Invertible neural networks for generative
models

Chen Xu

in collaboration with Prof. Xiuyuan Cheng and Prof. Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

1/40

Acknowledgement
e Xu, C., Cheng, X., and Xie, Y. (2022). Invertible neural networks for
graph prediction. IEEE Journal on Selected Areas in Information Theory.
e Xu, C., Cheng, X., and Xie, Y. (2022). Invertible normalizing flow neural
networks by JKO scheme. ArXiv Preprint ArXiv:2212.14424.

(a) Prof. Xiuyuan Cheng (b) Prof. Yao Xie

Figure 1: My wonderful and supportive collaborator Prof. Xiuyuan Cheng
and advisor Prof. Yao Xie

2/40

QOutline

Introduction (motivation, objective, and related works)

Part I: Conditional generation (method, theory, and
experiments)

@ Part II: Unconditional block-wise generation (method and
experiments)

Summary and extensions

3/40

Motivation

e Generative modeling is fundamental in statistics and machine
learning

e Statistics: Inferring and sample from the population P(X,Y).

e Machine learning: Large-language models (e.g., ChatGPT), Image
generation (e.g., DALLE-2), etc.

B sieleton for a good research presentation side in bullets

e o e e e e I S DA

1

Introduction:

* Briefly introduce the topic and research question
* Explain the importance and relevance of the research

Objectives:

* State the research objectives or aims

* Provide a brief overview of the methods used to achieve the objectives

3. Results:

* Summarize the main findings of the study

* Use charts, graphs, tables, or images to present the data

4. Discussion:

* Interpret the results and explain their significance

* Discuss the implications of the findings for practice and future research

5. Conclusion

* Summarize the key points of the presentation

* Provide a call-to-action or future directions for research or practice

(a)

Prompt: “Skeleton for a good research

presentation slide in 5 bullets*.

&T
A
4 o>

(b) Prompt: “A PhD student intently

preparing for his research presentation in front of

a computer showing the logo GT, cartoon style"

4/40

Problem setup

x Prediction
X=|: | ER? #-rrmcrmcmmnnaaaans Ye {01}
Xy X|Y
,
e’&% “5,\‘1
Ly nl o *
H=|:|eRr?
by

& e {01
Xe qu() Prediction (0.1
€ommoemeneemnmnnaanaees
2 3 2 3
jﬂ w | K|®
& W X, € R?) & 4
, H € W Y, e (01}
Q P
/,3/0 N
f P
\(4/ H,eR?

Figure 2: Graph nodal features

@ Construct a shared flow to generate XY,

where Y is categorical.

e a shared flow = one normalizing flow model

(more details later)

5/40

Problem setup

x Prediction
X=|: | ER? #-rrmcrmcmmnnaaaans Ye {01}
X X|Y
b,
e’(q's/e \3*
Ly nl o *
H=|:|eRr?
by

Figure 1: General tabular data

X, e RY Y, € {0,1
1€ @ Prediction {)/1\
/2‘) gg) DA 52/ %‘3\
/ % X XY) / & \ &
& @Wx, ere) & W
b, H, € R? Y€ (01)
@ 1 "

2 ©)] N
//3,(‘/% (ZX%\S\/ - o

& @ Her”

Figure 2: Graph nodal features

@ Construct a shared flow to generate XY,
where Y is categorical.
e a shared flow = one normalizing flow model
(more details later)

@ Part I: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.

e Achieves prediction and generation at once.
e Scalable to (large) graph data (Fig 2)

5/40

Problem setup

x Prediction
X=|: | ER? #-rrmcrmcmmnnaaaans Ye {01}
X X|Y
b,
e’(q's/e \3*
Ly nl o *
H=|:|eRr?
by

X, e RY Y, € {0,1
1€ @ Prediction {)/1\
/2‘) gg) DA 52/ %‘3\
/ % X XY) / & \ &
& @Wx, ere) & W
b, H, € R? Y€ (01)
@ 1 "

2 ©)] N
//3,(‘/% (ZX%\S\/ - o

& @ Her”

Figure 2: Graph nodal features

@ Construct a shared flow to generate XY,

where Y is categorical.
e a shared flow = one normalizing flow model
(more details later)

Part |: Using existing normalizing flow
frameworks, how to effectively incorporate
Y into the model to allow conditional
generation.

e Achieves prediction and generation at once.
e Scalable to (large) graph data (Fig 2)

Application: inverse problem, power
system, etc...

5/40

Problem setup (cont.)

p(F(2))

VN
')‘
J\

X|Y < Z=H|Y
with Y ¢ {0}.

p(2)

Part II: Improve training of unconditional

normalizing flow models (i.e., single-class Y):

e Be a part of the conditional generation pipeline

e More computational and memory efficient than

existing methods

6/40

Goal

© For conditional generation, how to effectively incorporate the
categorical conditioning variable Y into the framework.
e Here, we adopt existing unconditional normalizing flow model.

© How to improve the design and training of unconditional flow
models. Namely, X|Y «— H|Y for single-class Y.

7/40

Toy Examples

HIY Xl
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Figure 1: Part |, conditional generation: parametric mixture of H|Y to
X|Y having three moons.

8/40

Toy Examples

HIY Xl
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48
H|Y X|Y
Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Figure 1: Part |, conditional generation: parametric mixture of H|Y to
X|Y having three moons.

(a) True data JKO-iFlow (b) FFJORD (c) OT-Flow (d) IGNN (e) ScoreSDE

7: 2.79¢-4, MMD-c: 2.73e-4 3.88e-4 1.42e-3 3.14e-3 6.90e-4
NLL 2.64 2.95 3.30 3.35 32

Figure 2: Part Il, better flow model: proposed JKO-iFlow model.

8/40

Related works

@ Traditional generative models: Hidden markov models [Baum
and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...

Challenges: model assumption and specification, performance
in high dimension.

9/40

Related works

@ Traditional generative models: Hidden markov models [Baum
and Petrie 1966, Rabiner and Juang 1986, Mor et al., 2021],
Bayesian network [Heckerman 1996, Koller and Firedman 2009], ...
Challenges: model assumption and specification, performance
in high dimension.

@ Deep Generative models using neural networks (NN):
GAN [Goodfellow et al., 2014, Mirza and Osindero 2015, Gulrajani
et al., 2017, ...], VAE [Kingma and Welling 2014, 2019, ..]
Challenges: mode collapse and vanishing gradients [Salimans et
al., 2016], posterior collapse [Lucas et al., 2019], and so on.
Neither GAN nor VAE provides explicit data density.

9/40

Related works (cont.)

@ NN-based conditional generation: conditional GAN [Mirza and
Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al,, 2019(a)(b), 2020, 2021]
Challenges: concatenated input (Y, Z) into the generator,
restricted form of invertible NN.

10/40

Related works (cont.)

@ NN-based conditional generation: conditional GAN [Mirza and
Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al,, 2019(a)(b), 2020, 2021]
Challenges: concatenated input (Y, Z) into the generator,
restricted form of invertible NN.

@ Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

10/40

Related works (cont.)

@ NN-based conditional generation: conditional GAN [Mirza and
Osindero 2014, Isola et al., 2017], conditional invertible neural
networks (cINN) [Ardizzone et al,, 2019(a)(b), 2020, 2021]
Challenges: concatenated input (Y, Z) into the generator,
restricted form of invertible NN.

@ Normalizing flow models: FFJORD [Grathwohl et al., 2019],
graph flow [Liu et al., 2019], OT-Flow [Onken et al., 2021]...
Challenges: computation and memory efficiency, model
regularization.

@ Neural SDE-based: score-based generative models [Song and
Ermon, 2019, Song et al., 2021, Boffi & Vanden-Eijnden, 2022],
Challenges: efficient and accurate sampling of SDE trajectory,
difficulty in learning the score at all ¢t € [0,7T].

10/40

Contributions

@ Conditional generation: Propose a general XY framework for
categorical Y
e Compatible with existing flow models.
e Scalable to high-dimensional data, such as graphs.
e Incorporate prediction and generation at once.

11/40

Contributions

@ Conditional generation: Propose a general XY framework for
categorical Y
e Compatible with existing flow models.
e Scalable to high-dimensional data, such as graphs.
e Incorporate prediction and generation at once.

@ Normalizing flow: Introduce step-wise training of each
invertible residual block
e Memory and computationally efficient.
e Easier training and simpler design than non-invertible models
— Examples: score-matching, variational formulation.
o Invertibility also allows uncertainty quantification.

11/40

Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim¢ p(xvt) =Pz NN(O7Id)'

12/40

Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim o p(mvt) =Pz NN(()’Id)'

@ Non-unique flow: we consider flow induced by ODE of
2(t) ~ pla,t)

dz(t)/dt = f(x(t),t) (1)
—>:L‘(t)::1:(0)+[0 F(x(s),5)ds. 2)

e Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the
Fokker-Planck equation.

12/40

Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim o p(mvt) =Pz NN(()’Id)'

@ Non-unique flow: we consider flow induced by ODE of
2(t) ~ pla,t)

dz(t)/dt = f(x(t),t) (1)
—>:L‘(t)::1:(0)+[0 F(x(s),5)ds. 2)

e Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the
Fokker-Planck equation.

@ Transport regularization: 7 = fol Eoepyl f (1) |dt.
e Recovers the Wasserstein-2 optimal transport under the
Benamou-Brenier formula [Villani 2009]).

12/40

Background (unconditional)

@ Normalizing flow: density evolution of p(x,t), with
p(l’,O) =px and lim¢ p(xvt) =Pz NN(()’Id)'

@ Non-unique flow: we consider flow induced by ODE of
2(t) ~ pla,t)

dz(t)/dt = f(x(t),t) (1)
em(t)=m(0)+fo F(x(s),5)ds. 2)

e Example: (multivariate) Ornstein-Uhlenbeck (OU) process with the
Fokker-Planck equation.

o Transport regularization: T = [Eoepyl f (1) |dt.
e Recovers the Wasserstein-2 optimal transport under the
Benamou-Brenier formula [Villani 2009]).

@ Normalizing flow models learn f using neural networks.

12/40

Part I: Generative modeling for X|Y

Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible neural
networks for graph prediction. /IEEE Journal on Selected Areas in

Information Theory.

13/40

Method

-, 68 : :
) <«— : Invertible mapping \
Y Linear generator X
& classifier |:|

.09

|:| FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Y~ HI|Y specification:
o H|Y =k~ N(up,o21,).
@ g part: trainable parameter {yu} with log-barrier.

@ f part: cross-entropy classification loss (easy to train)

14/40

Method (cont.)

,08 ; 1
g() <«— : Invertible mapping \
Y Linear generator X
& classifier |:|

o 4
S, 69 : A
D FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Y % HI|Y on graph:
e Challenge: [Y|= KV, high-dimensional H|Y ¢ R*V
e Example: number of nodes V =500, K =2,d’ =

15/40

Method (cont.)

l9g) ; H
<«— : Invertible mapping \
% Linear generator X
& classifier ResBlock |: |:|

- P
S, 69 : A
D FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Y % HI|Y on graph:
e Challenge: [Y|= KV, high-dimensional H|Y ¢ R*V
e Example: number of nodes V =500, K =2,d’ =
@ Factorized idea:

v
p(H|Y) = [Tp(Ho|Yy), Hy|Yy ~ N (py,, 0° L)
v=1

e Separation in R (y/log(KV') apart) enforces separation in RY" .

15/40

Method (cont.)

l9g) ; H
<«— : Invertible mapping \
% Linear generator X
& classifier ResBlock |: |:|

- P
S, 69 : A
D FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Y % HI|Y on graph:
e Challenge: [Y|= KV, high-dimensional H|Y ¢ R*V
e Example: number of nodes V =500, K =2,d’ =
@ Factorized idea:

v
p(H|Y) = [Tp(Ho|Yy), Hy|Yy ~ N (py,, 0° L)
v=1

e Separation in R? (\/log(KV') apart) enforces separation in R¥" .

e Computation: use GNN layers in X|Y < H|Y.

15/40

Method (cont.)

~~~~~~

-, 08 : t
) <— : Invertible mapping \
Y Linear generator X
& classifier
—_—— : é

1,09

|:|:FG layer, GNN, GonvNet...
iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:
@ Residual network/block x;.1 = F'(x;60;) = 2+ f(x;6;)
e Euler approximation of ODE dx(t)/dt = f(x(t),t)

16 /40



Method (cont.)

~~~~~~

-, 08 : t
) <— : Invertible mapping \
Y Linear generator X
& classifier
—_—— : é

1,09

|:|:FG layer, GNN, GonvNet...
iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:
@ Residual network/block x;.1 = F'(x;60;) = 2+ f(x;6;)
e Euler approximation of ODE dx(t)/dt = f(x(t),t)
@ Conditional log-likelihood via change-of-variable:

log pxy (X) = log pyy F'(X;0) + log|detJp (X)|

¢ logdet evaluation [Chen et al., 2020].
e Generation X|Y from H|Y via fixed-point iteration [Behrmann et
al., 2019]
16 /40

Method (cont.)

~~~~~~

-, 08 ; :
) <— : Invertible mapping \
Linear generator
Y & classifier ResBlock |: X

1,09

|:|:FG layer, GNN, ConvNt...
iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:

o Transport cost/Ws regularization: W = Y2 | £(X;6,) |
e In theory, ensures invertibility via . > oo and the smoothness
of the transport-cost regularized continuous-time flow.

e In practice, achieves invertibility even for small L (i.e., L =5).

17/40



Method (cont.)

~~~~~~

-, 08 : i
) <— : Invertible mapping \
Linear generator
Y & classifier ResBlock |: X

1,09

|:| : FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

H|Y «— XY formulation:

o Transport cost/Ws regularization: W = Y2 | £(X;6,) |
e In theory, ensures invertibility via . > oo and the smoothness
of the transport-cost regularized continuous-time flow.

e In practice, achieves invertibility even for small L (i.e., L =5).

e Benefits over spectral normalization (smooth trajectory and
computation).

17/40

Method (cont.)

,08 ; 1
g() <«— : Invertible mapping H \
Y Linear generator X
& classifier D

—_— :
o E 3
5,69 : EAT
D FC layer, GNN, ConvNet..

iGNN (ours)

Figure 1: lllustration of framework Y H|Y «— X|Y.

Final objective (averaged over n pairs of (X;,Y;)):

rgl(iil Lg+Le+yW.
e L, denotes the negative log-likelihood of (X;,Y;).

e L. denotes cross-entropy loss in estimating Y;|X;.

e W denotes the W2 regularization of blocks f;,/=1..., L, under
penalty v > 0.

18/40

Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.

19/40

Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.
@ We can show f(z,t) = Tyx, with T; depends on ¥, %71,

19/40

Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.

@ We can show f(z,t) = Tyx, with T; depends on ¥, %71,
@ Under assumptions on 3, 37!, we have:

(Spectral)! | T} — pe(L) |2 € O(exp{-n}).

(Spatial)? | T, - X5 ¢ (t) Bi 2 € O(exp{-n}).

'p:(L) is a polynomial with degree at most n.
2By, are local filters with locality depending on that of X, %!,

19/40

Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.

@ We can show f(z,t) = Tyx, with T} depends on 3, X271,

@ Under assumptions on 3, 37!, we have:

(Spectral)! | T} — pe(L) |2 € O(exp{-n}).
(Spatial)? | T, - X5 ¢ (t) Bi 2 € O(exp{-n}).

@ Expressiveness of GNN: there exists X with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).

e In other words, residual blocks with GNN layers lacking
expressiveness can never generate X|Y on graph as desired.

1p:(L) is a polynomial with degree at most n.

2By, are local filters with locality depending on that of X, %!,
19/40

Theoretical analyses (Flow on graph)

@ Consider 2(0) ~ N (0,%),% e RV is PSD and invertible.

@ We can show f(z,t) = Tyx, with T} depends on 3, X271,

@ Under assumptions on 3, 37!, we have:

(Spectral)! | T} — pe(L) |2 € O(exp{-n}).
(Spatial)? | T} - ZZIOI ck(t)Bgll2 € O(exp{-n}).

@ Expressiveness of GNN: there exists X with spatial properties
and cannot be approximated by any spectral-based GNN layer
(e.g., GCN, Chebnet, etc.).

e In other words, residual blocks with GNN layers lacking
expressiveness can never generate X|Y on graph as desired.

@ Theoretical details and additional results in [Xu et al., 2022]

1p:(L) is a polynomial with degree at most n.

2By, are local filters with locality depending on that of X, %!,
19/40

Experiments—simulation

e No graph, imbalanced X|Y samples
HIY Xy

a® ™ e e G G R

E\ock 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Block 0 Block 6 Block 13 Block 20 Block 27 Block 34 Block 41 Block 48

Figure 1: Three-moon dataset, Y € {0,1,2}

20/40

Experiments—simulation (cont.)

e Small-graph (expressiveness of GNN layers)
e Takeaway: Due to symmetry in the graph design, Chebnet lacks
expressiveness when L3Net correctly generates.

Xy X|Y =FY(H|Y) Generative Loss X|Y =F~1(H]Y) Generative Loss
- .
. —— Training ‘R’ —— Training
— Test 0.0 — Test
R s
oy *
0 -0.5

.
-2 -1.0 o .
0 1 2 2 4 o 5 1w 1
u*Classification Loss ~1.5 u* Classification Loss

0125

0150

20 — Training | /% — Training
0 2 B [2 o1 — Test 3 3 3 000 — Test
Xy =F-1 X[y =F-1 75
X|Y o K =FTNHY) o - XY =FY(H) 00
LY N A P b 0050
.‘ “12| 8 * e o | 0075 127 o
.’ o ofysl 5 0 2 3 :"\; %o 5 5 1 B
4 -laipf @, o * . Cl Error 1479 cl " Error
o = P N ; < . 020 -
= 16h = tx — Taining | _16{Mq S —— Training
": Py % o2 — Test ps o ge! 01° — Test
7| 18 fe toge 1871 %% > g o010
5 LS ‘o e
. jo. [i) oo
o | —20] o -2.018, 005
. . 00 0.00
-2 o 2 -2 o 2 0 10 20 30 40 -2 o 2 0 5 10 15

(a) True data (b) ChebNet (c) ChebNet losses (d) L3Net (e) L3Net losses

Figure 1: Spectral vs. spatial layer comparison: The graph has three
nodes with binary nodal labels and 2D nodal features.

21/40

Experiments—simulation (cont.)

e Large graph with Gaussian X|Y

e Takeaway: The closeness between estimated and true covariance
matrices restricted to subgraphs reflect the ability of iGNN to
generate X|Y.

Covariance matrix on subgraph Covariance matrix on subgraph
Xly Iy XIY XY

0.50 0.50
025 025
0.00 t0.00
-0.25 -0.25
—0.50 -0.50

(a) Graph
(b) 1-hop neighborhood of node 100 (4 nodes) (c) 2-hop neighborhood of node 100 (10 nodes)
Covariance matrix on subgraph Covariance matrix on subgraph
Xy Xy Xy X1y

-0.25
-0.50

(d) 1-hop neighborhood of node 500 (4 nodes) (e) 2-hop neighborhood of node 500 (10 nodes)

Figure 1: A chordal graph with 503 nodes with binary nodal labels and 2D
nodal features. Due to high-dimensionality of X|Y’, we visualize

covariances of sub-graphs using true and generated samples. 240
4

Experiments—real data

e Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]
e These methods

e Either concatenate Y as additional input to Z ~ N(0, I)

e Or encode Y into residual blocks with special architecture (e.g.,
Real-NVP).

e Doing so increases training difficulty and yields worse
performance than iGNN.

23/40

Experiments—real data

e Baselines: compare with cGAN [Isola et al., 2017] and CINN
[Ardizzone et al., 2019(a)(b).]
e These methods

e Either concatenate Y as additional input to Z ~ N(0, I)

e Or encode Y into residual blocks with special architecture (e.g.,
Real-NVP).

e Doing so increases training difficulty and yields worse
performance than iGNN.
o Datasets: Solar ramping event and traffic anomaly detection, with
V'~ 10 or 15 nodes, binary nodal labels Y,,, and two-dimensional
nodal feature X,,.

23/40

Experiments—real data (cont.)
e Solar ramping dataset
e Takeaway: The distribution of generated X|Y matches with that
of the true X|Y over difference Y.

Xy =F~}(H|") Generative Loss

—— Training
— Test

u* Classification Loss

—— Training
— Test

0 100 200 300
Classification Error

—— Training
— Test

(b) X|Y (left) and iGNN X|Y (right) (c) cINN X|Y (d) iGNN loss

Figure 1: Scatter plot of conditionally generated nodal features. Colors
indicate empirical variance of features over nodes, and we connect features
of same graph by light-blue lines. 24 /40

Experiments—real data (cont.)
e Traffic anomaly detection dataset

o - N w

X[y

X|Y =FY(H|Y)

X|Y=G~Y(H,Y)

o = N w

Generative Loss

—— Training
— Test

0

100 200 300
u* Classification Loss

i —— Training
1 " li.. - — Test
. v
P’ | gl
-1 "“_-‘L d
B T 3 0 100 200 300
X|Y =F~Y(H|Y) Classification Error

—— Training
— Test

100 200 300

(d) iGNN loss

(b) X|Y (left) and iGNN X|Y (right) (c) cINN X|Y

Figure 1: Scatter plot of conditionally generated nodal features. Same

plot arrangement as in solar ramping event data.
25/40

Experiments—real data (cont.)

e Quantitative metrics on test data via two-sample testing methods:
MMD |[Gretton et al., 2012] and Energy statistics [Székely and Rizzo

2013].
Solar data MMD Energy | Traffic data MMD Energy
iGNN 0.062 0.341 iGNN 0.128 0.537
cINN-MMD 0.061 0.344 cINN-MMD 0.152 1.484
cINN-Flow 0.402 3.488 cINN-Flow 0.281 6.183
cGAN 0.572 3.422 cGAN 0.916 4.132

Figure 1: Quantitative metrics of empirical performances. Smaller

indicates a closer match between the empirical distributions.

26 /40

Experiments—additional results

e Prediction in addition to conditional generation

— Achieved by the H|Y designs and accurate flow
e Takeaway: The value of P(Y; = 1/X) approximately matches the
actual label of Y.

P(Y;=1]X) P(Yi=11X) P(Yi=1]X)

Figure 1: Predicted P(Y, = 1|X) at three different values of ¥ containing
graph nodal labels

27 /40

Experiments—additional results (cont.)

e Multi-dimensional uncertainty quantification

— Achieved through invertibility of the shared flow
e Takeaway: IGNN has the potential to quantify uncertainty in
multi-dimensional prediction.

O© 00 0 N N O O
o U1 O U1 O U O
|9AS[22USpIIU0)

Figure 1: Uncertainty sets for three moon, based on confidence regions of
H|Y.

28/40

Part Il: Improved normalizing flow framework

Reference: Xu, C., Cheng, X., and Xie, Y. (2022). Invertible
normalizing flow neural networks by JKO scheme. ArXiv Preprint

ArXiv:2212.14424.

29/40

Motivation

e Previously, IGNN uses discrete-time invertible residual networks:

F(x;;0) =21+ f(21:6;), 20 ~ px.-

30/40

Motivation

e Previously, IGNN uses discrete-time invertible residual networks:
F(xi;01) = 2+ f(21500), 20 ~ px.

e In practice, continuous-time flows yield better approximation of
the ODE flow [f(2(s),s)ds [Grathwohl et al,, 2019, Onken et al.,
2021]

30/40

Motivation

e Previously, IGNN uses discrete-time invertible residual networks:
F(xi;01) = 2+ f(21500), 20 ~ px.

e In practice, continuous-time flows yield better approximation of
the ODE flow [f(2(s),s)ds [Grathwohl et al,, 2019, Onken et al.,
2021]
e Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

e Namely, the integral from [0,7'] is broken into a sequence of L

sub-blocks f(+;6;).

30/40

Motivation

e Previously, IGNN uses discrete-time invertible residual networks:
F(xi;01) = 2+ f(21500), 20 ~ px.

e In practice, continuous-time flows yield better approximation of
the ODE flow [f(2(s),s)ds [Grathwohl et al,, 2019, Onken et al.,
2021]
e Most existing continuous flows pre-specify the number of blocks
L to be trained [Ibid.]

e Namely, the integral from [0,7'] is broken into a sequence of L
sub-blocks f(+;6;).
e Yet, challenges are

o Design: how to specify L.

e Computation: joint training of all L blocks.

e Memory: samples are flowed through all L blocks.

30/40

Method

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

. 1
i1 = argmin KL(p| [pz) + W5 (pk, p)-
peP 2h

31/40

Method

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

. 1
i1 = argmin KL(p| [pz) + W5 (pk, p)-
peP 2h

e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we derive the step-wise objective in JKO-iFlow as:

. (2351 1
HelinE:C(tk)Npk||x(tk+1)||2_lk V'fek(x(s)a5)d5+ﬁ||$(tk+1)—$(tk)\|2,

where x(ti1) = 2 (tg) + ftzk“ fo,.(x(s), s)ds.

31/40

Method

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

. 1
i1 = argmin KL(p| [pz) + W5 (pk, p)-
peP 2h

e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we derive the step-wise objective in JKO-iFlow as:

. (2351 1
HelinE:C(tk)Npk||x(tk+1)||2_lk V'fek(x(s)a5)d5+ﬁ||$(tk+1)—$(tk)\|2,

where x(ti1) = 2 (tg) + ftzk“ fo,.(x(s), s)ds.
e Benefits are thus

— Use stopping criterion to determine number of blocks

— No sampling (e.g., SDE-based score matching [Song et al., 2021])
nor variational learning (e.g., min-max formulation [Fan et al., 2021])

31/40

Method (cont.)

e We further proposed reparametrization-and-refine techniques to
improve training. In short,

o Reparametrization adjusts width of intervals [¢y,tr+1] to encourage
even W movement per block, in light of exponential convergence by JKO
theory.

32/40

Method (cont.)

e We further proposed reparametrization-and-refine techniques to
improve training. In short,

o Reparametrization adjusts width of intervals [¢y,tr+1] to encourage
even W movement per block, in light of exponential convergence by JKO
theory.

e Refinement interpolates between [¢x,tx+1] to increase accuracy (i.e.,
double # blocks)

Probability Trajectory

Figure 1: Before and after reparametrization and refinement.

32/40

Experiments—simulation

e Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al.,
2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al.,
2021], and one diffusion model [Song et al., 2021].

e Takeaway: JKO-iFlow yields a closer match of X vs. X.

(b) FFIORD (c) OT-Flow (d) IGNN (e) ScoreSDE

(a) True data
7: 2.79¢-4, MMD-c: 2.73e-4 3.88e-4 1.42e-3 3.14e-3 6.90e-4

NLL 2.64 2.95 3.30 335 32

(f) Fractal tree (g) Olympic rings (h) Checkerboard
7: 3.12e-4, MMD-c: 2.17e-4 7: 3.16e-4, MMD-c: 2.36e-4 7: 3.09¢-4, MMD-c: 2.70e-4
NLL 220 NLL 1.66 NLL 3.59

Figure 1: Two-dimensional datasets visualized as scatter plots.

33/40

Experiments—simulation (cont.)

e Benefits of reparametrization + refinement.
e Takeaway: improved performance on edges, at which we have few
samples.

W2(pe-1, pe)

X X X
MMD Threshold t: 3.12e-4 MMD: 2.52e-4, NLL: 2.29 MMD: 2.17e-4, NLL: 2.20

[2 a 6 [10 12 1 16
—=— Initial —— Iter2 —+— Iter4 —— refine r-lter 1
—e lter1 —— Iter 3

(a) Per-block W3 over reparameterization iterations and refinement (b) Results at Iter 4 (middle) and r-Iter 1 (right). MMD and NLL
(‘r-Iter 1’ means one reparameterization iteration after refinement). values are shown in the title.

Figure 1: W5 movement before and after reprametrization and refinement,
as well as the generated samples.

34 /40

Experiments—real data
e High-dimensional tabular daatsets (d = 6, 8,43, 63).

e Takeaway: competitive or better performance under much less number

of mini-batch SGD.

Data Set Model # Param Training Testing
Time (h) _#Batches T () Batchsize MMD-m _ MMD-I__ NLL
i 1734 7: 2.90e-4
JKO-iFlow 76K, L=4 007 076K 351e1 10000 9865 240e4 -0.12
OLFlow 76K 036 758K 1711 10000 7584 535e4 032
POWER FFIORD 76K, L=4 067 758K 3.18¢-1 10000 9894 Ll6e3 063
d= IGNN 304K, =16 029 7.58K 1381 10000 1933 159%3 095
IResNet 304K,L=16 041 7.58K 1.95¢-1 10000 3923 2432 337
ScoreSDE 76K 006 758K 285¢-2 10000 9.12¢4 608e3 341
ScoreSDE 76K 060 75.80K 2.85¢-2 10000 7124 504c3 333
JKO-iFlow 57K, L=3 005 076K 2.63¢-1 10000 3864 720c-4 -0.06
7:185e4 7:273e4
JKO-iFlow 76K, L=4 007 076K 332e1 5000 1524 5.00c-4
OTFlow 76K 023 760K 1.09-1 5000 1994 5164
GAs FFIORD 76K, L=4 065 760K 3.08¢-1 5000 187e3 328e3
d=8 IGNN 304K, L=16 034 7.60K 16le-1 5000 6743 1d3e2
IResNet 304K,L=16 046 7.60K 2.18e-1 5000 32003 27362
ScoreSDE 76K 003 7.60K 1422 5000 105e3 83604
ScoreSDE 76K 030 76.00K 1422 5000 2234 3384
JKO-iFlow 95K, L=5 009 076K 4.15¢-1 5000 1514 3.77c4
7124664 7:3.75e4
JKO-Flow 112K,L=4 003 034K 36le-1 2000 96604 3794 1255
OTLFlow 112K 021 33K 223e-1 2000 6584 3794 1144
MINIBOONE FFIORD 112K.L=4 028 339K 2.97¢-1 2000 35le3 4124 2377
=13 IGNN 448K,L=16 063 339K 6.69c-1 2000 1212 40le4 2645
IResNet 448K.L=16 071 339K 7.54e-1 2000 2133 4l6ed 2236
ScoreSDE 112K 001 339K 6.37¢3 2000 586e-1 4334 2138
ScoreSDE 112K 010 33.90K 6.37¢-3 2000 4.17¢:3 387ed4 2070
7: 1384 7: 10Le-d
JKOAFlow 396K.L=4 005 103K 1.85-1 1000 224e4 19led -153.82
OTFlow 396K 062 1029K 2171 1000 5431 649%-1 -104.62
BSDS300 FFIORD 396K.L=4 054 1029K 1.89-1 1000 5601 6761 -31.80
i IGNN 990K,L=10 171 10.29K 5.98¢-1 1000 564e-l 6861 -37.68
IResNet 990K,L=10 205 1029K 7.17e-1 1000 550l 550l <3311
ScoreSDE 396K 001 1029K 3.50e-3 1000 56le-1 6601
ScoreSDE 396K 010 10290K 3.50e-3 1000 56lel 6621 73
JKO-Flow 396K,L=4 008 103K 276¢-1 5000 l4le4 8835 -15668

Figure 1: Quantitative metrics (MMD and NLL)

35/40

Experiments—real data (cont.)
e High-dimensional tabular daatsets (d = 6, 8, 43,63).
e Takeaway: A closer visual match between generated and true
samples.

True X KO-iFlow OT-Flow FFJORD IGNN ScoreSDE

(a) Power

True X KO-iFlow OT-Flow . FFJORD IGNN ScoreSDE

(b) Gas
True X KO-iFlow OT-Flow FFJORD IResNet ScoreSDE

(c) MINIBOONE
True X JKO-iFlow . OT-Flow FFJORD ScoreSDE

Figure 1: Four real datasets: PCA visualization

36/40

Experiments—real data (cont.)

e Image data—MNIST digits via a pre-trained auto-encoder.

049426
182095990

O ||| e
VS|
s|OIv|s(QOlwl~
-0 |(Qd |||
o~ w
LS ~
Y) w
e >

RIS

—|%

oW

»(y

0|

o9 62036
%291 840

412120023
379902742

/

T L
64d
bk d
Y o
@) 39
29

Figure 1: Uncurated MNIST digits.

37/40

Experiments—real data (cont.)

e Solar ramping event used in IGNN.

e Takeaway: The continuous-time model trains a more accurate
invertible flow mapping between X|Y and H|Y than the
discrete-time model.

(a) True X|Y JKO-iFlow (b) IGNN (c) True X|Y' JKO-iFlow (d) IGNN

7: 1.78¢-3, MMD-m: 2.42e-2 3.25e-2 7t 7.96e-3, MMD-m: 5.79e-2 9.71e-2
NLL -0.32 2.46 NLL -8.75 -3.80

Figure 1: PCA projection and quantitative metrics.

38/40

Summary and Extensions

Part I: Generative modeling for X|Y
e Summary:

e Propose a deep conditional generative model based on invertible
residual networks and normalizing flow.

e The framework is scalable to graph data with interesting
implication on GNN expressiveness in generative modeling.

39/40

Summary and Extensions

Part I: Generative modeling for X|Y
e Summary:

e Propose a deep conditional generative model based on invertible
residual networks and normalizing flow.

e The framework is scalable to graph data with interesting
implication on GNN expressiveness in generative modeling.

e Extensions:
e X|Y generation for continuous Y (i.e., regression setting).
e Graph topology and/or edge feature generation.

39/40

Summary and Extensions (cont.)

Part Il: Improved normalizing flow framework
e Summary:

e Propose an invertible neural ODE model that trains each
residual block in a step-wise fashion.

e Adaptive reparametrization and refinement of a computed
trajectory to improve generative quality and overall computational
efficiency.

40/40

Summary and Extensions (cont.)

Part Il: Improved normalizing flow framework
e Summary:

e Propose an invertible neural ODE model that trains each
residual block in a step-wise fashion.

e Adaptive reparametrization and refinement of a computed
trajectory to improve generative quality and overall computational
efficiency.

e Extensions:

e Continuity in time ¢ to further reduce computation.

e Other larger-scale examples (e.g., image generation).

¢ (Ongoing) Flow between general distributions P and () given
only training samples X ~ X, Y ~ Y.

40/40

