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Abstract

Due to significant societal and environmental impacts, obtaining a more informed
understanding of wildfire activities is always important. This work uses historical
data to focus on wildfire pattern recognition, prediction, and subsequent uncertainty
quantification. We propose an interpretable and flexible marked spatio-temporal point
process model to accomplish the tasks and adopt recent advances in time-series conformal
prediction. Through extensive real-data experiments, we demonstrate the effectiveness
of our methods against competing baselines.

1 Introduction

In this paper, we specifically want to address the following three research questions for a more
informed understanding of wildfires. (i) Predict binary fire occurrences at different location and
time, given only one-class historical observations and available features. Challenges arise as data
have a complex spatio-temporal dependency. (ii) Explore interaction among different geographic
regions and feature contributions in interpretable ways. Importantly, building classifiers alone is
insufficient. (iii) Quantify uncertainty in multi-class fire size predictions by constructing prediction
sets containing true fire size variables with high probability. Doing so is largely unexplored for such
spatio-temporal data.

We tackle the questions and challenges above through the following contributions:

• We propose a marked spatio-temporal model inspired by the Hawkes process [Hawkes, 1971] for
modeling wildfire occurrences. The model only requires one-class fire occurrences as training
data to save data storage and can make binary predictions under dynamic thresholds at any
geographic location when the training data are irregularly distributed in space. In addition,
our model interpretably quantifies interactions among different regions and assesses the feature
contribution to wildfire hazards explicitly or implicitly. Lastly, the model parameters are
efficiently estimated to high accuracy using an alternating convex optimization approach, in
contrast to the more expensive expectation-maximization method [Reinhart, 2018].

• We build prediction sets for multi-class fire size classifiers using a time-series conformal
prediction method. The sets intuitively quantify uncertainty in the point predictions, where
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large sets indicate more significant uncertainty. The method is computationally efficient and
suitable for any multi-class classifier.

• Through extensive real-data experiments, we verify our models’ competitive or better perfor-
mances against other baseline methods.

1.1 Literature review

Wildfire prediction and modeling is an essential procedure for analyzing the occurrence of wildfire
events. There have many indices, such as the burning index [Schoenberg et al., 2007] and the fire
danger index [Sanabria et al., 2013] for general awareness of fire risks. Despite their popularity,
these indices often fail to account for events’ interactions. Meanwhile, regression-based approaches
[Jain et al., 2020] are more flexible and often yield satisfactory prediction results. However, their
performance can be sensitive to the number of available observations per location and thus not
applicable under arbitrary spatial granularity with a fixed amount of training data. Lastly, stochastic
point-process models [Koh et al., 2021] have been leveraged to examine the conditional fire risk
given past data and allow a deeper understanding of the underlying stochastic mechanism. However,
how to convert these probabilistic predictions into more intuitive ones (e.g., categorical prediction)
for forestry managers and utility owners remains a challenge.

Since our proposed fire occurrence model is based on the Hawkes process, we briefly survey
existing methods in a broader context. Initially proposed in [Hawkes, 1971], the Hawkes process is a
stochastic temporal point-process model for rates of events conditioning on historical ones. There
have been many extensions that take into account spatial interactions [Gabriel and Diggle, 2009]
and influences by additional features (i.e., marks) [Scargle, 2004]. Neural-network-based Hawkes
process models [Mei and Eisner, 2017a] have also been proposed for greater model expressiveness.
Despite their emerging popularity and flexibility, how to make a prediction based on rate estimates
and comparisons against predictive models have been less well studied.

We briefly survey conformal prediction, the primary tool used for constructing prediction sets
that quantify uncertainty in fire size classification. Originated in the seminal work [Shafer and
Vovk, 2008], conformal prediction has gained wide popularity for uncertainty quantification [Zeni
et al., 2020]. It is particularly appealing as the methods are distribution-free, model-agnostic, and
easily implementable. The only assumption is that observations are exchangeable (e.g., i.i.d.). On
a high level, conformal prediction methods assign non-conformity scores to potential outcomes of
the response variable. The outcomes that have small non-conformity scores are included in the
prediction set. Many methods follow this logic with promising results [Romano et al., 2020, Xu and
Xie, 2021]. More recently, there have also been works that relax the exchangeability assumption
[Tibshirani et al., 2019, Barber et al., 2022], but time-series conformal prediction methods are still
limited, and their applications to wildfire predictions remain largely unexplored.

2 Method

2.1 Marked spatio-temporal Hawkes process

Suppose we have a sequence of n spatial-temporal-contextual observations (e.g., fire incidents),
where each observation consists of time, location, static location-specific marks, and dynamic marks:

xi = (ti, ui, zi,mi), i = 1, . . . , n

In particular, we require ti ∈ [0, T ] ∀i, ti < ti+1, ui ∈ {1, . . . ,K} for K locations1, zi ∈ Z ⊂ Rq,
and mi ∈ M ⊂ Rp. Common examples of the static marks zi include the road type and facility

1 For example, for fire data, we discretize the total space into K disjoint regions
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infrastructure, which are fixed in a given location k. Hence, each static mark can be equivalently
denoted as zk. Meanwhile, dynamic marks mi such as current weather and season only depend on
time and location, so that they can be denoted as mtk.

We model these event data using a marked spatio-temporal Hawkes processes. In particular,
given the σ-algebra Ht that denotes all historical fire occurrence before time t, the conditional
intensity function of the Hawkes process is the probability of an event occurring at time t and
location k, with current mark m := {mtk, zk}:

λ(t, k,m|Ht) = lim
∆t,∆u→0

E [N([t, t+ ∆t)×B(u,∆u)×B(m,∆m) | Ht]
∆t×B(u,∆u)×B(m,∆m)

, (1)

where B(a,∆a) is a ball centered at a with radius ∆a and N is the counting measure. The ball
around u, which is a discrete integer, is around the actual geographic location in longitude and
latitude which u represents.

For notation simplicity, we drop Ht in (1) from now on. A common way to express (1) is

λ(t, k,m) = λg(t, k)f(m|t, k) = (f(k) +
∑
j:tj<t

f(uj , k, tj , t))f(mtk, zk), (2)

which factors the conditional intensity into product of ground process λg(t, k) and conditional
density f(m|t, k). In (2), f(k) is the baseline intensity, f(uj , k, tj , t) measures spatial and temporal
influence from event happening at tj in uj till current time t, and f(mtk, zk) measures the influence
of marks on current density. In practice, we may assume minimal contribution from fire incidents
long ago in the past, so that we can also truncate

∑
j:tj<t

to most recent events.

In general, functions f(k), f(uj , k, tj , t), and f(mtk, zk) can take many forms [Xu and Schoenberg,
2011, Mei and Eisner, 2017b]. Such choices often depend on the application of interest. For
computation simplicity and model interpretability, In this work, we parametrize λg(t, k) in (2) as

f(k) = δk, f(uj , k, tj , t) = αuj ,kβe
−β(t−tj), (3)

where β̃ = {δ, A, β}, δ = {δk}Kk=1, A = [αi,j ]
K
i,j=1is the set of parameters with dimension κ =

K+K2 +1. As we shall see, parametrizations in (3) are interpretable and yield a convex optimization
problem that can be efficiently solved.

The choice of f(mtk, zk) is more flexible. We consider two approaches in the experiments:

f(mtk, zk) = dTmtk + θT zk (ExplicitSTHawkes) (4)

f(mtk, zk) = f̂(mtk, zk) (ImplicitSTHawkes), (5)

where (4) (resp. (5)) explicitly (resp. implicitly) parametrizes the effect of marks on fire risk;
together with (3), we hence name this parametrization of λ(t, k,m) ExplicitSTHawkes (resp.
ImplicitSTHawkes). Note that ExplicitSTHawkes based on (4) is more interpretable because each
estimate has a specific physical meaning, which as we will show, can also be accurately estimated via
convex optimization. On the other hand, ImplicitSTHawkes is more flexible due to the choice of
feature extractors and the form of input features. We will compare both formulations in experiments.
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2.2 Parameter estimation and prediction

Based on [Reinhart, 2018], we can derive and simplify the log-likelihood of x1, . . . , xn as follows:

l(β̃) =

n∑
i=1

log(λg(ti, ui)) +

n∑
i=1

log(f(mi|ti, ui))−
K∑
k=1

∫ T

0
λg(τ, k)dτ

=
n∑
i=1

log(δui +
∑
j:tj<ti

αuj ,uiβe
−β(ti−tj)) +

n∑
i=1

log(f(mi|ti, ui))−
K∑
k=1

Tδk −
n∑
i=1

(
K∑
k=1

αui,k)(1− e
−β(T−ti)).

(6)

Algorithm 1 Location-wise Dynamic Threshold
Selection

Require: Estimates {λ̂(t, k,m)}Tt=1, Hyperpa-
rameters {τk,min, τk,max, ηk, δk, a1k, a2k}, and
true anomalies {Ytk ∈ {−1, 1}}Tt=1, revealed
individually after each prediction.

Ensure: Decision thresholds {τtk}Tt=1, anomaly
estimates {Ŷtk}Tt=1 where −1 (resp. 1) indi-
cates normal (resp. anomaly)

1: Define Π(x) := arg min
τ∈[τk,min,τk,max]

(τ − x)2.

2: τ1k := τk,min and Ŷ1k = 1 if λ̂(1, k,m) > τ1k.

3: if Ŷ1k 6= Y1k then
4: τ2k := max(Π(τ1k + ηkŶ1k, λ̂(1, k,m)/a1k)
5: end if
6: for t = 2, . . . , T do
7: ∆tk := |(λ̂(t, k,m)− λ̂(t− 1, k,m))/λ̂(t−

1, k,m)|
8: if ∆tk ≥ δk and λ̂(t, k,m) > τtk then
9: Ŷtk = 1

10: if Ŷtk 6= Ytk then
11: τtk := max(Π(τt−1,k + ηkŶtk), λ̂(t−

1, k,m)/a1k)
12: end if
13: end if
14: if λ̂(t, k,m) ≤ λ̂(t− 1, k,m)/a2k then
15: τtk := λ̂(t, k,m).
16: end if
17: end for

Note that the effect of marks de-couples from
the rest. Thus, when using ImplicitSTHawkes

based on (5), we first fit a feature extractor on
the past mark data and then use maximum likeli-
hood estimation to estimate the rest parameters.
On the other hand, for ExplicitSTHawkes, we
directly substitute (4) into (6) and solve the
following maximization problem, which also in-
cludes l1 regularizations on parameters θ and
d for sparsity and feature selection. Note β̃ :=
{δ, θ, A, β, d} contains all model parameters.

min
β̃

−l(β̃) + ‖θ‖1 + ‖d‖1 (7)

s.t. αi,j = 0 if |i− j| ≥ τ (8)

‖δ‖2 ≤ 1, ‖θ‖2 ≤ 1, ‖A‖2 ≤ 1, ‖d‖2 ≤ 1
(9)

β ≥ 0, δ ≥ 0 (10)

We briefly explain the intention of including
constraints (8)—(10). Constraint (8) introduces
sparsity in the interaction matrix, reduce the
total number of parameters in the model for com-
putationally efficiency. Constraint (9) ensures
the objective (7) is bounded and is reasonable
since the rate λ(t, k,m) is typically very small.
Constraint (10) is introduced since baseline rates
(i.e. δ) and interaction propagation over time
(i.e. β) are non-negative.

In addition, note that the log-likelihood l(β̃)
is concave in all parameters except the scalar β. Thus, we can solve the optimization problem in
(7) iteratively and efficiently using convex optimization solvers [Diamond and Boyd, 2016] to high
numerical accuracy. The alternating approach empirically terminates in a very small number of
iterations (e.g., three) and each iteration only takes a few seconds to minutes, depending on problem
size. Hence, it is computationally friendly.

Lastly, Algorithm 1 constructs dynamic thresholds based on the value of rate estimates λ̂(t, k,m)
to predict the binary outcomes—whether or not there is a fire incident on day t with mark m at
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location k. This is motivated by the hedging algorithm [Raginsky et al., 2012, Algorithm 4]. In
particular, we observe that rate estimates λ̂(t, k,m) have clear seasonality (e.g., sharp drop from
summer to fall and sharp rise from spring to summer), while fire incidents often occur when rate
estimates suddenly increase on certain days. Figure 2a illustrates performance of our model based
on the observations above.

2.3 Confident fire size classification

Besides predicting when and where fire occurs, fire size prediction is also desirable and valuable
—knowing the possible fire sizes can better inform people of potential losses brought by such disasters
and plan accordingly. More formally, this is a classification problem where given features Xt ∈ Rp,
one builds a mutli-class classifier that outputs Ŷt ∈ {1, . . . , C} as the point prediction out of C classes.
However, point predictions are often insufficient in such settings—there are inherent uncertainties in
these predictions due to randomness in data or the training of classifiers. Incorrect point predictions
in such settings are often consequential—for example, if most people who might be affected by fire
hazards believe in the point prediction of a small fire incident and thus ignore proper precaution,
the actual occurrence of a large fire incident can be disastrous.

Therefore, a confident fire size prediction that quantifies point predictions’ uncertainties is
essential. One way for uncertainty quantification in classification is the construction of prediction
sets around Ŷt that contain actual observations Yt with high probability before its realization.
Formally, given a significance level α, we construct a prediction set Ĉt(Xt|α) ⊂ {1, . . . , C} such that

P(Yt ∈ Ĉt(Xt|α)) ≥ 1− α. (11)

A set satisfying (11) thus confidently predicts the actual fire size Yt with high probability. Note
that a trivial construction that always satisfies (11) is Ĉt(Xt|α) = {1, . . . , C}, so we also want the
prediction set to be as small as possible. Constructing such sets is challenging because fire incidents
are highly correlated and non-stationary, and classifiers can be very complex (e.g., neural network
classifiers).

To build prediction sets that satisfy (11) in practice, we produce uncertainty sets using recent
advances in conformal prediction. In particular, we adopt the ERAPS algorithm in [Xu and Xie,
2022], as it can build prediction sets for time-series data and works for arbitrarily complex classifiers.
On a high level, ERAPS assigns non-conformity scores to each possible fire size and includes in the
prediction set fire sizes whose non-conformity scores are small compared to past ones.

3 Real-data experiments

We apply methods in the previous section to analyze 2014-2019 fire data in California, United
States. The experiment is organized as follows. Section 3.1 starts with a small region to compare
ExplicitSTHawkes with competing baselines. Section 3.2 presents results on a large region to
demonstrate the scalability of our Hawkes process model. Section 3.3 builds prediction sets for fire
size classification using ERAPS.

We briefly describe the dataset and evaluation metrics. The dataset contains 2014–2019 fire
incident data collected by the California Public Utilities Commission.2 A total of 3191 incidents
are recorded. Each incident is provided with additional information, which we call marks from
now on. Marks can be classified as discrete/continuous and dynamic/static. All discrete marks
are one-hot encoded to be utilized in the model. Static marks do not change at a given location
(e.g., existing vegetation types). Dynamic marks include meteorological season, fire threat zone,
fire potential index, large fire probability, etc. Out of all dynamic continuous marks, we select

2 California Public Utilities Commission (CPUC), available at https://www.cpuc.ca.gov/wildfires/
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the temperature, relative humidity, fire probability index (FPI), large fire probability (LFP), and
pressure for prediction. We interpolate missing entries of each feature using the spline function with
degree 5. Each feature is then standardized to have unit variance and zero mean and further scaled
to lie within the interval [0, 1] so that estimated parameters for different marks are on the same
scale. The unit for time t is in days, allowing fractional values as the exact hour and minutes are
recorded when fires occurred. Regarding evaluation metrics, we use the F1 score for assessment,
which is a standard metric for classification when data are imbalanced—note that the number of no
occurrence of fire incidents (denoted as 0) significantly outweighs the other (denoted as 1).

3.1 A small-scale example

We first focus on a small region because the distribution of fire incidents within the region and
the performance of our model can be visualized clearly. The model is trained with incidents between
2014 and 2017 and examined on data in 2018. There were 238 fire occurrences in 2014-2017 and 70
in 2018. Upon consulting domain experts, we set the sides of discretized cells to be 0.24-degrees in
both longitude and latitude directions so that a total of 36 non-overlapping cells cover the region.
Figure 1 visualizes both the training and validation data, from which it is clear that the validation
data have a much less number of actual fires; only a few grids have wildfires that occurred near
them.

0.08
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0.04

0.02

0.00

0.02

0.04

0.06

0.08

Figure 1: Visualize data and grid (left)
and the estimated interaction parame-
ters (right). Interaction parameters well
model the distribution of fire incidents.

Estimated parameters. We interpret the estimated pa-
rameters of ExplicitSTHawkes. Figure 1 examines the
location-location interaction parameters αij , which is zero
if centroids of two cells exceeds 4×0.24 degrees. Values
of αij greater than (resp. less than) 0 indicate inducive
(resp. inhibitory) effect from nearby and past events. The
distribution of interaction effects closely aligns with the
actual data in Figure 1. Table 1 shows the estimated
parameters for marks, whose magnitude indicates feature
importance. Recall θ (resp. d) measures the effect of static
(resp. dynamic) marks on fire risks—higher magnitude of
estimates contribute more significantly to the growth of
fire risk. Noticeably, the top two features in d (excluding
summer) are also factors in defining the Fire Danger Index,
which is one of the most commonly used indexes for fire hazard monitoring3. Therefore, the model
estimates are physically meaningful.

In addition, we can perform counterfactual analyses using the estimated parameters: suppose
a decision-maker wants to know the increase in risk when an external condition changes from A
to B (e.g., Fire tier zone shift, changes in vegetation types, etc.). Then, the change in risk at a
certain location and time is ∆(A,B) := λ(t, k, B)− λ(t, k, A). Similar analyses can be performed
for a change in location from k to k1. Such analyses can help one better study the effect of different
factors on fire risks, making risk management more effective.

Prediction results. Figure 2 shows the trajectory of rate prediction by ExplicitSTHawkes on top of
days of actual incidents, where the dynamic thresholds are described in Algorithm 1. We have several
takeaways. First, sharp increases in predicted fire risks tend to occur near true fire events. Second,
the sparsity of fire occurrence at different locations can significantly impact prediction—patterns
of fire occurrences in Figure 2b (resp. Figure 2c) are the easiest (resp. most challenging) for our
model to accurately. We suspect this difference occurs likely because of the difficulty in capturing
3 http://learnline.cdu.edu.au/units/env207/fundamentals/weather.html
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Top 3 Largest Estimates Bottom 3 Smallest Estimates

θ estimate 0.301 0.231 0.184 0.046 0.024 0.008
θ feature name Fire Tier1 Fire Tier2 Fire Tier3 PHYS=Developed-Roads PHYS=Conifer PHYS=Developed

d estimate 0.57 0.472 0.46 0.217 0.117 0.02
d feature name Summer Temperature Relative Humidity LFP Spring Winter

Table 1: Estimated static and dynamic mark parameters in ExplicitSTHawkes. Larger magnitude
indicates more contribution of the feature to fire hazards.

distribution shift in the data, which is reflected in the emergence of fire occurrence at a specific
location with no previous fire incidents. In practice, one may better adapt to distribution shifts and
handle data non-stationarity by refitting the model parameters.

Winter Spring Summer Fall
0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

Threshold
Risks when model predicts fire

Risks when model predicts no fire
Actual Days when fire happens

(a) A few fire incidents exist

Winter Spring Summer Fall

0.04

0.02

0.00

0.02

0.04

(b) No fire incidents exist

Winter Spring Summer Fall

0.04

0.02

0.00

0.02

0.04

(c) Few fire incidents exists

Figure 2: Predicted fire risks and fire incidents on top of actual incidents and dynamic thresholds.
The pattern of fire incidents directly relates to the difficulty in prediction: it is the easiest (resp.
hardest) when zero (resp. few) fire incidents exist, as shown in Figure 2b (resp. Figure 2c). When a
non-trivial number of fire incidents exist as in Figure 2a, the prediction by ExplicitSTHawkes can
closely match that of the actual data.

We also compare ExplicitSTHawkes with several one-class classification baselines. We choose
isolation forest [Liu et al., 2008], one-class SVM [Chang and Lin, 2011], local outlier factor [Breunig
et al., 2000], and elliptic envelope [Rousseeuw and van Driessen, 1999] due to their popularity
and generality. These classifiers use the same data as ExplicitSTHawkes, including static and
dynamic marks. Figure 3 visualizes the histograms of F1 scores by each method and the map of
precision, recall, and F1 score by ExplicitSTHawkes. The top row shows that ExplicitSTHawkes
outperforms competing methods by yielding less zero F1 scores and more one F1 scores. Note
that zero (resp. one) F1 scores appear at locations that are the easiest (resp. hardest) to predict
discussed earlier. In addition, ExplicitSTHawkes can yield non-trivial fractional F1 scores at other
locations by capturing a decent number of true positives. Nevertheless, our model also yields many
zero F1 scores because the task is inherently challenging: it makes 365 daily predictions at each of
36 locations, in a total of 13140 predictions, when there are only 70 actual fire occurrences across all
36 locations. The bottom row in Figure 3 plots F1 score, recall, and precision. Clearly, the pattern
of such metrics matches the difficulty of prediction at each grid.

3.2 Large-scale occurrence modeling

We now show that our point-process models are scalable to a large region with much more fire
incidents. The setup and hyperparameter choices are the same as Section 3.1. There are a total of
2011 fire occurrences in this region, comprising 63% total wildfire incidents in California from 2014
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Figure 3: Small-region data, comparison across methods. Histograms of F1 scores over all locations
show that our ExplicitSTHawkes outperform other methods by yielding fewer zero F1 scores, a
moderate number of fractional F1 scores, and more one F1 scores.

to 2019. Figure 4 visualizes fire incidents within the region on map, which is discretized into 453
grids with side lengths equal to 0.24 degree. We remove regions that lie inside the ocean. Most
grids have no fire in the 5-year horizon since fires seem to cluster near the coastal line with large
populations.
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Figure 4: Data visualization. Left figure
shows fire events colored by season, and
right figure visualizes the interaction ma-
trix parameters αij .

Figure 5 compares ImplicitSTHawkes (under one-
class SVM), ExplicitSTHawkes, IForest, and OneClassSVM.
ImplicitSTHawkes performs better than both the
ExplicitSTHawkes and the isolation forest by yielding
more non-zero F1 scores and a large number of F1 scores
being one. Due to its flexible feature extractor, the
ImplicitSTHawkes is also competitive against the one-
class SVM; importantly, it yields more F1 scores between
zero and one, making it more informative than the one-
class SVM on certain grids with a few fire incidents. Hence,
ImplicitSTHawkes maintains improved performance than
other models even if the number of grids significantly in-
creases. Meanwhile, the bottom row visualizes grid-wise
performance by ImplicitSTHawkes, in which most grids
with zero or near zero F1 scores likely experience a distri-
bution shift during prediction in 2019.

3.3 Fire size prediction sets

We show that prediction sets by ERAPS maintain desired coverage defined in (11) Data in
2014-2018 are training data, and data in 2019 are test data, where there are a total of five possible
sizes. Besides the dynamic marks, each feature Xtk includes the location information (i.e., longitude
and latitude), fire threat zone, and the existing vegetation type. Both the random forest classifier
(RF) and the neural network classifier (NN) are used as prediction algorithms; their setup is the
same as those in [Xu and Xie, 2022]. Figure 6 shows marginal coverage under both classifiers, where
we also compare ERAPS against a competing method SRAPS [Angelopoulos et al., 2020]. The details
of SRAPS are described in [Xu and Xie, 2022, Algorithm 1]. We have two findings. First, ERAPS
performs very similarly under both classifiers and always maintains 1− α coverage, whereas SRAPS
tends to lose coverage at different values of α. Thus, ERAPS is more robust and consistent in terms
of coverage. Second, both methods return prediction sets with almost the same sizes, but ERAPS

performs better due to its ability to maintain near 1− α coverage.
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4 Conclusion

In this work, we leverage one-class wildfire occurrence data to understand wildfire activities better.
We first focus on wildfire pattern recognition (e.g., feature importance and regional interactions)
and occurrence prediction through the proposed marked spatio-temporal point process model.
This model is efficient in data storage and parameter estimation, interpretable regarding model
formulation, and accurate for predicting occurrences against competing baselines. We then quantify
uncertainties in wildfire size prediction using recent time-series conformal predictions methods,
which form prediction sets that contain actual response variables with high probability.
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(c) Precision

Figure 5: Large-region data. The top row visualizes the trajectory of predicted risks by
ImplicitSTHawkes at one grid. The middle row compares the histograms of F1 score under
various method. The leftmost ImplicitSTHawkes has the most number of non-zero F1 scores with
many being 1. The bottom row visualizes F1 score, recall and precision of ImplicitSTHawkes on
the terrain map. Overall, ImplicitSTHawkes yields the best performance among all models.
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Figure 6: Marginal coverage and width of ERAPS and SRAPS under the random forest Classifer and
the neural network classifier.
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