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QOutline

Introduction (motivation, objective, and related works)

Part I: Conditional generation (method, theory, and
experiments)

@ Part II: Unconditional block-wise generation (method and
experiments)

Summary and extensions
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Motivation

e Generative modeling is fundamental in statistics and machine
learning

e Statistics: Inferring and sample from the population P(X,Y).

e Machine learning: Large-language models (e.g., ChatGPT), Image
generation (e.g., DALLE-2), etc.
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Introduction:

* Briefly introduce the topic and research question
* Explain the importance and relevance of the research

Objectives:

* State the research objectives or aims

* Provide a brief overview of the methods used to achieve the objectives

3. Results:

* Summarize the main findings of the study

* Use charts, graphs, tables, or images to present the data

4. Discussion:

* Interpret the results and explain their significance

* Discuss the implications of the findings for practice and future research

5. Conclusion

* Summarize the key points of the presentation

* Provide a call-to-action or future directions for research or practice
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Prompt: “Skeleton for a good research

presentation slide in 5 bullets*.
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(b) Prompt: “A PhD student intently

preparing for his research presentation in front of

a computer showing the logo GT, cartoon style"
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Figure 2: Graph nodal features

@ Construct a shared flow to generate XY,

where Y is categorical.

e a shared flow = one normalizing flow model

(more details later)
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Figure 2: Graph nodal features

@ Construct a shared flow to generate XY,
where Y is categorical.
e a shared flow = one normalizing flow model
(more details later)

@ Part I: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.

e Achieves prediction and generation at once.
e Scalable to (large) graph data (Fig 2)
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Figure 2: Graph nodal features

@ Construct a shared flow to generate XY,

where Y is categorical.
e a shared flow = one normalizing flow model
(more details later)

Part |: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.

e Achieves prediction and generation at once.
e Scalable to (large) graph data (Fig 2)

Application: inverse problem, power
system, etc...
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Problem setup (cont.)

p(F(2))

VN
')‘
J\

X|Y < Z=H|Y
with Y ¢ {0}.

p(2)

Part II: Improve training of unconditional

normalizing flow models (i.e., single-class Y):

e Be a part of the conditional generation pipeline

e More computational and memory efficient than

existing methods

6/40



Goal

© For conditional generation, how to effectively incorporate the
categorical conditioning variable Y into the framework.
e Here, we adopt existing unconditional normalizing flow model.

© How to improve the design and training of unconditional flow
models. Namely, X|Y «— H|Y for single-class Y.
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Toy Examples

HIY Xl
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Figure 1: Part |, conditional generation: parametric mixture of H|Y to
X|Y having three moons.
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Toy Examples

HIY Xl
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48
H|Y X|Y
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Figure 1: Part |, conditional generation: parametric mixture of H|Y to
X|Y having three moons.

(a) True data JKO-iFlow (b) FFJORD (c) OT-Flow (d) IGNN (e) ScoreSDE

7: 2.79¢-4, MMD-c: 2.73e-4 3.88e-4 1.42e-3 3.14e-3 6.90e-4
NLL 2.64 2.95 3.30 3.35 32

Figure 2: Part Il, better flow model: proposed JKO-iFlow model.
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Related works

@ Traditional generative models: Hidden markov models [Baum
and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...

Challenges: model assumption and specification, performance
in high dimension.
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Related works

@ Traditional generative models: Hidden markov models [Baum
and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...
Challenges: model assumption and specification, performance
in high dimension.

@ Deep Generative models using neural networks (NN):
GAN [Goodfellow et al., 2014, Mirza and Osindero 2015, Gulrajani
et al., 2017, ...], VAE [Kingma and Welling 2014, 2019, ..]
Challenges: mode collapse and vanishing gradients [Salimans et
al., 2016], posterior collapse [Lucas et al., 2019], and so on.
Neither GAN nor VAE provides explicit data density.
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Related works (cont.)

@ NN-based conditional generation: conditional GAN [Mirza and
Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al,, 2019(a)(b), 2020, 2021]
Challenges: concatenated input (Y, Z) into the generator,
restricted form of invertible NN.
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Related works (cont.)

@ NN-based conditional generation: conditional GAN [Mirza and
Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al,, 2019(a)(b), 2020, 2021]
Challenges: concatenated input (Y, Z) into the generator,
restricted form of invertible NN.

@ Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

@ Neural SDE-based: score-based generative models [Song and
Ermon, 2019, Song et al., 2021, Boffi & Vanden-Eijnden, 2022],
Challenges: efficient and accurate sampling of SDE trajectory,
difficulty in learning the score at all ¢t € [0,7T].
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Contributions

@ Conditional generation: Propose a general XY framework for
categorical Y
e Compatible with existing flow models.
e Scalable to high-dimensional data, such as graphs.
e Incorporate prediction and generation at once.
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Contributions

@ Conditional generation: Propose a general XY framework for
categorical Y
e Compatible with existing flow models.
e Scalable to high-dimensional data, such as graphs.
e Incorporate prediction and generation at once.

@ Normalizing flow: Introduce step-wise training of each
invertible residual block
e Memory and computationally efficient.
e Easier training and simpler design than non-invertible models
— Examples: score-matching, variational formulation.
o Invertibility also allows uncertainty quantification.
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Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim¢ p(xvt) =Pz NN(O7Id)'
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Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim o p(mvt) =Pz NN(()’Id)'

@ Non-unique flow: we consider flow induced by ODE of
2(t) ~ pla,t)

dz(t)/dt = f(x(t),t) (1)
—>:L‘(t)::1:(0)+[0 F(x(s),5)ds. 2)

e Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the
Fokker-Planck equation.
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Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim¢ p(xvt) =Pz NN(()’Id)'

@ Non-unique flow: we consider flow induced by ODE of
2(t) ~ pla,t)

dz(t)/dt = f(x(t),t) (1)
em(t)=m(0)+fo F(x(s),5)ds. 2)

e Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the
Fokker-Planck equation.

o Transport regularization: T = [ Eoepyl f (1) |dt.
e Recovers the Wasserstein-2 optimal transport under the
Benamou-Brenier formula [Villani 2009]).

@ Normalizing flow models learn f using neural networks.
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Part I: Generative modeling for X|Y

Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible neural
networks for graph prediction. /IEEE Journal on Selected Areas in

Information Theory.
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Method

------

-, 68 : :
) <«— : Invertible mapping \
Y Linear generator X
& classifier |:|

.09

|:| FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Y~ HI|Y specification:
o H|Y =k~ N(up,o21,).
@ g part: trainable parameter {yu} with log-barrier.

@ f part: cross-entropy classification loss (easy to train)
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Method (cont.)

------

,08 ; 1
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& classifier |:|
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Figure 1: lllustration of framework Y H|Y «— X|Y.

Y % HI|Y on graph:
e Challenge: [Y|= KV, high-dimensional H|Y ¢ R*V
e Example: number of nodes V =500, K =2,d’ =

15/40



Method (cont.)

------

l9g) ; H
<«— : Invertible mapping \
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& classifier ResBlock |: |:|
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iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Y % HI|Y on graph:
e Challenge: [Y|= KV, high-dimensional H|Y ¢ R*V
e Example: number of nodes V =500, K =2,d’ =
@ Factorized idea:

v
p(H|Y) = [Tp(Ho|Yy), Hy|Yy ~ N (py,, 0° L)
v=1

e Separation in R (y/log(KV') apart) enforces separation in RY" .
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Method (cont.)

------
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Figure 1: lllustration of framework Y H|Y «— X|Y.

Y % HI|Y on graph:
e Challenge: [Y|= KV, high-dimensional H|Y ¢ R*V
e Example: number of nodes V =500, K =2,d’ =
@ Factorized idea:

v
p(H|Y) = [Tp(Ho|Yy), Hy|Yy ~ N (py,, 0° L)
v=1

e Separation in R? (\/log(KV') apart) enforces separation in R¥" .

e Computation: use GNN layers in X|Y < H|Y.
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Method (cont.)

~~~~~~

-, 08 : t
) <— : Invertible mapping \
Y Linear generator X
& classifier
—_—— : é
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|:|:FG layer, GNN, GonvNet...
iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:
@ Residual network/block x;.1 = F'(x;60;) = 2+ f(x;6;)
e Euler approximation of ODE dx(t)/dt = f(x(t),t)
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Method (cont.)

~~~~~~

-, 08 : t
) <— : Invertible mapping \
Y Linear generator X
& classifier
—_—— : é

1,09

|:|:FG layer, GNN, GonvNet...
iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:
@ Residual network/block x;.1 = F'(x;60;) = 2+ f(x;6;)
e Euler approximation of ODE dx(t)/dt = f(x(t),t)
@ Conditional log-likelihood via change-of-variable:

log pxy (X) = log pyy F'(X;0) + log|detJp (X)|

¢ logdet evaluation [Chen et al., 2020].
e Generation X|Y from H|Y via fixed-point iteration [Behrmann et
al., 2019]
16 /40



Method (cont.)

~~~~~~

-, 08 ; :
) <— : Invertible mapping \
Linear generator
Y & classifier ResBlock |: X

1,09

|:|:FG layer, GNN, ConvNt...
iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:

o Transport cost/Ws regularization: W = Y2 | £(X;6,) |
e In theory, ensures invertibility via . > oo and the smoothness
of the transport-cost regularized continuous-time flow.

e In practice, achieves invertibility even for small L (i.e., L =5).
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Method (cont.)

~~~~~~

-, 08 : i
) <— : Invertible mapping \
Linear generator
Y & classifier ResBlock |: X

1,09

|:| : FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:

o Transport cost/Ws regularization: W = Y2 | £(X;6,) |
e In theory, ensures invertibility via . > oo and the smoothness
of the transport-cost regularized continuous-time flow.

e In practice, achieves invertibility even for small L (i.e., L =5).

e Benefits over spectral normalization (smooth trajectory and
computation).
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Method (cont.)

------

,08 ; 1
g( ) <«— : Invertible mapping H \
Y Linear generator X
& classifier D

—_— :
o E 3
5,69 : EAT
D FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Final objective (averaged over n pairs of (X;,Y;)):

rgl(iil Lg+Le+yW.
e L, denotes the negative log-likelihood of (X;,Y;).

e L. denotes cross-entropy loss in estimating Y;|X;.

e W denotes the W2 regularization of blocks f;,/=1..., L, under
penalty v > 0.
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Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.
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19/40



Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.

@ We can show f(z,t) = Tyx, with T} depends on 3, X271,

@ Under assumptions on 3, 37!, we have:

(Spectral)! | T} — pe(L) |2 € O(exp{-n}).
(Spatial)? | T, - X5 ¢ (t) Bi 2 € O(exp{-n}).

@ Expressiveness of GNN: there exists X with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).

e In other words, residual blocks with GNN layers lacking
expressiveness can never generate X|Y on graph as desired.

1p:(L) is a polynomial with degree at most n.

2By, are local filters with locality depending on that of X, %!,
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Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.

@ We can show f(z,t) = Tyx, with T} depends on 3, X271,

@ Under assumptions on 3, 37!, we have:

(Spectral)! | T} — pe(L) |2 € O(exp{-n}).
(Spatial)? | T} - ZZIOI ck(t)Bgll2 € O(exp{-n}).

@ Expressiveness of GNN: there exists X with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).

e In other words, residual blocks with GNN layers lacking
expressiveness can never generate X|Y on graph as desired.

@ Theoretical details and additional results in [Xu et al., 2022]

1p:(L) is a polynomial with degree at most n.

2By, are local filters with locality depending on that of X, %!,
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Experiments—simulation

e No graph, imbalanced X|Y samples
HIY Xy

a® ™ e e G G R

E\ock 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Figure 1: Three-moon dataset, Y € {0,1,2}
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Experiments—simulation (cont.)

e Small-graph (expressiveness of GNN layers)
e Takeaway: Due to symmetry in the graph design, Chebnet lacks
expressiveness when L3Net correctly generates.

Xy X|Y =FY(H|Y) Generative Loss X|Y =F~1(H]Y) Generative Loss
- .
. —— Training ‘R’ —— Training
— Test 0.0 — Test
R s
oy *
0 -0.5

.
-2 -1.0 o .
0 1 2 2 4 o 5 1w 1
u*Classification Loss  ~1.5 u* Classification Loss

0125

0150

20 — Training | /% — Training
0 2 B [ 2 o1 — Test 3 3 3 000 — Test
Xy =F-1 X[y =F-1 75
X|Y o K =FTNHY) o - XY =FY(H) 00
LY N A P b 0050
.‘ “12| 8 * e o | 0075 127 o
.’ o ofysl 5 0 2 3 :"\; %o 5 5 1 B
4 -laipf @, o * . Cl Error 1479 cl " Error
o = P N ; < . 020 -
= 16h = tx — Taining | _16{Mq S —— Training
": Py % o2 — Test ps o ge! 01° — Test
7| 18 fe toge 1871 %% > g o010
5 LS ‘o e
. jo. [ i) oo
o | —20] o -2.018, 005
. . 00 0.00
-2 o 2 -2 o 2 0 10 20 30 40 -2 o 2 0 5 10 15

(a) True data (b) ChebNet (c) ChebNet losses (d) L3Net (e) L3Net losses

Figure 1: Spectral vs. spatial layer comparison: The graph has three
nodes with binary nodal labels and 2D nodal features.
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Experiments—simulation (cont.)

e Large graph with Gaussian X|Y

e Takeaway: The closeness between estimated and true covariance
matrices restricted to subgraphs reflect the ability of iGNN to
generate X|Y.

Covariance matrix on subgraph Covariance matrix on subgraph
Xly Iy XIY XY

0.50 0.50
025 025
0.00 t0.00
-0.25 -0.25
—0.50 -0.50

(a) Graph
(b) 1-hop neighborhood of node 100 (4 nodes) (c) 2-hop neighborhood of node 100 (10 nodes)
Covariance matrix on subgraph Covariance matrix on subgraph
Xy Xy Xy X1y

-0.25
-0.50

(d) 1-hop neighborhood of node 500 (4 nodes) (e) 2-hop neighborhood of node 500 (10 nodes)

Figure 1: A chordal graph with 503 nodes with binary nodal labels and 2D
nodal features. Due to high-dimensionality of X|Y’, we visualize

covariances of sub-graphs using true and generated samples. 240
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Experiments—real data

e Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]
e These methods

e Either concatenate Y as additional input to Z ~ N(0, I)

e Or encode Y into residual blocks with special architecture (e.g.,
Real-NVP).

e Doing so increases training difficulty and yields worse
performance than iGNN.
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Experiments—real data

e Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]
e These methods

e Either concatenate Y as additional input to Z ~ N(0, I)

e Or encode Y into residual blocks with special architecture (e.g.,
Real-NVP).

e Doing so increases training difficulty and yields worse
performance than iGNN.
o Datasets: Solar ramping event and traffic anomaly detection, with
V'~ 10 or 15 nodes, binary nodal labels Y,,, and two-dimensional
nodal feature X,,.
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Experiments—real data (cont.)
e Solar ramping dataset
e Takeaway: The distribution of generated X|Y matches with that
of the true X|Y over difference Y.

Xy =F~}(H|") Generative Loss

—— Training
— Test

u* Classification Loss

—— Training
— Test

0 100 200 300
Classification Error

—— Training
— Test

(b) X|Y (left) and iGNN X|Y (right) (c) cINN X|Y (d) iGNN loss

Figure 1: Scatter plot of conditionally generated nodal features. Colors
indicate empirical variance of features over nodes, and we connect features
of same graph by light-blue lines. 24 /40



Experiments—real data (cont.)
e Traffic anomaly detection dataset

o - N w

X[y

X|Y =FY(H|Y)

X|Y=G~Y(H,Y)

o = N w

Generative Loss

—— Training
— Test

0

100 200 300
u* Classification Loss

i —— Training
1 " li.. - — Test
. v
P’ | gl
-1 "“_-‘L d
B T 3 0 100 200 300
X|Y =F~Y(H|Y) Classification Error

—— Training
— Test

100 200 300

(d) iGNN loss

(b) X|Y (left) and iGNN X|Y (right) (c) cINN X|Y

Figure 1: Scatter plot of conditionally generated nodal features. Same

plot arrangement as in solar ramping event data.
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Experiments—real data (cont.)

e Quantitative metrics on test data via two-sample testing methods:
MMD |[Gretton et al., 2012] and Energy statistics [Székely and Rizzo

2013].
Solar data MMD Energy | Traffic data MMD Energy
iGNN 0.062 0.341 iGNN 0.128 0.537
cINN-MMD 0.061 0.344 cINN-MMD 0.152 1.484
cINN-Flow 0.402 3.488 cINN-Flow 0.281 6.183
cGAN 0.572 3.422 cGAN 0.916 4.132

Figure 1: Quantitative metrics of empirical performances. Smaller

indicates a closer match between the empirical distributions.
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Experiments—additional results

e Prediction in addition to conditional generation

— Achieved by the H|Y designs and accurate flow
e Takeaway: The value of P(Y; = 1/X) approximately matches the
actual label of Y.

P(Y;=1]X) P(Yi=11X) P(Yi=1]X)

Figure 1: Predicted P(Y, = 1|X) at three different values of ¥ containing
graph nodal labels
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Experiments—additional results (cont.)

e Multi-dimensional uncertainty quantification

— Achieved through invertibility of the shared flow
e Takeaway: IGNN has the potential to quantify uncertainty in
multi-dimensional prediction.

O© 00 0 N N O O
o U1 O U1 O U O
|9AS[ 22USpIIU0)

Figure 1: Uncertainty sets for three moon, based on confidence regions of
H|Y.
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Part Il: Improved normalizing flow framework

Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible
normalizing flow neural networks by JKO scheme. ArXiv Preprint

ArXiv:2212.14424.
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Motivation

e Previously, IGNN uses discrete-time invertible residual networks:

F(x;;0) =21+ f(21:6;), 20 ~ px.-
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Motivation

e Previously, IGNN uses discrete-time invertible residual networks:
F(xi;01) = 2+ f(21500), 20 ~ px.

e In practice, continuous-time flows yield better approximation of
the ODE flow [ f(2(s),s)ds [Grathwohl et al,, 2019, Onken et al.,
2021]
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Motivation

e Previously, IGNN uses discrete-time invertible residual networks:
F(xi;01) = 2+ f(21500), 20 ~ px.

e In practice, continuous-time flows yield better approximation of
the ODE flow [ f(2(s),s)ds [Grathwohl et al,, 2019, Onken et al.,
2021]
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Motivation

e Previously, IGNN uses discrete-time invertible residual networks:
F(xi;01) = 2+ f(21500), 20 ~ px.

e In practice, continuous-time flows yield better approximation of
the ODE flow [ f(2(s),s)ds [Grathwohl et al,, 2019, Onken et al.,
2021]
e Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

e Namely, the integral from [0,7'] is broken into a sequence of L
sub-blocks f(+;6;).
e Yet, challenges are

o Design: how to specify L.

e Computation: joint training of all L blocks.

e Memory: samples are flowed through all L blocks.
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Method

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

. 1
i1 = argmin KL(p| [pz) + W5 (pk, p)-
peP 2h
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(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

. 1
i1 = argmin KL(p| [pz) + W5 (pk, p)-
peP 2h

e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we derive the step-wise objective in JKO-iFlow as:

. (2351 1
HelinE:C(tk)Npk||x(tk+1)||2_lk V'fek(x(s)a5)d5+ﬁ||$(tk+1)—$(tk)\|2,

where x(ti1) = 2 (tg) + ftzk“ fo,.(x(s), s)ds.
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e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

. 1
i1 = argmin KL(p| [pz) + W5 (pk, p)-
peP 2h

e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we derive the step-wise objective in JKO-iFlow as:

. (2351 1
HelinE:C(tk)Npk||x(tk+1)||2_lk V'fek(x(s)a5)d5+ﬁ||$(tk+1)—$(tk)\|2,

where x(ti1) = 2 (tg) + ftzk“ fo,.(x(s), s)ds.
e Benefits are thus

— Use stopping criterion to determine number of blocks

— No sampling (e.g., SDE-based score matching [Song et al., 2021])
nor variational learning (e.g., min-max formulation [Fan et al., 2021])
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Method (cont.)

e We further proposed reparametrization-and-refine techniques to
improve training. In short,

o Reparametrization adjusts width of intervals [¢y,tr+1] to encourage
even W movement per block, in light of exponential convergence by JKO
theory.
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Method (cont.)

e We further proposed reparametrization-and-refine techniques to
improve training. In short,

o Reparametrization adjusts width of intervals [¢y,tr+1] to encourage
even W movement per block, in light of exponential convergence by JKO
theory.

e Refinement interpolates between [¢x,tx+1] to increase accuracy (i.e.,
double # blocks)

Probability Trajectory

Figure 1: Before and after reparametrization and refinement.
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Experiments—simulation

e Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al.,
2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al.,
2021], and one diffusion model [Song et al., 2021].

e Takeaway: JKO-iFlow yields a closer match of X vs. X.

(b) FFIORD (c) OT-Flow (d) IGNN (e) ScoreSDE

(a) True data
7: 2.79¢-4, MMD-c: 2.73e-4 3.88e-4 1.42e-3 3.14e-3 6.90e-4

NLL 2.64 2.95 3.30 335 32

(f) Fractal tree (g) Olympic rings (h) Checkerboard
7: 3.12e-4, MMD-c: 2.17e-4 7: 3.16e-4, MMD-c: 2.36e-4 7: 3.09¢-4, MMD-c: 2.70e-4
NLL 220 NLL 1.66 NLL 3.59

Figure 1: Two-dimensional datasets visualized as scatter plots.
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Experiments—simulation (cont.)

e Benefits of reparametrization + refinement.
e Takeaway: improved performance on edges, at which we have few
samples.

W2(pe-1, pe)

X X X
MMD Threshold t: 3.12e-4 MMD: 2.52e-4, NLL: 2.29  MMD: 2.17e-4, NLL: 2.20

[ 2 a 6 [ 10 12 1 16
—=— Initial —— Iter2 —+— Iter4 —— refine r-lter 1
—e lter1 —— Iter 3

(a) Per-block W3 over reparameterization iterations and refinement (b) Results at Iter 4 (middle) and r-Iter 1 (right). MMD and NLL
(‘r-Iter 1’ means one reparameterization iteration after refinement). values are shown in the title.

Figure 1: W5 movement before and after reprametrization and refinement,
as well as the generated samples.
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Experiments—real data
e High-dimensional tabular daatsets (d = 6, 8,43, 63).

e Takeaway: competitive or better performance under much less number

of mini-batch SGD.

Data Set Model # Param Training Testing
Time (h) _#Batches T () Batchsize MMD-m _ MMD-I__ NLL
i 1734 7: 2.90e-4
JKO-iFlow 76K, L=4 007 076K 351e1 10000 9865 240e4  -0.12
OLFlow 76K 036 758K 1711 10000 7584 535e4 032
POWER FFIORD 76K, L=4 067 758K 3.18¢-1 10000 9894 Ll6e3 063
d= IGNN 304K, =16 029  7.58K 1381 10000 1933 159%3 095
IResNet  304K,L=16 041  7.58K 1.95¢-1 10000 3923 2432 337
ScoreSDE 76K 006 758K 285¢-2 10000 9.12¢4  608e3 341
ScoreSDE 76K 060 75.80K 2.85¢-2 10000 7124 504c3 333
JKO-iFlow 57K, L=3 005 076K 2.63¢-1 10000 3864 720c-4  -0.06
7:185e4 7:273e4
JKO-iFlow 76K, L=4 007 076K 332e1 5000 1524 5.00c-4
OTFlow 76K 023 760K 1.09-1 5000 1994 5164
GAs FFIORD 76K, L=4 065 760K 3.08¢-1 5000 187e3  328e3
d=8 IGNN 304K, L=16 034  7.60K 16le-1 5000 6743 1d3e2
IResNet  304K,L=16 046  7.60K 2.18e-1 5000 32003 27362
ScoreSDE 76K 003 7.60K 1422 5000 105e3 83604
ScoreSDE 76K 030 76.00K 1422 5000 2234 3384
JKO-iFlow 95K, L=5 009 076K 4.15¢-1 5000 1514 3.77c4
7124664 7:3.75e4
JKO-Flow 112K,L=4 003 034K 36le-1 2000 96604 3794 1255
OTLFlow 112K 021 33K 223e-1 2000 6584 3794 1144
MINIBOONE FFIORD  112K.L=4 028 339K 2.97¢-1 2000 35le3 4124 2377
=13 IGNN 448K,L=16 063 339K 6.69c-1 2000 1212 40le4 2645
IResNet  448K.L=16 071 339K 7.54e-1 2000 2133 4l6ed 2236
ScoreSDE 112K 001 339K 6.37¢3 2000 586e-1 4334 2138
ScoreSDE 112K 010 33.90K 6.37¢-3 2000 4.17¢:3  387ed4 2070
7: 1384 7: 10Le-d
JKOAFlow 396K.L=4 005 103K 1.85-1 1000 224e4  19led -153.82
OTFlow 396K 062 1029K 2171 1000 5431 649%-1 -104.62
BSDS300 FFIORD  396K.L=4 054  1029K 1.89-1 1000 5601 6761 -31.80
i IGNN 990K,L=10 171  10.29K 5.98¢-1 1000 564e-l 6861  -37.68
IResNet  990K,L=10 205  1029K 7.17e-1 1000 550l 550l <3311
ScoreSDE 396K 001 1029K 3.50e-3 1000 56le-1 6601
ScoreSDE 396K 010 10290K 3.50e-3 1000 56lel 6621 73
JKO-Flow 396K,L=4 008 103K 276¢-1 5000 l4le4 8835 -15668

Figure 1: Quantitative metrics (MMD and NLL)
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Experiments—real data (cont.)
e High-dimensional tabular daatsets (d = 6, 8, 43,63).
e Takeaway: A closer visual match between generated and true
samples.

True X KO-iFlow OT-Flow FFJORD IGNN ScoreSDE

(a) Power

True X KO-iFlow OT-Flow . FFJORD IGNN ScoreSDE

(b) Gas
True X KO-iFlow OT-Flow FFJORD IResNet ScoreSDE

(c) MINIBOONE
True X JKO-iFlow . OT-Flow FFJORD ScoreSDE

Figure 1: Four real datasets: PCA visualization
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Experiments—real data (cont.)

e Image data—MNIST digits via a pre-trained auto-encoder.
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Figure 1: Uncurated MNIST digits.
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Experiments—real data (cont.)

e Solar ramping event used in IGNN.

e Takeaway: The continuous-time model trains a more accurate
invertible flow mapping between X|Y and H|Y than the
discrete-time model.

(a) True X|Y JKO-iFlow (b) IGNN (c) True X|Y' JKO-iFlow (d) IGNN

7: 1.78¢-3, MMD-m: 2.42e-2 3.25e-2 7t 7.96e-3, MMD-m: 5.79e-2 9.71e-2
NLL -0.32 2.46 NLL -8.75 -3.80

Figure 1: PCA projection and quantitative metrics.
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Summary and Extensions

Part I: Generative modeling for X|Y
e Summary:

e Propose a deep conditional generative model based on invertible
residual networks and normalizing flow.

e The framework is scalable to graph data with interesting
implication on GNN expressiveness in generative modeling.
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Summary and Extensions

Part I: Generative modeling for X|Y
e Summary:

e Propose a deep conditional generative model based on invertible
residual networks and normalizing flow.

e The framework is scalable to graph data with interesting
implication on GNN expressiveness in generative modeling.

e Extensions:
e X|Y generation for continuous Y (i.e., regression setting).
e Graph topology and/or edge feature generation.
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Summary and Extensions (cont.)

Part Il: Improved normalizing flow framework
e Summary:

e Propose an invertible neural ODE model that trains each
residual block in a step-wise fashion.

e Adaptive reparametrization and refinement of a computed
trajectory to improve generative quality and overall computational
efficiency.
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Summary and Extensions (cont.)

Part Il: Improved normalizing flow framework
e Summary:

e Propose an invertible neural ODE model that trains each
residual block in a step-wise fashion.

e Adaptive reparametrization and refinement of a computed
trajectory to improve generative quality and overall computational
efficiency.

e Extensions:

e Continuity in time ¢ to further reduce computation.

e Other larger-scale examples (e.g., image generation).

¢ (Ongoing) Flow between general distributions P and () given
only training samples X ~ X, Y ~ Y.
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