃'\n+1,i = µ̂'\i, that is, the leave-one-out models of the
jackknife+-after-bootstrap methods coincide with the leave-two-out models of the lifted
jackknife+-after-bootstrap. Thus, we have constructed a coupling of the jackknife+-after-
bootstrap with its lifted version.

Now, define En+1 as the event that

nX

i=1

1I
⇥
|Yn+1 � µ̂'\i(Xn+1)| > Ri

⇤
� (1� ↵)(n+ 1),

where Ri = |Yi�µ̂'\i(Xi)| as before. By the coupling we have just constructed, we can see that
the event En+1 is exactly equivalent to the lifted event Ẽn+1, and thus, P[En+1] = P[Ẽn+1]  2↵.
It can be verified that if jackknife+-after-bootstrap fails to cover, i.e., if Yn+1 /2 ĈJ+aB

↵,n,B(Xn+1),
then the event En+1 must occur, completing the proof.

3 Jackknife+-with-bootstrap

3.1 The Method and Algorithm

Note that in J+aB, we aggregate the individual predictors µ̂b in a leave-one-out fashion first
before predicting on the new data Xn+1 and Xi’s to get point predictions and leave-one-out
residuals. However, we can consider performing the aggregation and prediction in another
order such that we first create the leave-one-residuals and point predictions on new data with
the individual predictors and then aggregate the residuals not via taking mean or median
but simply taking the quantiles. This motiviates the jackknife+-with-bootstrap variant that,
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as we iterate through the n training data points, also produces predictive inference intervals
by leaving out the i-th training data point.

In particular, the same B many bootstrapped predictors introduced in the ensemble
learning algorithm (Algorithm 1) are used in Algorithm 4 below.

Algorithm 4 Jackknife+-with-bootstrap (J+wB)

Input: Data {(Xi, Yi)}ni=1

Output: Predictive interval ĈJ+wB
↵,n,B at x

for b = 1, . . . , B do

Draw Sb = (ib,1, . . . , ib,m) by sampling uniformly at random (with or without replacement,
as desired) from {1, . . . , n}.
Compute µ̂b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for

S� = {},S+ = {}
for b = 1, . . . , B do

for i = 1, . . . , n do

if i /2 Sb then

Rb
i = |Yi � µ̂b(Xi)|

S� = S� [ {µ̂b(x)�Rb
i}

S+ = S+ [ {µ̂b(x) +Rb
i}

else

S� = S�, S+ = S+

end if

end for

end for

Define s := |S�| = |S+|
Compute the jackknife+-after-bootstrap2 prediction interval: at each x 2 R,

ĈJ+wB
↵,n,B (x) =

⇥
q�↵,s{S�}, q+↵,s{S+}

⇤
.

By comparing Algorithm 2 and 4, we emphasize that when the dominant computational
cost comes from model training rather than model aggregation or sorting a long list, these
two methods have comparable computational costs. However, the theoretical guarantee relies
on di↵erent assumptions—in particualr, it is non-asymptotic for Algorithm 4 but asymptitic
for Algorithm 2, as we will see in the next section.

3.2 Theory

The same problem of violating exchangeability at a fixed B still persists in Algorithm 4 but
is resolved when B is drawn from the same particular binomial distribution as in Theorem 1.
In particular, we have the following theorem similar to Theorem 1:

Theorem 2. Fix any base algorithm R. Suppose jackknife+-with-bootstrap (Algorithm 4)

is run with B ⇠ Binomial(B̃, (1 � 1
n+1)

m) (in the case of sampling with replacement) or

13



B ⇠ Binomial(B̃, 1 � m
n+1) (in the case of sampling without replacement). Then, under

Assumptions 1 and 2, the jackknife+-with-bootstrap prediction interval satisfies

P
h
Yn+1 2 ĈJ+wB

↵,n,B (Xn+1)
i
� 1� 2↵� �,

�  2↵

s
log(n(n+ 1)B̃)

B̃C
+

1

B̃
, where

C(n,m,↵) :=
(1� 2

n+1)
m

3(2 + 1
2↵)

2

where the probability holds with respect to the random draw of the training data (X1, Y1), . . . , (Xn, Yn),
the test data point (Xn+1, Yn+1), and B.

We remark that at any finite sample size n, subsample size m, and tolerance error level ↵,
the inflation term � can be made arbitrary small as long as B̃ ! 1.

Both of the theorems above show that the distribution-free coverage guarantee of the
jackknife+ extends immediately to the J+aB and J+wB with one intriguing twist: the
number of bootstrapped or subsampled training sets, B, must be drawn at random rather
than chosen in advance. In practice, this choice of B does not make any meaningful di↵erence
to the output of the algorithm, as long as B̃ is large. However, the theoretical arguments for
these variants that allow us to obtain distribution-free coverage require this random B in an
interesting way.

3.3 Proof Sketch

Here we sketch the argument that resembles the earlier proof of jackknife+-after-bootstrap as
in Section 2.3.2; for completeness, full details are given in Appendix A. In particular, for each
pair of indices (i, j) 2 [n+ 1]⇥ [n+ 1] such that i 6= j, the lifted jackknife+-with-bootstrap
algorithm below computes the residuals R̃b

ij and R̃b
ji for b 2 {1, ..., B̃} via leave-two-out

constructions:
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Algorithm 5 Lifted jackknife+-with-bootstrap residuals

Input: Data {(Xi, Yi)}n+1
i=1

Output: Residuals (R̃b
ij : i 6= j 2 {1, . . . , n+ 1}, b 2 {1, . . . , B̃})

for b = 1, . . . , B̃ do

Draw S̃b = (ib,1, . . . , ib,m) uniformly at random (with or without replacement) from
{1, . . . , n+ 1}.
Compute µ̃b = R((Xib,1 , Yib,1), . . . , (Xib,m , Yib,m)).

end for

for b = 1, . . . , B̃ do

for pairs (i, j) 2 [n+ 1]⇥ [n+ 1], i 6= j do

if (i, j) /2 S̃b then

Compute the residuals R̃b
ij = |Yi � µ̃b(Xi)| R̃b

ji = |Yj � µ̃b(Xj)|
else

Define the residualsR̃b
ij = R̃b

ji = 1
end if

end for

end for

Given the lifted Algorithm 5, we can see that for each b, the resulting array of residuals
(R̃b

ij, i 6= j 2 {1, ..., n+ 1}) is exchangeable. Therefore, by following the notation in section

2.3.2, for each i = 1, ..., n+ 1, we define Ẽi as the event that

X

j2{1,...,n+1}\{i}

X

b:(i,j)/2S̃b

1I[R̃b
i,j > R̃b

j,i] � (1� ↵)(
X

j2{1,...,n+1}\{i}

X

b:(i,j)/2S̃b

1I).

Via mimicking the argument in section 2.3.2, we also observe a natural coupling of

the jackknife+-with-bootstrap with its lifted version, since B :=
PB̃

b=1 1I[n + 1 /2 S̃b] is
understood to follow a binomial distribution (under subsampling with or without replacement).
Equivalently, if we execute Algorithm 4 with the binomially distributed B and define En+1 as
the event that

nX

j=1

X

b:j /2Sb

1I[|Yn+1 � µ̂b(Xn+1)| > Rb
j] � (1� ↵)(

nX

j=1

X

b:j /2Sb

1I)

where Rb
j = |Yj � µ̂b(Xj)|, we can see that the event En+1 is exactly equivalent to the lifted

event Ẽn+1 under a fixed B̃ and therefore P[En+1] = P[Ẽn+1]. We complete the proof by
verifying that if jackknife+-with-bootstrap fails to cover, i.e., if Yn+1 /2 ĈJ+aB2

↵,n,B (Xn+1), then
the event En+1 must occur.

However, di↵erent from the argument in section 2.3.2 is the bound on P[Ẽn+1], which
is now less than or equal to 2↵(1 + ✏) + n(n + 1)exp(�B̃p 4✏2

12(2+✏)2 ), p := e�
2
k , at any finite

sample size n and user-specified ✏. The details are provided in the appendix. Thus, P[Yn+1 /2
ĈJ+aB2

↵,n,B (Xn+1)]  2↵(1 + ✏) + n(n+ 1)exp(�B̃p 4✏2

12(2+✏)2 ).
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4 Experiments

Our experimental results aim to verify the coverage properties of jackknife+-after-bootstrap
and jackknife+-with-bootstrap using di↵erent base algorithms, and to compare and contrast
their performances.

4.1 Data

We use the same three real data sets as in [Barber et al., 2019], performing the same
preprocessing steps on the data.

The Communities and Crime (Communities) data set [Redmond and Baveja, 2002]
contains information on 1994 communities with d = 99 covariates. The response Y is the per
capita violent crime rate.

The BlogFeedback (Blog) data set [Buza, 2014] contains 52397 blog posts with d = 280
covariates. The response is the number of comments left on the blog post in the following 24
hours, which we transform as Y = log(1 + #comments).

The Medical Expenditure Panel Survey 2016 (MEPS) data set (from the Agency for
Healthcare Research and Quality) is described in [Ezzati-Rice et al., 2008]. The response is a
composite score measuring use of medical services. There are 33005 data points with d = 107
covariates after the preprocessing steps following [Barber et al., 2019]. Since the distribution
of the response is highly skewed, we use the transformation Y = log(1 + utilization score).

4.2 Setup and Procedures

In all experiments, we fixed ↵ = 0.1 for a target coverage level of 90%. In each of 10
trials, a fixed n = 200 number of points were randomly sampled without replacement from
the whole data set, and were used to train both the jackknife+-after-bootstrap and the
jackknife+-with-bootstrap. We ran the jackknife+-after-bootstrap (Algorithm 2) with mean
aggregation and jackknife+-with-bootstrap (Algorithm 4)using sampling with replacement.
We varied m, the size of each bootstrap replicate, from m = 0.1n to m = n with an increment
of 0.1n. Fixing B̃ = 200, a total of B ⇠ Binomial(B̃, (1� 1

n+1)
m) bootstrap replicates were

drawn at each run.
For comparison purposes, we chose the same three base regression algorithms as used in

[Barber et al., 2019] — namely, ridge regression (Ridge), random forests (RF),3 and neural
networks (NN), with the same settings as used in [Barber et al., 2019]. We do not optimize
these algorithms, as we are only interested in how the jackknife+-with-bootstrap performs
with these models, and how it compares to the jackknife+-after-bootstrap.

4.3 Results

Table 1 below displays the resulting average coverage and average interval width for each
data set and each base algorithm, where the size of each bootstrap replicate is m = n for
both methods.

3The RF base algorithm we use subsamples the features but not the observations.
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Figures 1 and 2 below show average coverage and average width, respectively, for all pairs
of base regression method (Ridge or RF or NN) and data set (Communities or MEPS or
Blog).

We remark that although the assumption-free lower-bound on the coverage is only 1�2↵ for
both the jackknife+-after-bootstrap and the jackknife+-with-bootstrap, Table 1 and Figure 1
and 2 make clear that both methods yield intervals with above or close to 1� ↵ coverage on
average. The behavior is consistent for all data sets and base regression method combinations
we consider, as well as across all m. In fact, the jackknife+-with-bootstrap significantly
overcovers above 1 � ↵ in some cases (i.e. when baselines are RF and NN), especially at
low values of m. This reflects both the possible instability of individual bootstrap estimators
trained with small numbers of training data and the ability of bagging to significantly improve
the stability of the predictive inference method.

Also noteworthy is that, unless Ridge is used as the baseline algorithm and m is close to
n, the average interval widths under jackknife+-with-bootstrap are significantly wider. This
phenomenon again shows the noisiness and instability of individual bootstrap estimators
in comparison with the bagging estimator in the context of producing e�cient predictive
intervals. Moreover, the huge di↵erences in interval widths between the two methods under
RF and NN show that their performances can be greatly improved by bagging. This point is
worth considering when choosing a baseline method. Overall, although the two predictive
method have similar computational costs in terms of number of calls to the baseline algorithm,
jackknife+-after-bootstrap as introduced in Algorithm 2 almost always produce more e�cient
and valid predictive inference intervals so it should be a preferable method to use in reality.
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Table 1: The performances of jackknife+-after-bootstrap and jackknife+-with-bootstrap
(m = n and sampling with replacement) on all data sets for di↵erent base regression methods.
(Results are averages over 10 independent training / test splits).

Data set/
Base algorithm Method Coverage (SE) Width (SE)

Communities
Ridge J+wB 0.919 (0.005) 0.507 (0.012)

J+aB 0.904 (0.005) 0.478 (0.010)
RF J+wB 0.983 (0.001) 0.782 (0.015)

J+aB 0.904 (0.007) 0.500 (0.015)
NN J+wB 0.970 (0.003) 0.781 (0.021)

J+aB 0.910 (0.012) 0.575 (0.025)
MEPS

Ridge J+wB 0.920 (0.008) 4.418 (0.055)
J+aB 0.890 (0.010) 4.195 (0.062)

RF J+wB 0.992 (0.001) 6.383 (0.091)
J+aB 0.912 (0.005) 4.108 (0.058)

NN J+wB 0.941 (0.007) 4.798 (0.086)
J+aB 0.910 (0.005) 4.473 (0.070)

Blog
Ridge J+wB 0.904 (0.007) 3.118 (0.129)

J+aB 0.895 (0.008) 2.991 (0.148)
RF J+wB 0.963 (0.004) 3.522 (0.105)

J+aB 0.902 (0.004) 2.620 (0.063)
NN J+wB 0.933 (0.005) 3.470 (0.116)

J+aB 0.896 (0.007) 3.046 (0.102)
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Coverage

Figure 1: Average coverage results on all three data sets with three di↵erent base regression
methods as m/n changes. The lines show the average, and the shaded areas show +/- one
standard error, over 10 trials. The black dash-dotted line is the 1� ↵ target coverage.
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Width

Figure 2: Average width results on all three data sets with three di↵erent base regression
methods as m/n changes. The lines show the average, and the shaded areas show +/- one
standard error, over 10 trials.
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5 Discussion

In this section, we briefly discuss around the previous experimental results, that J+aB almost
always produces more e�cient predictive inference intervals under all baselines than J+wB,
while the latter method also significantly over covers so that despite its intervals being valid,
they are not informative.

Although our main focus in this paper has been quantifying uncertainties in prediction via
producing valid predictive intervals, we can better understand why these two method behave
so di↵erently by first focusing on the greater predictive accuracy of bagged predictors over
individuals ones. In particular, [Breiman, 1996] has emphasized in his well-known paper that
theoretically and experimentally, bagging can improve predictive accuracy especially when
the baseline algorithm is unstable. In our case, when the baseline algorithm is either neural
network or random forest whose trees only subsample features, the collection of baseline
predictors µ̂b can be unstable, especially when each of them is trained with a small subset of
the available training data. In comparison, µ̂' as the bagged predictor over these baseline
predictors is much less sensitive to the perturbation of training set. We point out that such
heuristic analysis has a more formal formulation under algorithmic stability in learning theory.
For more details, one can refer to the work by [Bousquet and Elissee↵, 2002] and in this
context of analyzing predictive inference for jackknife+, by [Barber et al., 2019]

The above observation can have two potential e↵ects on the performance of J+aB and
J+wB:

First, the bagged predictor can have smaller generalization error under l2 norm. That is,
applied to Xn+1, µ̂'(Xn+1) can be closer to the underlying true value Yn+1 than µ̂b(Xn+1).
In our case, this means the center for the predictive interval for a new training data is more
accurate under the bagged predictor.

Second, the leave-one-out residuals are less prone to having extreme values under the
bagged predictor. In other words, under J+aB, the residuals Ri := |Yi� µ̂'\i(Xi)|, i = 1, . . . , n
are less likely to be unusually large. This situation happens because for any particular i,
µ̂'\i(Xi) is also closer to Yi than the prediction µ̂b(Xi) by any baseline predictor µ̂b where
i /2 Sb. As a consequence, the widths of predictive intervals under the bagged predictor are
also smaller, without sacrificing valid coverage.

Combining the first and the second part, we can intuitively understand how the greater
predictive accuracy of the bagged predictor over baseline predictors implies the empirical
observation that J+aB produces more e�cient intervals than J+wB does, without sacrificing
validity when the latter can more easily become too conservative and over covers.

6 Conclusion

We introduce and compare the jackknife+-after-bootstrap and the jackknife+-with-bootstrap,
both of which are computationally e�cient method for constructing predictive intervals
with assumption-free coverage guarantee. While the former method requires aggregation,
empirical results have shown its ability to produce more e�cient and valid methods than
the latter method without aggregation. Both methods provide mechanisms for quantifying
uncertainty in predictions which are both straightforward to implement and easy to interpret
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and can therefore be easily integrated into existing regression models. In the future, it will be
interesting to investigate various stability assumptions with which the theoretical coverage
guarantee can be closer to the 1� ↵ target level.

A Additional Proofs

A.1 Proof of Theorem 1

For completeness, we give the full details of the proof of Theorem 1; a sketch of the proof is
presented in Section 2.3.2.

Denote Algorithm 3 by Ã. We view Ã as mapping a given input {(Xi, Yi)}n+1
i=1 and

a collection of subsamples or bootstrapped samples S̃1, . . . , S̃B to a matrix of residuals
R 2 R(n+1)⇥(n+1), where

Rij =

⇢ ��Yi � µ̃'\i,j(Xi)
�� if i 6= j,

0 if i = j.

For any permutation � on {1, . . . , n+ 1}, let ⇧� stand for its matrix representation—that
is, ⇧� 2 {0, 1}(n+1)⇥(n+1) has entries (⇧�)�(i),i = 1 for each i, and zeros elsewhere. Fur-
thermore, for each subsample or bootstrapped sample S̃b = {ib,1, . . . , ib,m}, write �(S̃b) =
{�(ib,1), . . . , �(ib,m)}.

We now claim that
R

d
= ⇧�R⇧>

� , (3)

for any fixed permutation � on {1, . . . , n+ 1}. Here R is the residual matrix obtained by a
run of Algorithm 3, namely,

R = Ã
⇣
(X1, Y1), . . . , (Xn+1, Yn+1); S̃1, . . . , S̃B

⌘
.

To see why (3) holds, observe that deterministically, we have

⇧�R⇧>
� = Ã

⇣
(X�(1), Y�(1)), . . . , (X�(n+1), Y�(n+1)); �(S̃1), . . . , �(S̃B)

⌘
.

Furthermore, we have
⇣
(X1, Y1), . . . , (Xn+1, Yn+1)

⌘
d
=

⇣
(X�(1), Y�(1)), . . . , (X�(n+1), Y�(n+1))

⌘

by Assumption 1, and ⇣
S̃1, . . . , S̃B

⌘
d
=

⇣
�(S̃1), . . . , �(S̃B)

⌘

since subsampling or resampling treats all the indices the same. Finally, the subsamples or
bootstrapped samples (i.e., the S̃b’s) are drawn independently of the data points (i.e., the
(Xi, Yi)’s). Combining these calculations yields (3).

Next, given R, define a “tournament matrix” A = A(R) as

Aij =

⇢
1I [Rij > Rji] if i 6= j,

0 if i = j.
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It is easily checked that A(⇧�R⇧>
� ) = ⇧�A(R)⇧>

� , and hence (3) implies that

A
d
= ⇧�A⇧

>
� . (4)

Let S↵(A) be the set of row indices with row sums greater than or equal to (1� ↵)(n+ 1),
i.e.,

S↵(A) =

(
i = 1, . . . , n+ 1 :

n+1X

j=1

Aij � (1� ↵)(n+ 1)

)
.

The argument of Step 3 in the proof of Barber et al. [2019, Theorem 1] applies to the lifted
J+aB “tournament matrix” A, and it holds deterministically that

|S↵(A)|  2↵(n+ 1). (5)

On the other hand, if j is any index, and � is any permutation that swaps indices n+ 1 and
j, then

P
⇥
n+ 1 2 S↵(A)

⇤
= P

⇥
j 2 S↵(⇧�A⇧

>
� )
⇤
= P

⇥
j 2 S↵(A)

⇤
.

The first two events are the same, and the second equality uses (4). Thus,

P
⇥
n+1 2 S↵(A)

⇤
=

1

n+ 1

n+1X

j=1

P
⇥
j 2 S↵(A)

⇤
=

1

n+ 1
E
"
n+1X

j=1

1I
⇥
j 2 S↵(A)

⇤
#
=

E|S↵(A)|
n+ 1

 2↵.

(6)
Note that the event

⇥
n+ 1 2 S↵(A)

⇤
is exactly the event Ẽn+1, defined in Section 2.3.2. As

described in the proof sketch in Section 2.3.2 of the main paper, we can couple this lifted
event to the event En+1, also defined in Section 2.3.2 in terms of the actual jackknife+-after-

bootstrap, as follows. Let B =
PB̃

b=1 1I
⇥
S̃b 63 n + 1

⇤
, the number of S̃b’s containing only

training data, and let 1  b1 < · · · < bB  B̃ be the corresponding indices. Note that the
distribution of B is Binomial, as specified in the theorem. Now, for each k = 1, . . . , B, define
Sk = S̃bk . We can observe that each Sk is an independent uniform draw from {1, . . . , n}
(with or without replacement). Therefore, we can equivalently consider running J+aB
(Algorithm 2) with these particular subsamples or bootstrapped samples S1, . . . , SB, in which
case it holds deterministically that µ̃'\n+1,i = µ̂'\i for each i = 1, . . . , n. This ensures that
|Yn+1 � µ̃'\n+1,i(Xn+1)| = |Yn+1 � µ̂'\i(Xn+1)| and |Yi � µ̃'\i,n+1(Xi)| = |Yi � µ̂'\i(Xi)|, and
thus,

P[En+1] = P[Ẽn+1]  2↵.

Finally, as in Step 1 in the proof of Barber et al. [2019, Theorem 1], it easily follows from the
definition of ĈJ+aB

↵,n,B that if Yn+1 /2 ĈJ+aB
↵,n,B(Xn+1) then the event En+1 must occur. Indeed, if

Yn+1 /2 ĈJ+aB
↵,n,B(Xn+1), then either Yn+1 falls below the lower bound, i.e.,

nX

i=1

1I
h
Yn+1 � µ̂'\i(Xn+1) <

��Yi � µ̂'\i(Xi)
��
i
� (1� ↵)(n+ 1),

or Yn+1 exceeds the upper bound, i.e.,

nX

i=1

1I
h
Yn+1 � µ̂'\i(Xn+1) >

��Yi � µ̂'\i(Xi)
��
i
� (1� ↵)(n+ 1),
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and the above two expressions imply

nX

i=1

1I
h ��Yn+1 � µ̂'\i(Xn+1)

�� >
��Yi � µ̂'\i(Xi)

��
i
� (1� ↵)(n+ 1).

Therefore, we conclude that

P
h
Yn+1 /2 ĈJ+aB

↵,n,B(Xn+1)
i
 2↵,

thus proving the theorem.

A.2 Proof of Theorem 2

There are two essential di↵erences between this proof and the one above. The first is the
definition of the tournament matrix A and the second is the bound on E[|S↵(A)|]. Details
are given below.

Given the residual matrices R̃b, b 2 {1, . . . , B̃} with entries R̃b
ij from Algorithm 5, define

a tournament matrix A 2 R(n+1)⇥(n+1) as

Aij :=

(P
b:i,j /2S̃b

1I[R̃b
ij > R̃b

ji] i 6= j

0 i = j

Since for all b and all permutation matrices ⇧� defined under a permutation � on
{1, ..., n+ 1}

R̃b d
= ⇧�R̃

b⇧>
� ,

Our tournament matrix A still enjoys the property that

A
d
= ⇧�A⇧

>
� .

Now, by defining

S↵(A) = {i = 1, ..., n+ 1 :
n+1X

j=1,j 6=i

Aij � (1� ↵)si},

where si :=
Pn+1

j=1,j 6=i

P
b:(i,j)/2S̃b

1I, we see the event [n+ 1 2 S↵(A)] is exactly the event Ẽn+1

defined in section 3.3. Intuitively, si is the total number of comparisons between residual i
and all other residuals j, j 6= i.

On the other hand, if j is any index, and � is any permutation that swaps indices n+ 1
and j, then

P
⇥
n+ 1 2 S↵(A)

⇤
= P

⇥
j 2 S↵(⇧�A⇧

>
� )
⇤
= P

⇥
j 2 S↵(A)

⇤
,

continues to be true as before. As a consequence,

P
⇥
n+ 1 2 S↵(A)

⇤
=

E[S↵(A)]

n+ 1
.
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Finally, to bound E[S↵(A)], we mimic Step 3 of proof of Theorem 1 in Barber et al., 2019.
For each i 2 S↵(A) :

(1� ↵)si 
n+1X

j=1,j 6=i

X

b:(i,j)/2S̃b

1I{R̃b
ij > R̃b

ji} (by definition)

=
X

j2S↵(A),j 6=i

X

b:(i,j)/2S̃b

1I{R̃b
ij > R̃b

ji}+
X

j /2S↵(A)

X

b:(i,j)/2S̃b

1I{R̃b
ij > R̃b

ji}


X

j2S↵(A),j 6=i

X

b:(i,j)/2S̃b

1I{R̃b
ij > R̃b

ji}+ si �
X

j2S↵(A),j 6=i

X

b:(i,j)/2S̃b

1I

Where the last inequality holds if we fix 1I{R̃b
ij > R̃b

ji} as 1 for j /2 S↵(A) and apply the

definition of si :=
Pn+1

j=1,j 6=i

P
b:(i,j)/2S̃b

1I.
For notation simplicity, we abbreviate S↵(A) as S and let sij :=

P
b:(i,j)/2S̃b

1I to be the
number of comparisons between residuals i and j. Continue, we see that:

X

j2S,j 6=i

sij  ↵si +
X

j2S,j 6=i

X

b:(i,j)/2S̃b

1I{R̃b
ij > R̃b

ji}

Summing over i 2 S, we get

X

i2S

X

j2S,j 6=i

sij  ↵
X

i2S

si +
X

i2S

X

j2S,j 6=i

X

b:(i,j)/2S̃b

1I{R̃b
ij > R̃b

ji}

 ↵
X

i2S

si + 0.5
X

i2S

X

j2S

sij

Rearrange, we see
X

i2S

X

j2S,j 6=i

sij  2↵
X

i2S

n+1X

j=1,j 6=i

sij

Now, define smin := min(i,j)2[n+1]⇥[n+1],i 6=jsij and smax := max(i,j)2[n+1]⇥[n+1],i 6=jsij to be
the minimum and maximum number of comparisons between any two distinct pair of indices.
Then, we can give lower bound for the left hand side and upper bound for the right hand
side in the inequality above in terms of |S| as follows:

X

i2S

X

j2S,j 6=i

sij � smin|S|(|S|� 1)

2↵
X

i2S

n+1X

j=1,j 6=i

sij  2↵smax|S|[(n+ 1)� 1]

Rearrange, we see that

|S|  2↵n(
smax

smin
) (7)
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Now, to ensure smax
smin

on the right hand side of inequality (7) is close to 1, we first notice

that for each pair of distinct indices (i, j), sij :=
P

b 1{(i, j) /2 S̃b} ⇠ Binomial(B̃, (1� 2
n+1)

m).

Therefore, smax and smin are the maximum and minimum over (n+1)n
2 many possibly dependent

Binomial(B̃, (1� 2
n+1)

m) random variables.
Next, given a small ✏ > 0, we first want to show that smax

smin
 1 + ✏ () smax�smin

smin
 ✏

with high probability.
Define p := (1� 2

n+1)
m, we have each sij ⇠ Binomial(B̃, p) with mean µ = B̃p.

As a result, by defining ✏0 := ✏
1+ ✏

2
, we get

P
⇥
smax � (1 +

✏0

2
)µ
⇤
= P

⇥
9(i, j) pair s.t sij � (1 +

✏0

2
)µ
⇤


X

i,j

P
⇥
sij � (1 +

✏0

2
)µ
⇤

 n(n+ 1)

2
exp(�B̃p

✏02

12
)

where the first inequality follows by union bound and the last inequality follows by
applying Cherno↵ upper tail bound on a binomial random variable with mean µ = B̃p.

Similarly, P
⇥
smin  (1� ✏0

2 )µ
⇤
 n(n+1)

2 exp(�B̃p ✏02

12 ) by union bound and Cherno↵ lower
tail bound on the same binomial random variable.

Combine the two probability bounds, we observe that

P
⇥
smin � (1� ✏0

2
)µ, smax  (1 +

✏0

2
)µ
⇤
� 1� n(n+ 1)exp(�B̃p

✏02

12
)

which, in combination with the earlier definition of ✏0, implies that

P
⇥smax � smin

smin
>

✏0µ

(1� ✏0

2 )µ
= ✏

⇤
= P

⇥smax

smin
> 1 + ✏

⇤

< n(n+ 1)exp(�B̃p
4✏2

12(2 + ✏)2
).

Therefore,

P
⇥
|S|  2↵(1 + ✏)n

⇤
� 1� n(n+ 1)exp(�B̃p

4✏2

12(2 + ✏)2
) (8)

As a consequence, we obtain that

E[|S|] = E[|S| 1I[|S|  2↵(1 + ✏)n] + |S| 1I[|S| > 2↵(1 + ✏)n]]

 (2↵(1 + ✏)n)P
⇥
|S|  2↵(1 + ✏)n

⇤
+ (n+ 1)P

⇥
|S| > 2↵(1 + ✏)n

⇤

 (2↵(1 + ✏)n) + n(n+ 1)2exp(�B̃p
4✏2

12(2 + ✏)2
)
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where the first inequality holds by linearity of expectation and the fact that |S|  n+ 1
deterministicly and the second inequalty holds by the probability bound (8)

Combine the results, we see that

P
⇥
Yn+1 /2 ĈJ+wB

↵,n,B (Xn+1)
⇤
= P

⇥
n+ 1 2 S

⇤

=
E[S↵(A)]

n+ 1

 2↵(1 + ✏) + n(n+ 1)exp(�B̃p
✏2

3(2 + ✏)2
)

= 2↵ + �

with � := 2↵✏+ n(n+ 1)exp(�B̃p ✏2

3(2+✏)2 ).

Now, we can assume ✏  1
2↵ , as otherwise � > 1, causing P

⇥
Yn+1 /2 ĈJ+wB

↵,n,B (Xn+1)
⇤
to be

trivially bounded.

Thus, n(n+ 1)exp(� B̃p
3

✏2

(2+✏)2 )  n(n+ 1)exp(�CB̃✏2), where C = C(n,m,↵) := p
3(2+ 1

2↵ )2

is a constant.

Let ✏ :=
q

log(n(n+1)B̃)

B̃C
, we see that ✏ ! 1 as B̃ ! 1 for any fixed n.

As a consequence, as B̃ ! 1,

2↵✏ = 2↵

s
log(n(n+ 1)B̃)

B̃C
! 0

n(n+ 1)exp(�CB̃✏2) =
1

B̃
! 0

Thus,

�  2↵

s
log(n(n+ 1)B̃)

B̃C
+

1

B̃
! 0

.
Hence, P

⇥
Yn+1 /2 ĈJ+wB

↵,n,B (Xn+1)
⇤
 2↵ as B̃ ! 1

27



References

Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. Ann. Statist.,
47(2):1148–1178, 2019. doi: 10.1214/18-AOS1709. URL https://projecteuclid.org:
443/euclid.aos/1547197251.

Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. Predic-
tive inference with the jackknife+, 2019. arXiv preprint.

H. Boström, L. Asker, R. Gurung, I. Karlsson, T. Lindgren, and P. Papapetrou. Conformal
prediction using random survival forests. In 2017 16th IEEE International Conference

on Machine Learning and Applications (ICMLA), pages 812–817, 2017a. ISBN null. doi:
10.1109/ICMLA.2017.00-57.
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