
Invertible Neural Networks for Graph Prediction

Chen Xu1, Xiuyuan Cheng2, and Yao Xie1

1H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology.
2Department of Mathematics, Duke University

Abstract
In this work, we address conditional generation through

a new method called invertible graph neural network
(iGNN). During training, we revise the typically-used loss
objective in normalizing flow and consider Wasserstein-2
regularization. The framework can also address prediction
and generation through a single model. Theoretically, we
analyze the expressiveness of iGNN in learning the true
mapping. Experimentally, we show the performance of
iGNN on both simulated and real-data datasets.

1 Introduction
We are interested in the problem of finding an invert-

ible neural network g, such that given a Y subject to
Y = g(X) for an input X , we can find the correspond-
ing X = g−1(Y). This is an important question in many
domains such as molecular design [15], anomaly detec-
tion [18], and market analysis [11], where one wants to
infer the most probable features given the outcomes. This
one-to-many task is synonymous with conditional genera-
tion, where the goal is to generate X|Y based on specific
outcomes Y . There have been several streams of works,
with an abstract description presented on the left of Figure
1. Some consider conditional versions of generative ad-
versarial networks (cGAN) [14, 9], where the outcome Y
and random noise Z are both taken as inputs to the genera-
tor. More recently, the work [1] directly builds conditional
invertible neural networks (CINN) for analyzing inverse
problems. A single invertible NN is trained by minimizing
maximum mean discrepancy (MMD) losses in the latent
space Z and the original data space X . However, these
works take in the outcome Y as an additional input to the
networks, thus increasing the dimensionality of the original
problem; we will compare our iGNN with these methods
in experiments.

Therefore, although conditional generation has been a
long-standing and actively researched area, there are still
several open questions. In particular, we are concerned
with (1) how to design (graph) generative models that do

Generic NN
Linear generator&

classifier

Our approach

Invertible NN

Common Approaches

Figure 1: Abstract comparison of (several) current conditional
generative models (left) and ours (right). These current ap-
proaches inevitably increase the input and output dimensions
of the network, and because Y (target) and Z (randon noise) are
inherently independent, practical training difficulties often arise.
In comparison, our approach maintains the dimensionality of
the feature space when training an invertible NN. Details are in
Section 2.

not increase difficulties in training; (2) how to reformulate
the training objective in a natural way that also allows for
prediction. Specifically, we extend techniques in normaliz-
ing flow [3, 17, 10] with the following contributions:

1. For the training objective, our conditional generative
loss (see Eq. (1)) allows simple prediction of Y by
design and extends to graph observations, without
increasing the data dimension.

2. In network design, we impose the Wasserstein-2 reg-
ularization. In contrast to the much more expensive
spectral normalization [3], this penalty is easy-to-
implement and facilitates smoother density transport.

3. Theoretically, we show that graph neural networks
with enough (resp. insufficient) expressiveness can
(resp. cannot) learn the true invertible mapping.

4. In experiments, we show improved performance of
iGNN over competing methods on simulated and real
data. We also verify the model expressiveness results.

2 Method

Our method has three components. The first is end-to-
end training for conditional generation and prediction, all
within a single training objective. The second is the exten-
sion into graph data. The last is an effective regularization.

1

1. End-to-end training. We first consider the case where
the random feature X ∈ Rd. Given an invertible network
FΘ and additional categorical outcome variables Y ∈ [K]
for K classes, we consider the following conditional gen-
erative loss:

Lg := log pH|Y (FΘ(X)) + log |det JFΘ
(X)|, (1)

where is the change-of-variable formula of log pX|Y (X).
The term Lg denotes the generative loss to be minimized
and each H|Y is disjoint over the value of Y . Note that
conditional generation based on (1) is simple—given dif-
ferent outcomes Y , we can sample from different distri-
butions H|Y and then perform the inverse mapping F−1

Θ .
In implementation, we let H|Y be isotropic multivariate
Gaussian vectors.

While the loss in (1) may seem simple, we highlight its
benefit over the current CINN-Nflow approach [2], whose
loss is also based on the change-of-variable formula:

LCINN
g := log pZ(GΘ′(X,Y)|Z) + log |det JGΘ′ (X,Y)|,

(2)

GΘ′(X,Y) := [GΘ′(X,Y)|Y , GΘ′(X,Y)|Z].

In (2), Z denotes a standard multivariate Gaussian random
vector and GΘ is the conditional invertible neural network.
In contrast to our objective (1), the output GΘ′(X,Y) in
(2) contains predictions for both Y and Z, so that the
dimension of the original feature space is increased. In
addition, because Z and Y are inherently independent,
the conditional generative model G−1

Θ′ must transport the
uni-modal random vector Z into multiple X|Y , each of
which may be multi-modal. Both procedures increase the
difficulty in training.

In addition, our conditional formulation in (1) also al-
lows one to perform classification (e.g., estimate Y |X)
using simple classifiers. This is because by design, dis-
tributions H|Y do not overlap and H := FΘ(X) loses
no information from the feature X . We thus minimize
the classification loss using a simple linear classifier on
FΘ(X):

Lc := −eTY softmax(WcFΘ(X) + bc). (3)

Therefore, our end-to-end training objective can be written
as

min
{Θ,{Wc,bc},{Wg,bg}}

EX,Y [Lg +W2(FΘ) + µLc], (4)

which is estimated using training data. The term W2(FΘ)
will be introduced in Eq. (5) to ensure model invertibility
and smoothness in density transport. The term µ is a
parameter that controls the relative rate at which different
parameters are learnt. Figure 2 illustrates the result on a

simple simulated two-moon data. For prediction, both parts
of the two-moon data are mapped separately to disjoint
parts of the Gaussian mixture. For conditional generation,
one simply samples from the Gaussian mixture, and the
invertible map F−1

Θ generates the desired X|Y .

Figure 2: Illustration of iGNN on a toy example. We
compare X|Y vs. X̂|Y := F−1

Θ (H|Y) and H|Y vs.
Ĥ|Y := FΘ(X|Y), all of which are close.

2. On graph data. A key emphasis of our paper is
on graph data, where we currently focus on node clas-
sification and node feature generation. Given a graph
G = (V,E) with |V | = V , let X(v) ∈ RC , v = 1, . . . , V
be the node feature, and Y (v) ∈ [K] be the node label.
Denote X ∈ RV×C as the matrix of node features and
Y ∈ {1, . . . ,K}V as node labels. For training, we still
minimize the end-to-end objective in (4). However, we
further simplify Lg in (1) as:

log pH|Y (FΘ(X)) + log det JFΘ
(X)

(i)
=

V∑
v=1

î
log pH(v)|Y (v)(FΘ(X)(v))

ó
+ log det JFΘ

(X)

(ii)
=

V∑
v=1

î
log pH(1)|Y (1)(FΘ(X)(v))

ó
+ log det JFΘ(X),

where in (i), we assume independence of transported node
features, and in (ii), we further assume homogenous con-
ditional distribution H(v)|Y (v) per node. In practice, re-
quiring (ii) is important as the number of nodes is often
significantly larger than the number of node classes. Thus,
it is infeasible to specify node-dependent disjoint condi-
tional distributions H(v)|Y (v).

3. Wasserstein-2 regularization. We remark that the in-
vertible NN FΘ used in iGNN (see right of Figure 1) is
chosen as an invertible residual network [3], which is a
concatenation of residual blocks:

Fb,Θb
(x) := x+ gb,Θb

(x),

gb,Θb
:= Wbl ◦ ϕbl ◦ . . . ϕb1 ◦Wb1 ,

To ensure network invertibility, we consider the following
regularization on the movement of each residual block:

W2(FΘ) :=
1

2

B∑
b=1

∥gb,Θb
(X)∥22. (5)

Note that (5) is the Wasserstein-2 regularization [4].

2

There are several benefits of 5 compared to the spectral
normalization technique [3]. First, implementation is easy
via a single forward pass. In contrast, spectral normaliza-
tion relies on the power iteration of all weight matrices
at each training epoch. Doing so is highly expensive for
complex residual networks. In addition, the Wasserstein-
2 penalty is agnostic of the residual block design—each
block can consist of only fully-connected (FC) layers or
generic graph filters [6, 5]. In contrast, spectral normaliza-
tion is applicable when each residual block concatenates
fully-connected layers (FC) with contractive nonlinearities
(e.g., ReLU, ELU, Tanh). It can be insufficient if each
block consists of more complex structures.

3 Theory
We utilize the Fokker-Planck equation of an Ornstein-

Uhlenbeck (OU) process to establish the expressiveness
of our iGNN for Gaussian processes in two examples that
depend on graph topology. Throughout this section, we
assume that Xt ∈ Rd, where graph features Xt ∈ RV×C

can be equivalently interpreted as random vectors in RV ·C .
We reduce the problem to the construction of invertible

flow for the unconditional case. The conditional case can
be viewed as having a joint flow which coincides with each
individual flow upon restricting to the support of pX|Y . In
particular, let the desired flow transport data distribution
pX in Rd to a normal distribution pH which is N (0, Id).
The continuous-time flow is represented by an initial value
problem (IVP) of ODE

dxt

dt
= f(xt, t), (6)

with initial value x0 ∼ pX . The solution mapping xt :=
Pt(x0) for t > 0 is invertible as long as (6) is well-posed.
There may be more than one f(x, t) which induces such a
flow towards pH , and to show existence, we construct f to
correspond to the following Fokker-Planck equation of an
OU process (∇ denotes ∇x)

∂tρ = ∇ · (ρ∇V +∇ρ), V (x) =
|x|2

2
, (7)

where ρ(x, t) represents the probability density of the OU
process at time t starting from ρ(x, 0) = pX(x). Com-
paring (7) to the Liouville equation of (6), we see that the
density transportation under the flow can be made the same
as in (7) if we set the force f as

−f(x, t) = x+∇ log ρ(x, t), (8)

where x = ∇V (x). Using (8), we have the following
analytic form of f(x, t) in (8), which applies to general
vector data in Rd:

Lemma 3.1. If X0 ∼ N(0,Σ) and X∞ ∼ N(0, Id), then

f(x, t) = −(Id − Σ−1
t)x, (9)

where Σt := (1 − exp(−2t))Id + exp(−2t)Σ is the co-
variance matrix that converges to Id exponentially fast.

Proof. We only need to derive the distribution of Xt in
order to find its density function ρ(x, t). Because the Orn-
stein–Uhlenbeck process is a Gaussian process, it is evident
that Xt ∼ N(0,Σt).

By the transition probability, also known as the Green’s
function

K(X,Y ; t) := (2πσ2
t)

−d/2 exp
(
−(2σ2

t)
−1∥X − exp(−t)Y ∥22

)
,

where σ2
t := 1 − exp(−2t), we know that Xt|X0

d
=

N(0, σ2
t Id). When X0 ∼ N(0,Σ), we thus have

Xt = exp(−t)X0 + E , E ∼ N(0, σ2
t Id), X0 ⊥ E .

Hence, Σt = exp(−2t)Σ + (1− exp(−2t))Id.
As a result, ρ(x, t) ∝ exp

(
−1/2XT

t Σ
−1
t Xt

)
, with

∇X ln ρ(x, t) = −Σ−1
t Xt.

Because the force f(x, t) in (9) is linear, it can always
be approximated by residual blocks of FC layers, which
are universal approximators [8, 12].

On the other hand, assume the random vector X0 is the
concatenation of node features with Σ encoding feature
dependency. Then, it is not always true that any graph
filters can approximate Σ and thus Σ−1

t in (9) that depends
on Σ; one example that spectral-based GNN fails to do
so will be given in Example 1. In particular, we have
the following two propositions on the properties of Σt

under different assumptions of Σ. For notation consistency
with previous discussion on graph data, we change the
dimensionality d to V . For simplicity, all analyses onward
implicitly assume node features have dimension C = 1.

Case I. Spectral-based presentation of Σ: We first show
the closed-form of Σt when Σ is a polynomial expression
of the graph Laplacian L. Then spectral-based GNN can
in theory correctly approximate the true force in (9).

Proposition 3.2 (Spectral-based Σ). Denote L ∈ RV×V

as the graph Laplacian. Suppose there exists a polynomial
P such that Σ = P (L). Then

Σ−1
t =

V∑
i=1

((1−exp(−2t))+exp(−2t)P (λi(L)))
−1UiU

T
i ,

where λi(L) denotes the i-th largest eigenvalue of L =
UΛUT under eigen-decomposition.

Proof. Note that by the spectral decomposition L =

3

UΛUT and the assumption Σ = P (L), we have

Σ =

V∑
i=1

P (λi(L))UiU
T
i ,

Σt = (1− exp(−2t))IV + exp(−2t)Σ

= U [(1− exp(−2t))IV + exp(−2t)P (Λ)]UT ,

whereby the expression of Σ−1
t easily follows

The implication is that under regularity conditions on
P , there exists another polynomial Pt that can approxi-
mate Σ−1

t up to arbitrary precision. For instance, when P
denotes the Chebyshev polynomial of order k, then this
approximation can be achieved by (possibly) raising the
degree of polynomial above k.

Case II. Spatial-based presentation of Σ:
We next show that under spatial properties of Σ, Σ−1

t

satisfies similar properties and can thus be approximated by
spatial-based GNN filters such as the L3net [5]. However,
it may not be approximated by spectral-based GNN such
as Chebnet [6] as shown in Example 1.

Proposition 3.3 (Local Σ and Σ−1). Suppose Σ and Σ−1

are v1-local and v2-local, where v-locality of a covariance
matrix Σ means that Σij = 0 if node j is not in the v-
neighborhood of node i. Then Σ−1

t can be expressed by
power series of Σ or Σ−1. If the power series are truncated
at order k, Σ−1

t can be approximated by a max(kv1, kv2)-
local covariance matrix.

Proof. Recall that Σt := (1−exp(−2t))IV +exp(−2t)Σ.
We thus analyze the locality of Σt based on the magnitude
of t.

When t = 0, Σt = Σ so that Σt = Σ−1.
When t > 0, we consider two cases:

(1) Long-time: Assume exp(−2t) <= 1/2 and denote
ct := exp(−2t)/(1− exp(−2t)). Then,

Σt = (1− exp(−2t)[IV + ctΣ],

Σ−1
t = (1− exp(−2t))[

∞∑
p=0

(−1)p(ctΣ)
p], (10)

where (11) holds by the power series expansion (I +
A)−1 =

∑∞
p=0(−1)pAp if the spectral norm ρ(A) < 1.

We may assume that ρ(ctΣ) is small enough to let this
hold, especially as ct converges to zero exponentially fast.
Therefore, if Σ is v1-local, we can truncate (11) up to the
first k summands, which is at most kv1-local.

(2) Short-time: Assume exp(−2t) > 1/2. The proof is

nearly the same as in the previous case, where we have

Σt = exp(−2t)Σ[IV + c−1
t Σ−1],

Σ−1
t = exp(−2t)[

∞∑
p=0

−c−p
t Σ−(p+1)]. (11)

The remaining steps are identical to above ones.

Example 1 (Σ−1
t cannot be learned by spectral-based graph

filters). Consider a simple graph with three nodes {1, 2, 3}
and two edges {(1, 2), (2, 3)} between nodes. Self-loops
at each node are inserted. Note that the adjacency matrix
A satisfies the property πAπT = A, where π ∈ S3 is any
permutation matrix over graph nodes. Thus, any graph fil-
ter f [A] based on A satisfies πf(A)πT = f(A). However,
if Σ and π take the form

Σ :=

1 ρ 0
ρ 0 ρ1
0 ρ1 1

 , π =

0 0 1
0 1 0
1 0 0

 ,

then it is easy to see that πΣπT ̸= Σ if ρ ̸= ρ1. Therefore,
any f(A) cannot approximate Σ up to arbitrary accuracy.

Table 1: 2D non-convex node feature two-sample test
statistics between p(X|Y) and p(F̂−1(H|Y)). Statistics
are weighted by number of observations at each Y value.

MMD:
α = 0.1

MMD:
α = 1.0

MMD:
α = 5.0

MMD:
α = 10.0

Energy

iGNN 0.001 0.006 0.005 0.003 0.008
CINN-
MMD

0.003 0.012 0.011 0.007 0.020

4 Experiments
We apply iGNN on simulated and real-data experiments

and compare it with three methods: the conditional gen-
erative adversarial network (cGAN) [9], the conditional
invertible neural network trained with maximum mean dis-
crepancy (CINN-MMD) [1], and the same CINN under
the normalizing flow (CINN-Nflow) [2]. Besides visual
comparisons, we use two-sample statistics such as ker-
nel MMD [7] and the energy-based test [16] to measure
the generative performance. Overall, iGNN yields visibly
and quantitatively better performances. In addition, we
illustrate the model expressiveness result in Proposition
3.2.

Simulation on graph. We focus on node feature genera-
tion on the graph introduced in Example 1. At each node
v, features X(v) can be either convex (e.g., linear trans-
form of Gaussian vectors) or non-convex (e.g., a part of
the two-moon dataset as in Figure 2). Each node has a
binary label so that Y ∈ {0, 1}3 is a three-dimensional

4

binary vector. For iGNN, we let each of 40 residual blocks
be a concatenation of two FC layers and one L3net [5]
with neighborhood order (0, 1, 2). Table 1 shows smaller
two-sample testing statistics by iGNN over CINN-MMD,
which performs much better than both CINN-Nflow and
cGAN, whose results are thus not shown. In addition, Fig-
ure 3 shows that comparing to CINN-MMD, our method
yields better visual performances when the true conditional
distribution is non-convex.

(a) iGNN X̂|Y (b) CINN X̂|Y

Figure 3: 2D non-convex node feature visual comparison,
iGNN vs. CINN-MMD. The conditional generative perfor-
mance by iGNN tends to outperform that by CINN-MMD
under non-convexity in X .

Real graph data. We then consider the anomaly detec-
tion task on California solar data in 2017 and 2018. The
whole network has ten sensors with bi-hourly recordings.
Features Xt ∈ R10×2 denote the average of raw radiation
recordings every 12 hours in the past 24 hours, and re-
sponse vectors Yt ∈ {0, 1}10 contain the anomaly status
of each city. The first 75% (resp. res 25%) data denote
the training (resp. test) data, which have 1094 (resp. 365)
graph observations. For iGNN, we let each of 40 residual
blocks be a concatenation of two FC layers and one Cheb-
net of order 2. In particular, Figure 4 shows that when
iGNN captures the entire distributional pattern for differ-
ent X|Y , CINN-MMD fails to do so when the underlying
distribution is non-convex (see the second row in (c) or
(d)). Meanwhile, Table 2 shows that both CINN-Nflow
and cGAN yield much larger test statistics than iGNN and
CINN-MMD, indicating much poorer generative perfor-
mance.

IGNN expressiveness. We design one example according to
Proposition 3.2 to show that iGNN under graph filters that
have enough expressiveness can accurately estimate the
covariance matrix Σ of X and Id of H , hence transporting
the densities correctly. The case for Proposition 3.3 is
similar and thus omitted.

Consider the case in which Σ =
∑2

k=0 akTk(L̃), where
Tk denotes the k-th degree Chebyshev polynomial and L̃

Table 2: Solar ramping event two-sample testing statis-
tics under the same weighting scheme. CINN-Nflow and
cGAN yield much larger test statistics than iGNN and
CINN-MMD and are thus poorer. The quantitative results
by ours and CINN-MMD can be similar, but there are clear
visual differences in Figure 4

MMD:
α = 0.1

MMD:
α = 1.0

MMD:
α = 5.0

MMD:
α = 10

Energy

iGNN 0.062 0.063 0.014 0.006 0.341
CINN-
MMD

0.061 0.056 0.014 0.006 0.344

CINN-
Nflow

0.402 0.091 0.015 0.006 3.488

cGAN 0.572 0.938 0.997 1.000 3.422

is the scaled and normalized graph Laplacian. We let a0 =
0.5, a1 = 0.1, a2 = 0.5 so that Σ is positive definite with
a significant number of non-zero and large off-diagonal
entries. We consider a seven-node chordal cycle graph [13],
which is one example of expander graphs. To verify the
existence statement, we design iGNN to have 40 residual
blocks, where each residual block is a single Chebnet filter
of order two [6] mapping from R to R. Figure 5 shows
that the correlation matrices Σ and IV are both estimated
with high accuracy.

(a) iGNN X̂|Y (b) CINN X̂|Y

Figure 4: Solar ramping event, visual comparison. We
show generative performances of the 20-dimensional node
feature matrices (10 nodes × 2D features), where rows are
ordered by values of Y ∈ {0, 1}10 with top three occur-
rences. The generative performances by CINN-MMD are
poor when X|Y is non-convex in the second row.

5

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlation of X
0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlation of X
0 1 2 3 4 5 6

0

1

2

3

4

5

6

Diff. of Correlation in X

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlation of H
0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlation of H
0 1 2 3 4 5 6

0

1

2

3

4

5

6

Diff. of Correlation in H
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.10

0.05

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Figure 5: Results for the spectral-based Σ as in Proposition
3.2. Correlation matrices are estimated with high accuracy,
revealing that iGNN with enough expressiveness can be
trained to estimate the true mapping.

5 Conclusion
We proposed a general framework based on normalizing

flow for conditional generation in this work. Although our
primary focus is on graph data, the framework is general
for any Euclidean data. In particular, our techniques ad-
dress both prediction and conditional generation through a
single invertible residual neural work at once, thus allow-
ing for implementation simplicity and clarity in training.
Theoretically, we examined the expressiveness of iGNN
in learning the mapping. Experimentally, we compared
iGNN with competing conditional generative models on
simulated and real-data examples, verifying the improved
performance of iGNN, especially in high-dimensional and
non-convex graph cases.

References
[1] Ardizzone, L., Kruse, J., Wirkert, S. J., Rahner, D.,

Pellegrini, E., Klessen, R. S., Maier-Hein, L., Rother,
C., and Köthe, U. Analyzing inverse problems with
invertible neural networks. ArXiv, abs/1808.04730,
2019.

[2] Ardizzone, L., Lüth, C., Kruse, J., Rother, C., and
Köthe, U. Guided image generation with condi-
tional invertible neural networks. arXiv preprint
arXiv:1907.02392, 2019.

[3] Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud,
D., and Jacobsen, J.-H. Invertible residual networks.
In International Conference on Machine Learning,
pp. 573–582. PMLR, 2019.

[4] Bolley, F., Gentil, I., and Guillin, A. Convergence to
equilibrium in wasserstein distance for fokker–planck
equations. Journal of Functional Analysis, 263(8):
2430–2457, 2012.

[5] Cheng, X., Miao, Z., and Qiu, Q. Graph convolution
with low-rank learnable local filters. In International
Conference on Learning Representations, 2021.

[6] Defferrard, M., Bresson, X., and Vandergheynst, P.
Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in neural infor-
mation processing systems, 29, 2016.

[7] Gretton, A., Borgwardt, K. M., Rasch, M. J.,
Schölkopf, B., and Smola, A. A kernel two-sample
test. J. Mach. Learn. Res., 13:723–773, 2012.

[8] Haykin, S. Neural networks: A comprehensive foun-
dation. 1998.

[9] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-
to-image translation with conditional adversarial net-
works. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5967–5976,
2017.

[10] Kobyzev, I., Prince, S. J., and Brubaker, M. A. Nor-
malizing flows: An introduction and review of cur-
rent methods. IEEE transactions on pattern analysis
and machine intelligence, 43(11):3964–3979, 2020.

[11] Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G.
Recommender system application developments: A
survey. Decis. Support Syst., 74:12–32, 2015.

[12] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The
expressive power of neural networks: A view from
the width. In NIPS, 2017.

[13] Lubotzky, A. Discrete groups, expanding graphs
and invariant measures. In Progress in mathematics,
1994.

[14] Mirza, M. and Osindero, S. Conditional generative
adversarial nets. ArXiv, abs/1411.1784, 2014.

[15] Sánchez-Lengeling, B. and Aspuru-Guzik, A. Inverse
molecular design using machine learning: Generative
models for matter engineering. Science, 361:360 –
365, 2018.

[16] Székely, G. J. and Rizzo, M. L. Energy statistics:
A class of statistics based on distances. Journal of
Statistical Planning and Inference, 143:1249–1272,
2013.

[17] Ziegler, Z. M. and Rush, A. M. Latent normalizing
flows for discrete sequences. In ICML, 2019.

[18] Zong, B., Song, Q., Min, M. R., Cheng, W.,
Lumezanu, C., ki Cho, D., and Chen, H. Deep au-
toencoding gaussian mixture model for unsupervised
anomaly detection. In ICLR, 2018.

6

	Introduction
	Method
	Theory
	Experiments
	Conclusion

