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Outline

Introduction (motivation, objective, and related works)

Part I: Conditional generation (method, theory, and
experiments)

Part II: Unconditional block-wise generation (method and
experiments)

Summary and extensions
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Motivation
● Generative modeling is fundamental in statistics and machine
learning
● Statistics: Inferring and sample from the population P(X,Y ).
● Machine learning: Large-language models (e.g., ChatGPT), Image

generation (e.g., DALLE-2), etc.

(a) Prompt: “Skeleton for a good research

presentation slide in 5 bullets“.

(b) Prompt: “A PhD student intently

preparing for his research presentation in front of

a computer showing the logo GT, cartoon style“
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Problem setup

Figure 1: General tabular data

Figure 2: Graph nodal features

Construct a shared flow to generate X ∣Y ,
where Y is categorical.
● a shared flow = one normalizing flow model

(more details later)

Part I: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.
● Achieves prediction and generation at once.

● Scalable to (large) graph data (Fig 2)

Application: inverse problem, power
system, etc...
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Problem setup (cont.)

Figure 1:
X ∣Y ↔ Z = H ∣Y
with Y ∈ {0}.

Part II: Improve training of unconditional
normalizing flow models (i.e., single-class Y ):

● Be a part of the conditional generation pipeline

● More computational and memory efficient than

existing methods
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Goal

1 For conditional generation, how to effectively incorporate the
categorical conditioning variable Y into the framework.
● Here, we adopt existing unconditional normalizing flow model.

2 How to improve the design and training of unconditional flow
models. Namely, X ∣Y ←→H ∣Y for single-class Y .
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Toy Examples

Figure 1: Part I, conditional generation: parametric mixture of H ∣Y to
X ∣Y having three moons.

Figure 2: Part II, better flow model: proposed JKO-iFlow model.
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Related works

Traditional generative models: Hidden markov models [Baum

and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...
Challenges: model assumption and specification, performance
in high dimension.

Deep Generative models using neural networks (NN):
GAN [Goodfellow et al., 2014, Mirza and Osindero 2015, Gulrajani

et al., 2017, ...], VAE [Kingma and Welling 2014, 2019, ...]

Challenges: mode collapse and vanishing gradients [Salimans et

al., 2016], posterior collapse [Lucas et al., 2019], and so on.
Neither GAN nor VAE provides explicit data density.
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Related works (cont.)

NN-based conditional generation: conditional GAN [Mirza and

Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al., 2019(a)(b), 2020, 2021]

Challenges: concatenated input (Y,Z) into the generator,
restricted form of invertible NN.

Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

Neural SDE-based: score-based generative models [Song and

Ermon, 2019, Song et al., 2021, Boffi & Vanden-Eijnden, 2022],
Challenges: efficient and accurate sampling of SDE trajectory,
difficulty in learning the score at all t ∈ [0, T ].
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Contributions

1 Conditional generation: Propose a general X ∣Y framework for
categorical Y
● Compatible with existing flow models.
● Scalable to high-dimensional data, such as graphs.
● Incorporate prediction and generation at once.

2 Normalizing flow: Introduce step-wise training of each
invertible residual block
● Memory and computationally efficient.
● Easier training and simpler design than non-invertible models
– Examples: score-matching, variational formulation.
● Invertibility also allows uncertainty quantification.
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Background (unconditional)
Normalizing flow: density evolution of ρ(x, t), with
ρ(x,0) = pX and limt→∞ ρ(x, t) = pZ ∼ N(0, Id).

Non-unique flow: we consider flow induced by ODE of
x(t) ∼ ρ(x, t)

dx(t)/dt = f(x(t), t) (1)

→ x(t) = x(0) + ∫
t

0
f(x(s), s)ds. (2)

● Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the

Fokker-Planck equation.

Transport regularization: T = ∫ 1
0 Ex∼ρ(⋅,t)∥f(x, t)∥2dt.

● Recovers the Wasserstein-2 optimal transport under the

Benamou-Brenier formula [Villani 2009]).

Normalizing flow models learn f using neural networks.
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Part I: Generative modeling for X ∣Y
Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible neural
networks for graph prediction. IEEE Journal on Selected Areas in
Information Theory.
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Method

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Y Ð→←ÐH ∣Y specification:

H ∣Y = k ∼ N(µk, σ
2Id).

g part: trainable parameter {µk} with log-barrier.

f part: cross-entropy classification loss (easy to train)
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Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Y
gÐ→H ∣Y on graph:

Challenge: ∣Y ∣ =KV , high-dimensional H ∣Y ∈ Rd′V .
● Example: number of nodes V = 500,K = 2, d′ = 2.

Factorized idea:

p(H ∣Y ) =
V

∏
v=1

p(Hv ∣Yv),Hv ∣Yv ∼ N(µYv , σ
2Id′)

● Separation in Rd′ (
√
log(KV ) apart) enforces separation in Rd′V .

Computation: use GNN layers in X ∣Y ↔H ∣Y .
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Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

H ∣Y ←→X ∣Y formulation:

Residual network/block xl+1 = F (xl; θl) = xl + f(xl; θl)
● Euler approximation of ODE dx(t)/dt = f(x(t), t)

Conditional log-likelihood via change-of-variable:

log pX ∣Y (X) = log pH ∣Y F (X; θ) + log ∣detJF (X)∣

● log det evaluation [Chen et al., 2020].

● Generation X ∣Y from H ∣Y via fixed-point iteration [Behrmann et

al., 2019]
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Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

H ∣Y ←→X ∣Y formulation:

Transport cost/W2 regularization: W = ∑L
l=1 ∥f(X; θl)∥2

● In theory, ensures invertibility via L→∞ and the smoothness
of the transport-cost regularized continuous-time flow.
● In practice, achieves invertibility even for small L (i.e., L = 5).

● Benefits over spectral normalization (smooth trajectory and
computation).
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Method (cont.)

Figure 1: Illustration of framework Y Ð→
←Ð

H ∣Y ←→X ∣Y .

Final objective (averaged over n pairs of (Xi, Yi)):

min
θ,θc
Lg + Lc + γW.

● Lg denotes the negative log-likelihood of (Xi, Yi).
● Lc denotes cross-entropy loss in estimating Yi∣Xi.
● W denotes the W2 regularization of blocks fl, l = 1 . . . , L, under
penalty γ > 0.
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Theoretical analyses (Flow on graph)

Consider x(0) ∼ N(0,Σ),Σ ∈ RV ×V is PSD and invertible.

We can show f(x, t) = Ttx, with Tt depends on Σ,Σ−1.

Under assumptions on Σ,Σ−1, we have:
(Spectral)1 ∥Tt − pt(L)∥2 ∈ O(exp{−n}).
(Spatial)2 ∥Tt −∑n+1

k=0 ck(t)Bk∥2 ∈ O(exp{−n}).
Expressiveness of GNN: there exists Σ with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).
● In other words, residual blocks with GNN layers lacking

expressiveness can never generate X ∣Y on graph as desired.

Theoretical details and additional results in [Xu et al., 2022]

1pt(L) is a polynomial with degree at most n.
2Bk are local filters with locality depending on that of Σ,Σ−1.
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Experiments–simulation

● No graph, imbalanced X ∣Y samples

Figure 1: Three-moon dataset, Y ∈ {0,1,2}
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Experiments–simulation (cont.)

● Small-graph (expressiveness of GNN layers)
● Takeaway: Due to symmetry in the graph design, Chebnet lacks
expressiveness when L3Net correctly generates.

Figure 1: Spectral vs. spatial layer comparison: The graph has three
nodes with binary nodal labels and 2D nodal features.
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Experiments–simulation (cont.)
● Large graph with Gaussian X ∣Y
● Takeaway: The closeness between estimated and true covariance
matrices restricted to subgraphs reflect the ability of iGNN to
generate X ∣Y .

Figure 1: A chordal graph with 503 nodes with binary nodal labels and 2D
nodal features. Due to high-dimensionality of X ∣Y , we visualize
covariances of sub-graphs using true and generated samples.
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Experiments–real data

● Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]

● These methods
● Either concatenate Y as additional input to Z ∼ N(0, Id)
● Or encode Y into residual blocks with special architecture (e.g.,

Real-NVP).
● Doing so increases training difficulty and yields worse

performance than iGNN.

● Datasets: Solar ramping event and traffic anomaly detection, with
V ≈ 10 or 15 nodes, binary nodal labels Yv, and two-dimensional
nodal feature Xv.
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Experiments–real data (cont.)
● Solar ramping dataset
● Takeaway: The distribution of generated X̂ ∣Y matches with that
of the true X ∣Y over difference Y .

Figure 1: Scatter plot of conditionally generated nodal features. Colors
indicate empirical variance of features over nodes, and we connect features
of same graph by light-blue lines. 24 / 40



Experiments–real data (cont.)
● Traffic anomaly detection dataset

Figure 1: Scatter plot of conditionally generated nodal features. Same
plot arrangement as in solar ramping event data.
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Experiments–real data (cont.)

● Quantitative metrics on test data via two-sample testing methods:
MMD [Gretton et al., 2012] and Energy statistics [Székely and Rizzo

2013].

Figure 1: Quantitative metrics of empirical performances. Smaller
indicates a closer match between the empirical distributions.
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Experiments–additional results

● Prediction in addition to conditional generation
– Achieved by the H ∣Y designs and accurate flow
● Takeaway: The value of P̂(Yi = 1∣X) approximately matches the
actual label of Yi.

Figure 1: Predicted P(Yv = 1∣X) at three different values of Y containing
graph nodal labels
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Experiments–additional results (cont.)

● Multi-dimensional uncertainty quantification
– Achieved through invertibility of the shared flow
● Takeaway: IGNN has the potential to quantify uncertainty in
multi-dimensional prediction.

Figure 1: Uncertainty sets for three moon, based on confidence regions of
H ∣Y .
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Part II: Improved normalizing flow framework

Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible
normalizing flow neural networks by JKO scheme. ArXiv Preprint
ArXiv:2212.14424.
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Motivation

● Previously, IGNN uses discrete-time invertible residual networks:

F (xl; θl) = xl + f(xl; θl), x0 ∼ pX .

● In practice, continuous-time flows yield better approximation of
the ODE flow ∫ T

0 f(x(s), s)ds [Grathwohl et al., 2019, Onken et al.,

2021]

● Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

● Namely, the integral from [0, T ] is broken into a sequence of L
sub-blocks f(⋅; θl).
● Yet, challenges are
● Design: how to specify L.
● Computation: joint training of all L blocks.
● Memory: samples are flowed through all L blocks.
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Method
● Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at p0 = ρ0 ∈ P, with step
size h > 0, the JKO scheme at the k−th step is

pk+1 = argmin
p∈P

KL(ρ∥∥pZ) +
1

2h
W 2

2 (pk, ρ).

● Using the instantaneous change-of-variable formula [Chen et al.,

2018], we derive the step-wise objective in JKO-iFlow as:

min
θk

Ex(tk)∼pk∥x(tk+1)∥
2−∫

tk+1

tk
∇⋅fθk(x(s), s)ds+

1

2h
∥x(tk+1)−x(tk)∥2,

where x(tk+1) = x(tk) + ∫ tk+1
tk

fθk(x(s), s)ds.
● Benefits are thus
– Use stopping criterion to determine number of blocks
– No sampling (e.g., SDE-based score matching [Song et al., 2021])

nor variational learning (e.g., min-max formulation [Fan et al., 2021])
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Method (cont.)

● We further proposed reparametrization-and-refine techniques to
improve training. In short,
● Reparametrization adjusts width of intervals [tk, tk+1] to encourage

even W2 movement per block, in light of exponential convergence by JKO
theory.

● Refinement interpolates between [tk, tk+1] to increase accuracy (i.e.,

double # blocks)

Figure 1: Before and after reparametrization and refinement.
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Experiments–simulation
● Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al.,

2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al.,

2021], and one diffusion model [Song et al., 2021].

● Takeaway: JKO-iFlow yields a closer match of X̂ vs. X.

Figure 1: Two-dimensional datasets visualized as scatter plots.
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Experiments–simulation (cont.)

● Benefits of reparametrization + refinement.

● Takeaway: improved performance on edges, at which we have few

samples.

Figure 1: W2 movement before and after reprametrization and refinement,
as well as the generated samples.
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Experiments–real data
● High-dimensional tabular daatsets (d = 6,8,43,63).
● Takeaway: competitive or better performance under much less number

of mini-batch SGD.

Figure 1: Quantitative metrics (MMD and NLL)
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Experiments–real data (cont.)
● High-dimensional tabular daatsets (d = 6,8,43,63).
● Takeaway: A closer visual match between generated and true
samples.

Figure 1: Four real datasets: PCA visualization
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Experiments–real data (cont.)

● Image data—MNIST digits via a pre-trained auto-encoder.

Figure 1: Uncurated MNIST digits.
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Experiments–real data (cont.)

● Solar ramping event used in IGNN.
● Takeaway: The continuous-time model trains a more accurate
invertible flow mapping between X ∣Y and H ∣Y than the
discrete-time model.

Figure 1: PCA projection and quantitative metrics.
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Summary and Extensions

Part I: Generative modeling for X ∣Y
● Summary:
● Propose a deep conditional generative model based on invertible

residual networks and normalizing flow.
● The framework is scalable to graph data with interesting

implication on GNN expressiveness in generative modeling.

● Extensions:
● X ∣Y generation for continuous Y (i.e., regression setting).
● Graph topology and/or edge feature generation.
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Summary and Extensions (cont.)

Part II: Improved normalizing flow framework
● Summary:
● Propose an invertible neural ODE model that trains each

residual block in a step-wise fashion.
● Adaptive reparametrization and refinement of a computed

trajectory to improve generative quality and overall computational
efficiency.

● Extensions:
● Continuity in time t to further reduce computation.
● Other larger-scale examples (e.g., image generation).
● (Ongoing) Flow between general distributions P and Q given

only training samples X ∼X,Y ∼ Y .
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