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Abstract— Athletics are a quintessential and universal expres-
sion of humanity. From French monks who in the 12th century
invented jeu de paume, the precursor to modern lawn tennis,
back to the K’iche’ people who played the Maya Ballgame
as a form of religious expression over three thousand years
ago, humans have sought to train their minds and bodies to
excel in sporting contests. Advances in robotics are opening up
the possibility of robots in sports. Yet, key challenges remain,
as most prior works in robotics for sports are limited to
pristine sensing environments, do not require significant force
generation, or are on miniaturized scales unsuited for joint
human-robot play. In this paper, we propose the first open-
source, autonomous robot for playing regulation wheelchair
tennis. We demonstrate the performance of our full-stack
system in executing ground strokes and evaluate each of the
system’s hardware and software components. The goal of this
paper is to (1) inspire more research in human-scale robot
athletics and (2) establish the first baseline towards developing
a robot in future work that can serve as a teammate for mixed,
human-robot doubles play. Our paper contributes to the science
of systems design and poses a set of key challenges for the
robotics community to address in striving towards a vision of
human-robot collaboration in sports.

I. INTRODUCTION

Sports have been an integral part of human history as they
have served as an important venue for humans to push their
athletic and mental abilities. Sports transcend culture [1], [2]
and provide strong physiological and social benefits [3]. The
physical and mental training from sports is widely applicable
to multiple aspects of life [4], [5]. Developing robotic systems
for competitive sports can increase participation in sports and
be used for sports training [6], [7], thus benefiting society
by promoting a healthier lifestyle and increased economic
activity. Furthermore, sports serve as a promising domain for
developing new robotic systems through the exploration of
high-speed athletic behaviors and human-robot collaboration.

Researchers in robotics have sought to develop autonomous
systems for playing various sports such as soccer and table
tennis. RoboGames [8] and RoboCup [9] have inspired
the next generation of roboticists to solve challenges in
sensing, navigation, and control. However, many of the
advancements or techniques used in solving these obstacles
have been restricted to overly miniaturized (e.g. Robo-
Soccer [10], Robo-sumo [11]), relatively stationary [12], or
highly idealized/controlled environments [13], [14], [11]. The
hardware is often specifically engineered to the sport [15],
making re-purposing designs and components for other

Fig. 1: ESTHER hitting a tennis ground stroke.

applications difficult. We address these limitations of prior
work by proposing an autonomous system for regulation
wheelchair tennis by leveraging only commercial off-the-shelf
(COTS) hardware. Our system named ESTHER (Experimental
Sport Tennis wHEelchair Robot) after arguably the greatest
wheelchair tennis player, Esther Vergeer.

Tennis is a challenging sport requiring players to exhibit
accurate trajectory estimation, strategic positioning, tactical
shot selection, and dynamic racket swings. The design of a
system that meets these demands comes with a multitude of
complications to address: precise perception, fast planning,
low-drift control, and highly-responsive actuation. These
challenges must be resolved in a framework efficient enough
to respond in fractions of a second [16].

In this paper, we present the system design and an
empirical analysis to enable ESTHER (Fig. 1) to address
these challenges. Our design adheres to ITF tennis regulations
by utilizing a legal tennis wheelchair and an anthropomorphic
robot arm, which were required to obtain permission to field
ESTHER on an NCAA Division 1 indoor tennis facility. We
contribute to the science of robotic systems by (1) Demon-
strating a fully mobile setup that includes a decentralized
low-latency vision system and a light-weight (190 lbs) mobile
manipulator that can be easily set up on any tennis court
within 30 minutes, (2) A design for a motorized wheelchair
base that is capable of meeting the athletic demands of tennis
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Fig. 2: The schematic (Fig. a) and images (Fig. b-c) of the
mechanical assembly of the chain drive system.

under the full-load of the manipulator, onboard computer, and
batteries, and (3) Demonstrate that our planning and control
algorithm is capable of hitting powerful ground strokes that
traverse the court. We open-sourced our designs and software
on our project website: https://core-robotics-lab.
github.io/Wheelchair-Tennis-Robot/

II. RELATED WORK

Systems that play tennis must be able to rapidly traverse
the court, control the racket at high speeds with precision,
and deliver sufficient force to withstand the impulse from ball
contact. Existing systems that attempt to play other racket
sports [17], [15] typically use pneumatically driven manipu-
lators for quick and powerful control; however, these systems
are stationary and are thus unsuitable. Other works [18], [19],
[20], [21], [22], [23] have mounted robotic manipulators on
rails, but these systems do not support full maneuverability.
Furthermore, these robot environments are heavily modified
to suit the robot, and thus, are rigid and unsuitable for human
proximity.

There have been several recent works in creating agile
mobile manipulators [24], [25]. For example, [24] proposes
a UR10 arm with 6 degrees of freedom (DoF) mounted
on a 3-DoF omni-directional base for catching balls. This
system works well for low-power, precision tasks, but lacks
the force required for a tennis swing. VaRSM [25] is a system
designed to play racket sports including tennis and is most
similar to our work. The system proposed uses a custom
6-DoF arm and custom swerve-drive platform as its base.
While this system appears effective, it is difficult to reproduce
given that the hardware is custom-made. Further, the system
was developed by a company that has not open-sourced its
implementation, and experimental details are lacking to afford
a proper baseline. In contrast, ESTHER is a human-scale
robot constructed from a COTS 7-DoF robot manipulator arm
and a regulation wheelchair with an open-sourced design and
code-base. This enables our system to serve as a baseline

Fig. 3: Electrical and communication diagram for ESTHER’s
mobile base and robotic arm.

for human-scale athletic robots while being reproducible
and adaptable for performing mobile manipulation tasks in
a variety of settings, such as healthcare [26], [27], [28],
manufacturing [29], [30], [31], and more [32].

III. METHODS

We detail the ESTHER’s hardware (Sec. III-A), perception
(Sec. III-B.1), planning (Sec. III-B.2), and control (Sec. III-
B.3) components. ESTHER’s design meets the athletic
demands of tennis and is easy and quick to set up.

A. Hardware

We mounted a 7-DoF high-speed Barrett WAM on a
motorized Top End Pro Tennis Wheelchair (Fig. 1).

Wheelchair – We designed a chain-drive system to deliver
power from the motors to the wheels. The schematic of
the system’s mechanical assembly is illustrated in Fig. 2.
Power from the battery is delivered through an ODrive
motor controller to two ODrive D6374 motors. The motors
for both wheels are coupled to a 1:10 ratio speed-reducer
planetary gearbox. The gearbox output shaft is coupled with
the wheel through a chain and sprocket system that provides
an additional 1:2 speed reduction to give a total reduction
of 1:20. With the motors rotating at maximum speed, the
wheelchair can achieve linear velocities of up to 10m s−1 and
in-place angular yaw velocity of up to 20 rad s−1. A chain
drive system has higher durability, torque capacity, increased
tolerances, and a simpler design versus belt drive or friction
drive systems.

The electrical system to power and control the mobile
wheelchair base consists of a DC battery, motors, a motor
controller, a wireless radio controller and receiver pair, and a
microcontroller as illustrated in Fig. 3. The radio controller
allows the user to remotely swap between idle, manual, and
autonomous modes. In idle mode, motors are de-energized.
In manual mode, a human can remotely control the motion of
the wheelchair. In autonomous mode, the wheelchair’s motion
is controlled by the onboard computer that communicates

https://core-robotics-lab.github.io/Wheelchair-Tennis-Robot/
https://core-robotics-lab.github.io/Wheelchair-Tennis-Robot/


Fig. 4: ESTHER’s System Architecture.

the desired wheel velocities to the microcontroller. The radio
controller also has an emergency stop (E-stop) button. If the
E-stop button is pressed, the microcontroller commands both
the motor speeds to be zero and turns off the power to the
arm. Maintaining a remote E-stop enables the whole system
to be tether-free and safely operable from a distance.

Barrett WAM – We mount a “HEAD Graphene Instinct
Power” tennis racket at the end of the WAM arm using a
3D-printed connector (Fig. 1). The design and visualization
of potential failure modes are available on the project website.
The arm is powered by a 500W mobile power station that
outputs AC current as illustrated in Fig. 3. The power station
is used to power the onboard computer, the LIDAR, and the
WAM. The computer requires up to 300W when charging
and running the full code stack. The LIDAR requires 30W
when running at maximum frequency. The WAM requires
50W when static and up to 150W while swinging.

B. System Design

We decompose the ESTHER into three main components:
Sensing and State Estimation, Planning, and Low-Level
Controllers (Fig. 4). We leverage ROS [33], [34] to build an
interconnected modular software stack using a combination
of open-source packages [34] and custom packages.

1) Sensing and State Estimation: To track a tennis ball
as it moves across the court, we built six ball detection rigs
(Fig. 5a). Each rig consists of a Stereolabs ZED2 stereo
camera, which is connected to an NVIDIA Jetson Nano that
communicates to a central onboard computer over Wi-Fi.
Each rig is mounted on a 13-foot tripod stand, is placed to
maximize coverage of the court (Fig. 8), and is calibrated
using an AprilTag [35] box.

Leveraging our camera rigs, we then employ multiple
computer vision techniques to detect an airborne tennis ball:
color thresholding, background subtraction, and noise removal

(a) (b)

Fig. 5: Fig. 5a depicts the ball detection rig, and Fig. 5b
depicts the measured vs. actual distance of a ball.

to locate the pixel center of the largest moving colored tennis
ball. Orange tennis balls were used since orange provided a
strong contrast against the green/blue tennis courts. The ball
coordinates are computed relative to the ball detection rig’s
reference frame by applying epipolar geometry on the pixel
centers from the rig. The ball’s pose was then mapped to the
world frame. The positional error covariance was modeled
through a quadratic relationship (i.e., aD2+bD+c) where D
is the ball’s distance to the camera and a, b, and c are tuned
via experiments of ball rolling along a linear rail (Fig. 5b).
A quadratic expression is utilized as it provides a simple
and accurate approximation of the measurement error. By
pursuing a distributed vision approach, image data could be
efficiently processed locally on each Jetson Nano and sent to
the onboard computer via Wi-Fi. These detection modules are
able to process the stereo camera’s 1080p images, produce
a positional estimate, and transmit the measurement to the
central computer within 100ms at a frequency of 25Hz. The
vision system is able to achieve up to 150 estimates/s.

a) Ball EFK and Roll-out Prediction: The detection
rigs’ ball position estimates are fused through a continuous-
time Extended Kalman Filter (EKF) [36] to produce a single
pose estimate. The EKF is based on the robot_localization
package [37], which is augmented to incorporate ballistic
trajectory, inelastic bouncing, court friction, and ball-air
interactions [38] into the state-estimate prediction. Our
localization approach allows the ball detection errors to be
merged into a single covariance estimate, informing how much
confidence should be placed on the ball’s predicted trajectory.
To enhance the EKF predictions, the state estimation is reset
when a tennis ball is first detected, and any measurement
delays are handled by reverting the EKF to a specified lag time
and re-applying all measurements to the present. By rolling
out the EKF’s state predictions forward in time, it is possible
to estimate the tennis ball’s future trajectory on the court,
enabling the wheelchair to move to the appropriate position.
If the confidence in the predicted trajectory is high, ESTHER
acts upon the prediction. Otherwise, the trajectory estimate
is ignored until the EKF converges to higher confidence. The
EKF and rollout trajectory estimator run at 100Hz to ensure
the high-level planners can incorporate timely estimates.

Our decentralized, modular approach to ball state estima-



Fig. 6: Trapezoidal velocity profiles for individual joints.

tion and trajectory prediction enables us to create a low-cost
vision system that can be quickly set up on any tennis court.
While we can achieve high-speed ball detection at up to
150Hz, unfortunately, this rate is not enough to infer precisely
the spin on the tennis ball (i.e., Magnus effect forces). We
attempt to infer this effect by incorporating indirect estimation
methods such as Adaptive EKF (AEKF) [39], and trajectory
fitting [40] into our EKF.

b) Wheelchair Localization: The motion of ESTHER’s
wheelchair base can be modeled as a differential drive base
that is equipped with three different sensors to determine
the robot’s state in the world as displayed in Fig. 4. 8192
Counts Per Revolution (CPR) motor encoders provide the
velocity and position of each wheel at 250Hz. A ZED2
Inertial Measurement Unit (IMU) is used to obtain the linear
velocity, angular velocity, and orientation of the motion base
at 400Hz. A Velodyne Puck LiDAR sensor is used to obtain
an egocentric 360° point cloud with a 30° vertical field of
view at 20Hz. For localizing the wheelchair, we first create
a map of the environment offline by recording IMU data and
3D point cloud data while manually driving the wheelchair
around at slow speeds. We use the hdl_graph_slam [41]
package to create a Point Cloud Data (PCD) map from this
recorded data for use online. Afterward, we use a point cloud
scan matching algorithm [41] to obtain an odometry estimate
based on LIDAR and IMU readings. A differential drive
controller gives a second odometry estimate using encoder
data from wheels and IMU readings. We follow guidance
from [37] for fusing these estimates to get the current state
of the wheelchair.

2) Planning: Given the predicted ball trajectory and
current position of the wheelchair, the “strategizer”, a behavior
orchestrator, selects the desired interception point. Then, the
strategizer determines the required wheelchair pose, approx-
imate stroke trajectory, and stroke timing. The strategizer
locates the point where the ball crosses a hitting plane chosen
such that the ball is at a hittable height when passing the
robot. The strategizer ensures that the interception point is
not too close to the ground and that the corresponding joint
positions are within limits.

Next, the strategizer finds the stroke parameters and the
corresponding wheelchair placement for that stroke. The
stroke is parameterized by three points: a start point (i.e.,
the joints at the swing’s beginning), a contact point (i.e., the
joints at ball contact), and an end point (i.e., the joints at
the swing’s completion). These points are determined such

Fig. 7: ESTHER simulation in RViz.

that each joint is traveling at the maximum possible speed at
the contact point while staying within each individual joint’s
position, velocity, and acceleration limits. Using the contact
point and the robot’s kinematics, the wheelchair’s desired
position is geometrically determined. Lastly, the strategizer
identifies the exact time to trigger the stroke by combining
the stroke duration and the time the ball takes to reach the
interception point.

The strategizer continuously updates the interception point
as the vision system updates its estimate of the ball’s predicted
trajectory, allowing us to adjust the stroke parameters and the
wheelchair position until a few milliseconds before the ball
crosses the interception plane, thus increasing the chances of
a successful hit.

3) Low-Level Control/Execution: We next describe the in-
teraction between the strategizer and the low-level controllers.

a) Wheelchair Control: Given the robot’s position and
state in the world, we use ROS’s move_base package [34]
to command the robot to go to the desired position. We
use the move_base’s default global planner (i.e., Dijkstra’s
algorithm) as our global planner and the Timed Elastic
Band (TEB) planner [42], [43] as our local planner. The
global planner finds a path between the wheelchair’s current
pose pcurr and the desired pose pdest given a map and
obstacles detected by the LiDAR. The local planner tries
to follow this path as closely as possible while performing
real-time collision checking and obstacle avoidance. The
plan from the local planner is translated to wheel velocities
through a differential drive controller. The velocities are
then communicated from the onboard computer to the
microcontroller over serial and are executed on the wheelchair.
The motor controller uses PID control to command the wheels
at desired velocities.

b) Arm Control: The arm-control subsystem deals with
generating joint trajectories for the joints and executing them
on the actual arm. The Barrett high-speed WAM has 7 joints
in total: base yaw, shoulder pitch, shoulder yaw, elbow pitch,
wrist pitch, wrist yaw, and palm yaw. The swing utilizes
base yaw, shoulder pitch, and elbow pitch joints to generate
speed, and the rest of the joints are held at constant positions
during the swing so the racket is in the right orientation when
making contact with the ball.

To hit a successful return, humans generate high racket
head speeds by merging contributions from multiple body
joints [44]. Inspired by this “summation of speed princi-
ple” [45], we created a “Fully-Extended” Ground stroke (FEG)
that maximizes the racket speed when it makes contact with



Fig. 8: Schematic showing the court setup

the ball. The base yaw and elbow pitch joint provide the
velocity component in the direction we want to return the
ball, and the shoulder pitch joint is used to adjust for the
ball height and hit the ball upward (Fig. 9). Each of these
joints follows a trapezoidal velocity profile (Fig. 6). The
joints’ trajectories are sent from the onboard computer to the
WAM computer which uses a PID controller to execute the
trajectory on the arm.

C. Simulation

Playing tennis involves high-speed motion, which can be
hazardous. As such, we set up a kinematic simulator in RViz
[46] (Fig. 7) for testing behavior interactions.

IV. EXPERIMENTS AND RESULTS

We evaluate ESTHER and its components to serve as a
baseline for future research on athletic robots for tennis. In
Section IV-A, we describe the details of our experimental
setup. In Section IV-B, we evaluate the capabilities of
individual subsystems and the system as a whole. Finally, we
report the results of our experiments in Section IV-C.

A. Experimental Setup

We have two evaluation settings for our system: one at an
NCAA Division 1 indoor tennis court facility and the other
within a lab space. The tennis court setup is equal to the
size of a regulation tennis court i.e. 23.77m by 10.97m, and
the lab setup is 11m by 4.57m. Fig. 8 displays the world
coordinate frame and on-court setup. The ball is launched
by a ball launcher (Lobster Sports - Elite Two Tennis Ball
Launcher) or a human towards the robot from the other side
of the court (11.9m < x < 23.8m). The lab setup is similar
to the court setup except the lab covers a smaller area, has
a different surface texture affecting ball bounce and wheel
traction, does not have court lines, and has different lighting
conditions. Overall, the lab setup is easier for hitting balls.

B. Sub-System Experiments

In this section, we overview the capabilities of our current
system and the results of experiments conducted in the tennis
court and lab based on the setup described in Section IV-A

Fig. 9: Racket head speed during a FEG stroke.

1) Wheelchair: In manual mode, we safely drove the
wheelchair with load at a linear speed of 4.34m s−1 and
at an angular speed of 5.8 rad s−1, less than half of the
maximum possible speeds achievable with our system. In
autonomous mode testing with the whole stack, we achieve
accelerations of 1.42m s−2 and deceleration of 1.60m s−2.
These acceleration and deceleration values are more than the
average side-to-side acceleration and deceleration values of
≈1.00m s−2 achieved by professional human players [47].

2) Stroke Speed: ESTHER reaches pre-impact racket head
speeds (Fig. 9) of 10m s−1. This speed is on the same order
of magnitude of professional players (17−36m s−1 [48]).

3) Sensing and State Estimation: An important considera-
tion for playing a sport like tennis is to anticipate the ball
trajectory early so the robot can get in position to return
the ball. To measure the performance of our ball trajectory
prediction system, we measure the error between the ball’s
predicted x, y, z position and its ground-truth position as it
crosses the interception plane as a function of the fraction
of time passed to reach the interception plane. We report the
average interception point prediction error over 10 trajectories
in our court setup in Fig. 10. Each trajectory is roughly
2 s long, and the ball was launched at roughly 8m s−1. In
the court setup, the ball travels along the x-axis, thereby
the prediction error in x affects the timing of the stroke.
Similarly, prediction error in y affects wheelchair positioning,
and z affects the height at which the arm swings. As the
FEG stroke takes about 0.5 s to go from the start to the
interception point, we must be certain about the x coordinate
of the interception point before 75% of the total trajectory
has elapsed. Defining acceptable error margins for racket
positions at the interception plane to be equal to the racket
head width, we can observe from Fig. 10 that the y and z
predictions converge to be within the acceptable error margin
after 50% of the trajectory is seen. Given that the wheelchair
is able to accelerate at 1.42m s−2, we assess that ESTHER is
capable of moving up to 0.71m from a standing start after we
establish confidence in the predicted interception point. For
larger distances, we need more accurate predictions quicker.

4) Reachability: Researchers found that in professional
tennis, 80% of all strokes require players to move less than



Fig. 10: Error in ball’s predicted vs. actual position at desired
intercept. Dashed lines represent range of acceptable error.

2.5m [49]. To benchmark our system’s ability to reach balls
that are in this range, we conduct a reachability study. We
started launching balls toward the robot in our court setup
and recorded the results. After every 10 balls, we increased
the distance between the wheelchair and the ball’s average
position at the interception plane by 0.3m. In this test, to
mitigate the latency introduced by the time it requires the
vision system to converge to an accurate estimate, we start
moving the wheelchair towards the ball’s average detected y
position as soon as the ball is detected for the first time after
launch. The position of the wheelchair is later fine-tuned once
the prediction from the vision system has converged. We can
see the histogram of the success rate as a function of the
distance needed to be moved by the wheelchair in Fig. 12a.
As expected, the success rate decreases as the distance needed
to be moved by wheelchair increases. However, we still see
success even if the wheelchair movement approaches 2m,
demonstrating our system’s agility for tennis.

C. Whole-System Experiments

We perform 15 trials in each scenario and report the details
of the hit and return rate in Table I. A returned ball over the
net landing inside the singles lines of the court is marked as
successful. Fig. 11 illustrates a frame-by-frame depiction of
our system in action on the court. For tests inside the lab,
a ball that goes over the net height (1.07m) while crossing
the position from which the ball was launched is marked
successful.

To further evaluate the variance in ball launches, we
conducted a contiguous trial of 50 launches with a ball
launcher in the court setting and plotted the histogram of
the time it takes to reach the pre-specified interception
plane 8m away from the launcher in Fig. 12b. In Fig. 12c,
we visualize the position of the balls at the interception
plane and the configurations that were reachable without
wheelchair movement. 65% of the launched balls were in a
configuration that required wheelchair movement, showcasing
the importance of a mobile system to play a sport like tennis.
The experiment was repeated in the lab setting as well. The
results are marginally better in the lab setting due to the closer
proximity of the cameras and more controlled conditions.
These results along with the data in Table I serve as a good
baseline for future works as beating them would require

Fig. 11: Outline of ESTHER in action. Orange box highlights
ball in image.

faster perception, increased agility, and improved planning
and control algorithms.

V. DISCUSSION AND KEY CHALLENGES

We have experimentally demonstrated that ESTHER is fast,
agile, and powerful enough to successfully hit ground strokes
on a regulation tennis court. Our vision for the system is to
be able to rally and play with a human player. To realize that
goal, we lay down a set of key challenges to address.

Section IV-B.4 showcased that ESTHER is able to suc-
cessfully return balls that require the wheelchair to move
up to 2m given that the movement starts right after the ball
is launched. However, as discussed in Section IV-B.3, our
vision system needs some time to converge to an accurate
prediction. To get an accurate, early estimate of the ball’s
pose, we will need a higher fps vision setup that utilizes
cameras to triangulate a ball from multiple angles [40]. To
make the ball’s predicted trajectory more precise, the system
should also be able to estimate the spin of the ball. Directly
estimating spin on the ball is a hard problem [40]. However,
the ball’s spin can be estimated indirectly using methods such
as trajectory fitting [40] or an AEKF [39]. An interesting
research direction would be to accurately estimate the ball’s
state [50] by observing how the ball was hit on the previous
shot for e.g., a racket going from low to high indicates top
spin, and a racket going from high to low is indicative of
backspin. The ultimate challenge is to perform this sensing
with only onboard mechanisms.

We currently plan the motion of the wheelchair and the arm
separately. However, the two components are dynamically
coupled, and an ideal planner should consider both simultane-
ously. In future work, our system serves as an ideal test-bed
for the development of kinodynamic motion planners for
athletic mobile manipulators as current dynamical planners
are not good enough for agile movement [51]. Such a planner
would also help us reach higher racket head velocities as
we will be able to utilize the wheelchair’s potential to rotate
at high angular speeds as established in the same way that
professional human players rotate their trunk while hitting
a ground stroke. Moreover, the planner will need to be safe
and fast for live human-robot play.



Ball Launch Interception Point Lateral (y) spread Success Metrics

Setup Interception Plane (m)
Distance to

Speed (ms−1)
Average Launch IQR (m) Std. Dev (m) Hit Rate Success Rate

Court (Ball Launcher) 7.9 8.01 0.31 0.23 73% 66%
Court (Ball Launcher) 12.8 12.64 0.26 0.29 60% 53%
Lab (Ball Launcher) 7.5 6.79 0.28 0.20 93% 80%
Lab (Human ) 7.5 6.56 0.54 0.52 40% 33%

TABLE I: Experiment results for 15 consecutive trials in different scenarios

(a) (b) (c)
Fig. 12: Fig. 12a shows a histogram of successful returns as a function of the distance the wheelchair needed to move to hit
the ball. Fig. 12b shows a histogram for times of ball arrival at interception point from the time of the first detection with
the court setup. Fig. 12c shows a scatter plot of ball positions in the interception plane with the court setup.

VI. APPLICATIONS AND FUTURE WORK

The system opens up numerous exciting opportunities for
future research such as learning strokes from expert demon-
strations via imitation & reinforcement learning, incorporating
game knowledge to return at strategic points, and effective
human-robot teaming for playing doubles. We briefly describe
our vision for some of these exciting future directions:

Interactive Robot Learning – Interactive Robot Learning
(i.e., Learning from Demonstration (LfD)) focuses on extract-
ing skills from expert demonstrations or instructions for how
to perform a task. It is quite challenging to manually encode
various strategies, tactics, and low-level stroke styles for a
tennis-playing robot, and, ESTHER serves as a great platform
to develop and deploy LfD algorithms that learn from expert
gameplay. Prior work has shown how kinesthetically teaching
can be employed to teach robots various styles of playing
Table-Tennis [52], [53], but these techniques are demonstrated
on arms that are mounted to a stationary base and require
much lower racket head speeds. Therefore, we challenge the
LfD community to leverage our platform to explore a more
challenging robotics domain.

Human-Robot Teaming – Having agile robots that col-
laborate with humans to perform well on a shared task is
a challenging problem as it requires an accurate perception
of human intention, clear communication of robot intention,
and collaborative planning and execution. We believe that
our system is a great benchmark to study these problems as
doubles play in tennis often has many collaborative strategies
that are based on a good rapport that players develop over
many practice sessions. Having robots similarly collaborate
with humans and build trust and personalized strategies over
time in a highly competitive and dynamic environment is an
important research problem more broadly [54].

VII. CONCLUSION

In this paper, we present ESTHER, a fully autonomous
system built with general-purpose robotic hardware. Our
work contributes to the existing research in three main ways:
introduction of a low-cost, fast, decentralized perception
system that can be easily set up anywhere for accurate ball
tracking; design of a chain drive system that can be used to
motorize a regulation sports wheelchair into an agile mobile
base for any robotic manipulator; and planning and control
of an agile mobile manipulator to exhibit athletic behaviors.
We experimentally determined the capabilities of individual
subsystems and verified that the system is able to perform
at a human scale. We also demonstrated that our system
can successfully hit ground strokes on a regulation tennis
court. Avenues of future research include improvements to
the perception system, development of kinodynamic planners
for athletic mobile manipulators, learning game strategies,
court positioning, and strokes from human play, as well
as collaboration with a human partner to successfully play
doubles tennis.
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