
Invertible neural networks for generative
models

Chen Xu
in collaboration with Prof. Xiuyuan Cheng and Prof. Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

1 / 40



Acknowledgement
● Xu, C., Cheng, X., and Xie, Y. (2022). Invertible neural networks for

graph prediction. IEEE Journal on Selected Areas in Information Theory.

● Xu, C., Cheng, X., and Xie, Y. (2022). Invertible normalizing flow neural

networks by JKO scheme. ArXiv Preprint ArXiv:2212.14424.

(a) Prof. Xiuyuan Cheng (b) Prof. Yao Xie

Figure 1: My wonderful and supportive collaborator Prof. Xiuyuan Cheng
and advisor Prof. Yao Xie

2 / 40



Outline

Introduction (motivation, objective, and related works)

Part I: Conditional generation (method, theory, and
experiments)

Part II: Unconditional block-wise generation (method and
experiments)

Summary and extensions

3 / 40



Motivation
● Generative modeling is fundamental in statistics and machine
learning
● Statistics: Inferring and sample from the population P(X,Y ).
● Machine learning: Large-language models (e.g., ChatGPT), Image

generation (e.g., DALLE-2), etc.

(a) Prompt: “Skeleton for a good research

presentation slide in 5 bullets“.

(b) Prompt: “A PhD student intently

preparing for his research presentation in front of

a computer showing the logo GT, cartoon style“
4 / 40



Problem setup

Figure 1: General tabular data

Figure 2: Graph nodal features

Construct a shared flow to generate X ∣Y ,
where Y is categorical.
● a shared flow = one normalizing flow model

(more details later)

Part I: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.
● Achieves prediction and generation at once.

● Scalable to (large) graph data (Fig 2)

Application: inverse problem, power
system, etc...

5 / 40



Problem setup

Figure 1: General tabular data

Figure 2: Graph nodal features

Construct a shared flow to generate X ∣Y ,
where Y is categorical.
● a shared flow = one normalizing flow model

(more details later)

Part I: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.
● Achieves prediction and generation at once.

● Scalable to (large) graph data (Fig 2)

Application: inverse problem, power
system, etc...

5 / 40



Problem setup

Figure 1: General tabular data

Figure 2: Graph nodal features

Construct a shared flow to generate X ∣Y ,
where Y is categorical.
● a shared flow = one normalizing flow model

(more details later)

Part I: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.
● Achieves prediction and generation at once.

● Scalable to (large) graph data (Fig 2)

Application: inverse problem, power
system, etc...

5 / 40



Problem setup (cont.)

Figure 1:
X ∣Y ↔ Z = H ∣Y
with Y ∈ {0}.

Part II: Improve training of unconditional
normalizing flow models (i.e., single-class Y ):

● Be a part of the conditional generation pipeline

● More computational and memory efficient than

existing methods

6 / 40



Goal

1 For conditional generation, how to effectively incorporate the
categorical conditioning variable Y into the framework.
● Here, we adopt existing unconditional normalizing flow model.

2 How to improve the design and training of unconditional flow
models. Namely, X ∣Y ←→H ∣Y for single-class Y .

7 / 40



Toy Examples

Figure 1: Part I, conditional generation: parametric mixture of H ∣Y to
X ∣Y having three moons.

Figure 2: Part II, better flow model: proposed JKO-iFlow model.

8 / 40



Toy Examples

Figure 1: Part I, conditional generation: parametric mixture of H ∣Y to
X ∣Y having three moons.

Figure 2: Part II, better flow model: proposed JKO-iFlow model.

8 / 40



Related works

Traditional generative models: Hidden markov models [Baum

and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...
Challenges: model assumption and specification, performance
in high dimension.

Deep Generative models using neural networks (NN):
GAN [Goodfellow et al., 2014, Mirza and Osindero 2015, Gulrajani

et al., 2017, ...], VAE [Kingma and Welling 2014, 2019, ...]

Challenges: mode collapse and vanishing gradients [Salimans et

al., 2016], posterior collapse [Lucas et al., 2019], and so on.
Neither GAN nor VAE provides explicit data density.

9 / 40



Related works

Traditional generative models: Hidden markov models [Baum

and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...
Challenges: model assumption and specification, performance
in high dimension.

Deep Generative models using neural networks (NN):
GAN [Goodfellow et al., 2014, Mirza and Osindero 2015, Gulrajani

et al., 2017, ...], VAE [Kingma and Welling 2014, 2019, ...]

Challenges: mode collapse and vanishing gradients [Salimans et

al., 2016], posterior collapse [Lucas et al., 2019], and so on.
Neither GAN nor VAE provides explicit data density.

9 / 40



Related works (cont.)

NN-based conditional generation: conditional GAN [Mirza and

Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al., 2019(a)(b), 2020, 2021]

Challenges: concatenated input (Y,Z) into the generator,
restricted form of invertible NN.

Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

Neural SDE-based: score-based generative models [Song and

Ermon, 2019, Song et al., 2021, Boffi & Vanden-Eijnden, 2022],
Challenges: efficient and accurate sampling of SDE trajectory,
difficulty in learning the score at all t ∈ [0, T ].

10 / 40



Related works (cont.)

NN-based conditional generation: conditional GAN [Mirza and

Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al., 2019(a)(b), 2020, 2021]

Challenges: concatenated input (Y,Z) into the generator,
restricted form of invertible NN.

Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

Neural SDE-based: score-based generative models [Song and

Ermon, 2019, Song et al., 2021, Boffi & Vanden-Eijnden, 2022],
Challenges: efficient and accurate sampling of SDE trajectory,
difficulty in learning the score at all t ∈ [0, T ].

10 / 40



Related works (cont.)

NN-based conditional generation: conditional GAN [Mirza and

Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al., 2019(a)(b), 2020, 2021]

Challenges: concatenated input (Y,Z) into the generator,
restricted form of invertible NN.

Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

Neural SDE-based: score-based generative models [Song and

Ermon, 2019, Song et al., 2021, Boffi & Vanden-Eijnden, 2022],
Challenges: efficient and accurate sampling of SDE trajectory,
difficulty in learning the score at all t ∈ [0, T ].

10 / 40



Contributions

1 Conditional generation: Propose a general X ∣Y framework for
categorical Y
● Compatible with existing flow models.
● Scalable to high-dimensional data, such as graphs.
● Incorporate prediction and generation at once.

2 Normalizing flow: Introduce step-wise training of each
invertible residual block
● Memory and computationally efficient.
● Easier training and simpler design than non-invertible models
– Examples: score-matching, variational formulation.
● Invertibility also allows uncertainty quantification.

11 / 40



Contributions

1 Conditional generation: Propose a general X ∣Y framework for
categorical Y
● Compatible with existing flow models.
● Scalable to high-dimensional data, such as graphs.
● Incorporate prediction and generation at once.

2 Normalizing flow: Introduce step-wise training of each
invertible residual block
● Memory and computationally efficient.
● Easier training and simpler design than non-invertible models
– Examples: score-matching, variational formulation.
● Invertibility also allows uncertainty quantification.

11 / 40



Background (unconditional)
Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N(0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

● Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the

Fokker-Planck equation.

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

● Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009]).

Normalizing flow models learn f using neural networks.

12 / 40



Background (unconditional)
Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N(0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

● Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the

Fokker-Planck equation.

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

● Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009]).

Normalizing flow models learn f using neural networks.

12 / 40



Background (unconditional)
Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N(0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

● Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the

Fokker-Planck equation.

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

● Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009]).

Normalizing flow models learn f using neural networks.

12 / 40



Background (unconditional)
Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N(0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

● Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the

Fokker-Planck equation.

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

● Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009]).

Normalizing flow models learn f using neural networks.

12 / 40



Part I: Generative modeling for X ∣Y
Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible neural
networks for graph prediction. IEEE Journal on Selected Areas in
Information Theory.

13 / 40



Method

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Y Ð→←ÐH ∣Y specification:

H ∣Y = k ∼ N(µk, σ
2Id).

g part: trainable parameter {µk} with log-barrier.

f part: cross-entropy classification loss (easy to train)

14 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Y
gÐ→H ∣Y on graph:

Challenge: ∣Y ∣ =KV , high-dimensional H ∣Y ∈ Rd′V .
● Example: number of nodes V = 500,K = 2, d′ = 2.

Factorized idea:

p(H ∣Y ) =
V

∏
v=1

p(Hv ∣Yv),Hv ∣Yv ∼ N(µYv , σ
2Id′)

● Separation in Rd′ (
√
log(KV ) apart) enforces separation in Rd′V .

Computation: use GNN layers in X ∣Y ↔H ∣Y .

15 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Y
gÐ→H ∣Y on graph:

Challenge: ∣Y ∣ =KV , high-dimensional H ∣Y ∈ Rd′V .
● Example: number of nodes V = 500,K = 2, d′ = 2.
Factorized idea:

p(H ∣Y ) =
V

∏
v=1

p(Hv ∣Yv),Hv ∣Yv ∼ N(µYv , σ
2Id′)

● Separation in Rd′ (
√
log(KV ) apart) enforces separation in Rd′V .

Computation: use GNN layers in X ∣Y ↔H ∣Y .

15 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Y
gÐ→H ∣Y on graph:

Challenge: ∣Y ∣ =KV , high-dimensional H ∣Y ∈ Rd′V .
● Example: number of nodes V = 500,K = 2, d′ = 2.
Factorized idea:

p(H ∣Y ) =
V

∏
v=1

p(Hv ∣Yv),Hv ∣Yv ∼ N(µYv , σ
2Id′)

● Separation in Rd′ (
√
log(KV ) apart) enforces separation in Rd′V .

Computation: use GNN layers in X ∣Y ↔H ∣Y .
15 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

H ∣Y ←→X ∣Y formulation:

Residual network/block xl+1 = F (xl; θl) = xl + f(xl; θl)
● Euler approximation of ODE dx(t)/dt = f(x(t), t)

Conditional log-likelihood via change-of-variable:

log pX ∣Y (X) = log pH ∣Y F (X; θ) + log ∣detJF (X)∣

● log det evaluation [Chen et al., 2020].

● Generation X ∣Y from H ∣Y via fixed-point iteration [Behrmann et

al., 2019]

16 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

H ∣Y ←→X ∣Y formulation:

Residual network/block xl+1 = F (xl; θl) = xl + f(xl; θl)
● Euler approximation of ODE dx(t)/dt = f(x(t), t)
Conditional log-likelihood via change-of-variable:

log pX ∣Y (X) = log pH ∣Y F (X; θ) + log ∣detJF (X)∣

● log det evaluation [Chen et al., 2020].

● Generation X ∣Y from H ∣Y via fixed-point iteration [Behrmann et

al., 2019]

16 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

H ∣Y ←→X ∣Y formulation:

Transport cost/W2 regularization: W = ∑L
l=1 ∥f(X; θl)∥2

● In theory, ensures invertibility via L→∞ and the smoothness
of the transport-cost regularized continuous-time flow.
● In practice, achieves invertibility even for small L (i.e., L = 5).

● Benefits over spectral normalization (smooth trajectory and
computation).

17 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

H ∣Y ←→X ∣Y formulation:

Transport cost/W2 regularization: W = ∑L
l=1 ∥f(X; θl)∥2

● In theory, ensures invertibility via L→∞ and the smoothness
of the transport-cost regularized continuous-time flow.
● In practice, achieves invertibility even for small L (i.e., L = 5).
● Benefits over spectral normalization (smooth trajectory and
computation).

17 / 40



Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Final objective (averaged over n pairs of (Xi, Yi)):

min
θ,θc
Lg + Lc + γW.

● Lg denotes the negative log-likelihood of (Xi, Yi).
● Lc denotes cross-entropy loss in estimating Yi∣Xi.
● W denotes the W2 regularization of blocks fl, l = 1 . . . , L, under
penalty γ > 0.

18 / 40



Theoretical analyses (Flow on graph)

Consider x(0) ∼ N(0,Σ),Σ ∈ RV ×V is PSD and invertible.

We can show f(x, t) = Ttx, with Tt depends on Σ,Σ−1.

Under assumptions on Σ,Σ−1, we have:
(Spectral)1 ∥Tt − pt(L)∥2 ∈ O(exp{−n}).
(Spatial)2 ∥Tt −∑n+1

k=0 ck(t)Bk∥2 ∈ O(exp{−n}).
Expressiveness of GNN: there exists Σ with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).
● In other words, residual blocks with GNN layers lacking

expressiveness can never generate X ∣Y on graph as desired.

Theoretical details and additional results in [Xu et al., 2022]

1pt(L) is a polynomial with degree at most n.
2Bk are local filters with locality depending on that of Σ,Σ−1.

19 / 40



Theoretical analyses (Flow on graph)

Consider x(0) ∼ N(0,Σ),Σ ∈ RV ×V is PSD and invertible.

We can show f(x, t) = Ttx, with Tt depends on Σ,Σ−1.

Under assumptions on Σ,Σ−1, we have:
(Spectral)1 ∥Tt − pt(L)∥2 ∈ O(exp{−n}).
(Spatial)2 ∥Tt −∑n+1

k=0 ck(t)Bk∥2 ∈ O(exp{−n}).
Expressiveness of GNN: there exists Σ with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).
● In other words, residual blocks with GNN layers lacking

expressiveness can never generate X ∣Y on graph as desired.

Theoretical details and additional results in [Xu et al., 2022]

1pt(L) is a polynomial with degree at most n.
2Bk are local filters with locality depending on that of Σ,Σ−1.

19 / 40



Theoretical analyses (Flow on graph)

Consider x(0) ∼ N(0,Σ),Σ ∈ RV ×V is PSD and invertible.

We can show f(x, t) = Ttx, with Tt depends on Σ,Σ−1.

Under assumptions on Σ,Σ−1, we have:
(Spectral)1 ∥Tt − pt(L)∥2 ∈ O(exp{−n}).
(Spatial)2 ∥Tt −∑n+1

k=0 ck(t)Bk∥2 ∈ O(exp{−n}).

Expressiveness of GNN: there exists Σ with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).
● In other words, residual blocks with GNN layers lacking

expressiveness can never generate X ∣Y on graph as desired.

Theoretical details and additional results in [Xu et al., 2022]

1pt(L) is a polynomial with degree at most n.
2Bk are local filters with locality depending on that of Σ,Σ−1.

19 / 40



Theoretical analyses (Flow on graph)

Consider x(0) ∼ N(0,Σ),Σ ∈ RV ×V is PSD and invertible.

We can show f(x, t) = Ttx, with Tt depends on Σ,Σ−1.

Under assumptions on Σ,Σ−1, we have:
(Spectral)1 ∥Tt − pt(L)∥2 ∈ O(exp{−n}).
(Spatial)2 ∥Tt −∑n+1

k=0 ck(t)Bk∥2 ∈ O(exp{−n}).
Expressiveness of GNN: there exists Σ with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).
● In other words, residual blocks with GNN layers lacking

expressiveness can never generate X ∣Y on graph as desired.

Theoretical details and additional results in [Xu et al., 2022]

1pt(L) is a polynomial with degree at most n.
2Bk are local filters with locality depending on that of Σ,Σ−1.

19 / 40



Theoretical analyses (Flow on graph)

Consider x(0) ∼ N(0,Σ),Σ ∈ RV ×V is PSD and invertible.

We can show f(x, t) = Ttx, with Tt depends on Σ,Σ−1.

Under assumptions on Σ,Σ−1, we have:
(Spectral)1 ∥Tt − pt(L)∥2 ∈ O(exp{−n}).
(Spatial)2 ∥Tt −∑n+1

k=0 ck(t)Bk∥2 ∈ O(exp{−n}).
Expressiveness of GNN: there exists Σ with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).
● In other words, residual blocks with GNN layers lacking

expressiveness can never generate X ∣Y on graph as desired.

Theoretical details and additional results in [Xu et al., 2022]

1pt(L) is a polynomial with degree at most n.
2Bk are local filters with locality depending on that of Σ,Σ−1.

19 / 40



Experiments–simulation

● No graph, imbalanced X ∣Y samples

Figure 1: Three-moon dataset, Y ∈ {0,1,2}

20 / 40



Experiments–simulation (cont.)

● Small-graph (expressiveness of GNN layers)
● Takeaway: Due to symmetry in the graph design, Chebnet lacks
expressiveness when L3Net correctly generates.

Figure 1: Spectral vs. spatial layer comparison: The graph has three
nodes with binary nodal labels and 2D nodal features.

21 / 40



Experiments–simulation (cont.)
● Large graph with Gaussian X ∣Y
● Takeaway: The closeness between estimated and true covariance
matrices restricted to subgraphs reflect the ability of iGNN to
generate X ∣Y .

Figure 1: A chordal graph with 503 nodes with binary nodal labels and 2D
nodal features. Due to high-dimensionality of X ∣Y , we visualize
covariances of sub-graphs using true and generated samples.

22 / 40



Experiments–real data

● Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]

● These methods
● Either concatenate Y as additional input to Z ∼ N(0, Id)
● Or encode Y into residual blocks with special architecture (e.g.,

Real-NVP).
● Doing so increases training difficulty and yields worse

performance than iGNN.

● Datasets: Solar ramping event and traffic anomaly detection, with
V ≈ 10 or 15 nodes, binary nodal labels Yv, and two-dimensional
nodal feature Xv.

23 / 40



Experiments–real data

● Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]

● These methods
● Either concatenate Y as additional input to Z ∼ N(0, Id)
● Or encode Y into residual blocks with special architecture (e.g.,

Real-NVP).
● Doing so increases training difficulty and yields worse

performance than iGNN.
● Datasets: Solar ramping event and traffic anomaly detection, with
V ≈ 10 or 15 nodes, binary nodal labels Yv, and two-dimensional
nodal feature Xv.

23 / 40



Experiments–real data (cont.)
● Solar ramping dataset
● Takeaway: The distribution of generated X̂ ∣Y matches with that
of the true X ∣Y over difference Y .

Figure 1: Scatter plot of conditionally generated nodal features. Colors
indicate empirical variance of features over nodes, and we connect features
of same graph by light-blue lines. 24 / 40



Experiments–real data (cont.)
● Traffic anomaly detection dataset

Figure 1: Scatter plot of conditionally generated nodal features. Same
plot arrangement as in solar ramping event data.

25 / 40



Experiments–real data (cont.)

● Quantitative metrics on test data via two-sample testing methods:
MMD [Gretton et al., 2012] and Energy statistics [Székely and Rizzo

2013].

Figure 1: Quantitative metrics of empirical performances. Smaller
indicates a closer match between the empirical distributions.

26 / 40



Experiments–additional results

● Prediction in addition to conditional generation
– Achieved by the H ∣Y designs and accurate flow
● Takeaway: The value of P̂(Yi = 1∣X) approximately matches the
actual label of Yi.

Figure 1: Predicted P(Yv = 1∣X) at three different values of Y containing
graph nodal labels

27 / 40



Experiments–additional results (cont.)

● Multi-dimensional uncertainty quantification
– Achieved through invertibility of the shared flow
● Takeaway: IGNN has the potential to quantify uncertainty in
multi-dimensional prediction.

Figure 1: Uncertainty sets for three moon, based on confidence regions of
H ∣Y .

28 / 40



Part II: Improved normalizing flow framework

Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible
normalizing flow neural networks by JKO scheme. ArXiv Preprint
ArXiv:2212.14424.

29 / 40



Motivation

● Previously, IGNN uses discrete-time invertible residual networks:

F (xl; θl) = xl + f(xl; θl), x0 ∼ pX .

● In practice, continuous-time flows yield better approximation of
the ODE flow ∫ T

0 f(x(s), s)ds [Grathwohl et al., 2019, Onken et al.,

2021]

● Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

● Namely, the integral from [0, T ] is broken into a sequence of L
sub-blocks f(⋅; θl).
● Yet, challenges are
● Design: how to specify L.
● Computation: joint training of all L blocks.
● Memory: samples are flowed through all L blocks.

30 / 40



Motivation

● Previously, IGNN uses discrete-time invertible residual networks:

F (xl; θl) = xl + f(xl; θl), x0 ∼ pX .

● In practice, continuous-time flows yield better approximation of
the ODE flow ∫ T

0 f(x(s), s)ds [Grathwohl et al., 2019, Onken et al.,

2021]

● Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

● Namely, the integral from [0, T ] is broken into a sequence of L
sub-blocks f(⋅; θl).
● Yet, challenges are
● Design: how to specify L.
● Computation: joint training of all L blocks.
● Memory: samples are flowed through all L blocks.

30 / 40



Motivation

● Previously, IGNN uses discrete-time invertible residual networks:

F (xl; θl) = xl + f(xl; θl), x0 ∼ pX .

● In practice, continuous-time flows yield better approximation of
the ODE flow ∫ T

0 f(x(s), s)ds [Grathwohl et al., 2019, Onken et al.,

2021]

● Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

● Namely, the integral from [0, T ] is broken into a sequence of L
sub-blocks f(⋅; θl).

● Yet, challenges are
● Design: how to specify L.
● Computation: joint training of all L blocks.
● Memory: samples are flowed through all L blocks.

30 / 40



Motivation

● Previously, IGNN uses discrete-time invertible residual networks:

F (xl; θl) = xl + f(xl; θl), x0 ∼ pX .

● In practice, continuous-time flows yield better approximation of
the ODE flow ∫ T

0 f(x(s), s)ds [Grathwohl et al., 2019, Onken et al.,

2021]

● Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

● Namely, the integral from [0, T ] is broken into a sequence of L
sub-blocks f(⋅; θl).
● Yet, challenges are
● Design: how to specify L.
● Computation: joint training of all L blocks.
● Memory: samples are flowed through all L blocks.

30 / 40



Method
● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
p∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ).

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we derive the step-wise objective in JKO-iFlow as:

min
θk

Ex(tk)∼pk∥x(tk+1)∥
2−∫

tk+1

tk
∇⋅fθk(x(s), s)ds+

1

2h
∥x(tk+1)−x(tk)∥2,

where x(tk+1) = x(tk) + ∫ tk+1
tk

fθk(x(s), s)ds.
● Benefits are thus
– Use stopping criterion to determine number of blocks
– No sampling (e.g., SDE-based score matching [Song et al., 2021])

nor variational learning (e.g., min-max formulation [Fan et al., 2021])

31 / 40



Method
● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
p∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ).

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we derive the step-wise objective in JKO-iFlow as:

min
θk

Ex(tk)∼pk∥x(tk+1)∥
2−∫

tk+1

tk
∇⋅fθk(x(s), s)ds+

1

2h
∥x(tk+1)−x(tk)∥2,

where x(tk+1) = x(tk) + ∫ tk+1
tk

fθk(x(s), s)ds.

● Benefits are thus
– Use stopping criterion to determine number of blocks
– No sampling (e.g., SDE-based score matching [Song et al., 2021])

nor variational learning (e.g., min-max formulation [Fan et al., 2021])

31 / 40



Method
● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
p∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ).

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we derive the step-wise objective in JKO-iFlow as:

min
θk

Ex(tk)∼pk∥x(tk+1)∥
2−∫

tk+1

tk
∇⋅fθk(x(s), s)ds+

1

2h
∥x(tk+1)−x(tk)∥2,

where x(tk+1) = x(tk) + ∫ tk+1
tk

fθk(x(s), s)ds.
● Benefits are thus
– Use stopping criterion to determine number of blocks
– No sampling (e.g., SDE-based score matching [Song et al., 2021])

nor variational learning (e.g., min-max formulation [Fan et al., 2021])

31 / 40



Method (cont.)

● We further proposed reparametrization-and-refine techniques to
improve training. In short,
● Reparametrization adjusts width of intervals [tk, tk+1] to encourage

even W2 movement per block, in light of exponential convergence by JKO
theory.

● Refinement interpolates between [tk, tk+1] to increase accuracy (i.e.,

double # blocks)

Figure 1: Before and after reparametrization and refinement.

32 / 40



Method (cont.)

● We further proposed reparametrization-and-refine techniques to
improve training. In short,
● Reparametrization adjusts width of intervals [tk, tk+1] to encourage

even W2 movement per block, in light of exponential convergence by JKO
theory.

● Refinement interpolates between [tk, tk+1] to increase accuracy (i.e.,

double # blocks)

Figure 1: Before and after reparametrization and refinement.

32 / 40



Experiments–simulation
● Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al.,

2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al.,

2021], and one diffusion model [Song et al., 2021].

● Takeaway: JKO-iFlow yields a closer match of X̂ vs. X.

Figure 1: Two-dimensional datasets visualized as scatter plots.

33 / 40



Experiments–simulation (cont.)

● Benefits of reparametrization + refinement.

● Takeaway: improved performance on edges, at which we have few

samples.

Figure 1: W2 movement before and after reprametrization and refinement,
as well as the generated samples.

34 / 40



Experiments–real data
● High-dimensional tabular daatsets (d = 6,8,43,63).
● Takeaway: competitive or better performance under much less number

of mini-batch SGD.

Figure 1: Quantitative metrics (MMD and NLL)
35 / 40



Experiments–real data (cont.)
● High-dimensional tabular daatsets (d = 6,8,43,63).
● Takeaway: A closer visual match between generated and true
samples.

Figure 1: Four real datasets: PCA visualization
36 / 40



Experiments–real data (cont.)

● Image data—MNIST digits via a pre-trained auto-encoder.

Figure 1: Uncurated MNIST digits.

37 / 40



Experiments–real data (cont.)

● Solar ramping event used in IGNN.
● Takeaway: The continuous-time model trains a more accurate
invertible flow mapping between X ∣Y and H ∣Y than the
discrete-time model.

Figure 1: PCA projection and quantitative metrics.

38 / 40



Summary and Extensions

Part I: Generative modeling for X ∣Y
● Summary:
● Propose a deep conditional generative model based on invertible

residual networks and normalizing flow.
● The framework is scalable to graph data with interesting

implication on GNN expressiveness in generative modeling.

● Extensions:
● X ∣Y generation for continuous Y (i.e., regression setting).
● Graph topology and/or edge feature generation.

39 / 40



Summary and Extensions

Part I: Generative modeling for X ∣Y
● Summary:
● Propose a deep conditional generative model based on invertible

residual networks and normalizing flow.
● The framework is scalable to graph data with interesting

implication on GNN expressiveness in generative modeling.

● Extensions:
● X ∣Y generation for continuous Y (i.e., regression setting).
● Graph topology and/or edge feature generation.

39 / 40



Summary and Extensions (cont.)

Part II: Improved normalizing flow framework
● Summary:
● Propose an invertible neural ODE model that trains each

residual block in a step-wise fashion.
● Adaptive reparametrization and refinement of a computed

trajectory to improve generative quality and overall computational
efficiency.

● Extensions:
● Continuity in time t to further reduce computation.
● Other larger-scale examples (e.g., image generation).
● (Ongoing) Flow between general distributions P and Q given

only training samples X ∼X,Y ∼ Y .

40 / 40



Summary and Extensions (cont.)

Part II: Improved normalizing flow framework
● Summary:
● Propose an invertible neural ODE model that trains each

residual block in a step-wise fashion.
● Adaptive reparametrization and refinement of a computed

trajectory to improve generative quality and overall computational
efficiency.

● Extensions:
● Continuity in time t to further reduce computation.
● Other larger-scale examples (e.g., image generation).
● (Ongoing) Flow between general distributions P and Q given

only training samples X ∼X,Y ∼ Y .

40 / 40


