
Hyperthreading

•SMT improves parallelization by making two virtual (logical) cores for
each physical core by duplicating architectural state (e.g., registers) but not
the main resources (e.g., ALUs)

•The first hyperthreading implementation was reported (by Intel) to use ~5%
more area for 15-30% better performance.

•Performance gains are very dependent on whether the application is
memory or compute bound.

1

https://www.anandtech.com/show/868/3

A type of simultaneous
multithreading (SMT) -
hyperthreading is the

proprietary Intel version.

https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates

2

1/8 1/4 1/2 1 2 4 8 16

Computational Intensity (flops/byte)

1/2

1

2

4

8

16

32

64

128

256
At

ta
in

ab
le

 G
flo

ps
/s

Peak

Example machine:
Effective Roofline (before and after)

Before optimization, traffic,
and limited bandwidth -
performance is limited to a
very narrow window.

After optimization, ideally,
performance is significantly
better.

Peak BW

W/out N
UMA optim

iza
tio

n

W/out S
W prefetch

Peak BW Mul/add imbalance

w/out SIMD

w/out ILP

From UC Berkeley CS267

Roofline Example: Parallel loop

3

parallel_for (i=0;i<N;i++) {

Z[i] = X[i] + alpha*Y[i];

}

2 flops, 3 memory references (2 reads and 1 write)

3 elements at 8 bytes each = 24 bytes

Intensity = flops / bytes = 2/24 ~ 0.083

From UC Berkeley CS267

4

Computational Intensity (flops/byte)

At
ta

in
ab

le
 G

flo
ps

/s

DRAM GB/s

Peak FLOP/s

Roofline Example: Parallel loop

Loop

0.083

From UC Berkeley CS267

Roofline Example: Heat equation stencil

5

For x, y, z in 0 to n-1

next[x,y,z] =

C0 * current[x,y,z] +

C1 * (current[x-1, y, z] +

 current[x+1, y, z] +

 current[x, y-1, z] +

 current[x, y+1, z] +

 current[x, y, z-1] +

 current[x, y, z+1]);

From UC Berkeley CS267

A 7-point constant coefficient stencil:

8 flops, 8 memory references (7 reads, 1
write) per point

CI = 0.125 flops / byte

Roofline Example: Heat equation stencil

6

A 7-point constant coefficient stencil:

8 flops, 8 memory references (7 reads, 1
write) per point

CI = 0.125 flops / byte

For x, y, z in 0 to n-1

next[x,y,z] =

C0 * current[x,y,z] +

C1 * (current[x-1, y, z] +

 current[x+1, y, z] +

 current[x, y-1, z] +

 current[x, y+1, z] +

 current[x, y, z-1] +

 current[x, y, z+1]);

Cache blocking can filter
out accesses to DRAM
and increase the effective
CI to close to 0.5

From UC Berkeley CS267

7

Roofline Example: Heat equation stencil

Computational Intensity (flops/byte)

At
ta

in
ab

le
 G

flo
ps

/s

DRAM GB/s

Peak FLOP/s

~0.5

7-point stencil

Still O(1) flops/byte, but
(leading) constants matter

Loop

0.083

From UC Berkeley CS267

Roofline across algorithms

8Work by Williams, Oliver, Shalf, Madduri, Kamil, Im, Ethier, …From UC Berkeley CS267

Summary

9

Roofline captures upper bound performance with the min of 2 upper
bounds of the machine:

Peak flops

Peak memory bandwidth

Computational / Arithmetic intensity is a key part of the model.

Usually defined as best case

Originally for single processors and shared-memory machines.

Widely used in practice and adapted to any bandwidth/compute limited
situation.

CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

Acknowlegement: some slides from University of Utah CS 6530

Lecture 4: I/O-efficient Data Structures
(Trees, Skip Lists, and Tries)

+

mailto:hxu615@gatech.edu

Recall: Ideal-Cache Model

11

Parameters

• Two-level hierarchy

• Cache size of M bytes

• Cache-line length of B bytes

• Fully associative

• Optimal, omniscient replacement.

Performance Measures

•Work W (ordinary running time)
•Cache misses Q (number of cache lines that need
to be transferred between cache and memory)

From MIT 6.172

Dictionary data structures
A dictionary data structure is a general-purpose data structure for supporting a
group of objects.

Dynamic dictionaries typically support the following operations:

•Search for the existence of an element

•Insert an element

•Remove an element

12https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_data_structures/Dictionaries
https://www.scaler.com/topics/dictionary-in-data-structure/

Key-value stores
map keys to values

If just keys
without values, it

is a key store

Review: Self-balancing binary search trees

13

Self-balancing binary search trees support the basic dynamic-dictionary
operations (search, insert, delete) in time.

Examples include: red-black trees, AVL trees, etc.

For a more in-depth review, see CLRS chapters 12-13 (pdf on Canvas).

O(log n)

Diagram from CLRS

Warmup Question

14

How many cache misses does it take to search/
insert/delete in a balanced binary tree?

Cache misses in binary trees

A balanced binary tree follows one pointer and therefore incurs one cache
miss per level.

The height of the tree is , so every operation takes cache
misses.

O(log n) O(log n)

15

O(log n)

Skip lists

16

What is a skip list?

17Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Skip list implementation

18Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Search

19Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Insertion

20Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Randomized algorithms

21Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

A randomized algorithm controls its execution through random selection
(e.g., coin tosses).

It contains statements like:

Analyzing randomized algorithms

22Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

The runtime of a randomized algorithm depends on the outcomes of the
coin tosses (or dice rolls, etc.)

Through probabilistic analysis, we can derive the expected running time of
a randomized algorithm.

We make the following assumptions in the analysis:

• the coins are unbiased, and

• the coin tosses are independent.

The worst-case running time is often large but has very low probability (e.g.,
it occurs when all coin tosses give “heads”).

Randomized algorithms and skip lists

When randomization is used in data structures, they are referred to as
probabilistic data structures.

We use a randomized algorithm to insert (and delete) elements into a skip list
in expected time.

The height of a skip list is with high probability.

The expected space usage of a skip list is .

O(log n)

O(log n)

O(n)

23Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Probability depends on a
certain number n and goes

to 1 as n goes to infinity

Question

24

Are binary trees and skip lists optimal in the
ideal-cache model?

B-trees and B+-trees

25

B-trees

A B-tree is a self-balancing tree data
structure that keeps data sorted and allows
searches, sequential access, insertions, and
deletions in cache-line misses in
the ideal-cache model.

The fanout of the tree is B

Generalization of a binary search tree - a
node can have more than 2 children

Optimized for systems that read/write large
blocks of data

O(logB(N))

26From U of U CS6530

B-tree structure

27

B+-tree structure

28

… …

Leaf nodes are
chained together

with pointers

Often used in
practice

All elements
appear in leaves

Search in B+-trees

Searches in a B+-tree begin at the root, and key comparisons direct it to a
leaf.

Example: search for 15

29

Based on the search, we know 15 is not in the tree!

Nodes have
size B

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root

Example: Insert 8 into B+-tree

30

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root
Target leaf is full:
need to do a data

page split

Example: Insert 8 into B+-tree

31

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Target leaf splits

Target leaf is full:
need to do a data

page split

Example: Insert 8 into B+-tree

32

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Need to adjust
pivots

Promote 5 as a
pivot

Next example: Insert 21 into B+-tree

33

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

5 14 19 24

2 3 14 16 19 20 24 27 295 7 8 21 22 23

Promote 21 as a pivot

Parent node is full: need to
do an index page split

Next example: Insert 21 into B+-tree

34

5 14 19 24

2 3 14 16 19 20 24 27 295 7 8 21 22 23

Parent node is full: need to
do an index page split

5 14

2 3 14 16 19 20 24 27 295 7 8 21 22 23

21 24

19

Index page split
adds a new level

to the tree
Root

B-tree bounds

35

5 14

2 3 14 16 19 20 24 27 295 7 8 21 22 23

21 24

19
Root

B-trees support searches (reads) and inserts (updates) in cache-
line transfers.

Most updates only write to the leaves, but in the worst case, an update
may propagate up the tree for writes.

O(logB N)

O(logB N)

B-tree bounds

36

5 14

2 3 14 16 19 20 24 27 295 7 8 21 22 23

21 24

19
Root

B-trees support searches (reads) and inserts (updates) in cache-
line transfers.

Most updates only write to the leaves, but in the worst case, an update
may propagate up the tree for writes.

O(logB N)

O(logB N)

Asymptotically better
than binary trees

Question

37

Are B-trees optimal in the ideal-cache model?

How can/should we organize data?

There are many different approaches…

38

https://pbfcomics.com/comics/game-boy/

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

How should we organize data?

39Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

Logging
e.g., with an array

Indexing
e.g., B-trees

How should we organize data?

40Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

Logging

Indexing
(assuming B-tree)

Insert Search

O(1/B) O(N/B)

O(logB N) O(logB N)

Append to
end of log

Scan entire
log

Locate in leaf (root-
to-leaf traversal)

Insert into leaf (root-
to-leaf traversal)

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

41Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

42Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

43Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf

Target of opportunity

Insertions improve by 10x-100x

with almost no loss of point-query

performance

B trees
(and write optimization)

ε

44

B treesε
B trees are search trees (like B-trees)ε

45Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Insertion in B treesε
Insertions get put into the root buffer

46Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

Insertion in B treesε
Insertions get put into the root buffer

47Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

Insertion in B treesε
Insertions get put into the root buffer

48Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

Insertion in B treesε
Insertions get put into the root buffer

49Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

Insertion in B treesε
Insertions get put into the root buffer

50Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

Insertion in B treesε
Insertions get put into the root buffer

51Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

Insertion in B treesε
Insertions get put into the root buffer

52Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

Insertion in B treesε
Insertions get put into the root buffer

53Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

Insertion in B treesε

54Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8 13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer

Insertion in B treesε

55Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer

Insertion in B treesε

56Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer

66

6

Insertion in B treesε

57Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer
66

6

Insertion in B treesε

58Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer
66

6

65

1

Insertion in B treesε

59Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer
66

6

65

1

Insertion in B treesε

60Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer
66

6

65

1

Insertion in B treesε

61Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer

66

6

65

1

Insertion in B treesε

62Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer

66

6

65

1

Insertion in B treesε

63Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick the child receiving

the most messages, and
2. Move the messages to

the child buffer

66

6

65

1

64

Lookups in B treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots,
but check buffers along
the way

Query(71)

65

Lookups in B treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots,
but check buffers along
the way

Query(71)

66

Lookups in B treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots,
but check buffers along
the way

Query(71)

67

Lookups in B treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots,
but check buffers along
the way

Query(71)

68

Lookups in B treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots,
but check buffers along
the way

Query(71)

69

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

70

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

71

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

72

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

73

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

CPU work = O(old + new messages)

Volume of IO = O(old + new messages)

74

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

CPU work = O(old + new messages)

Volume of IO = O(old + new messages)

Older data gets written over and over
again

75

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

CPU work = O(old + new messages)

Volume of IO = O(old + new messages)

Older data gets written over and over
again

76

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

CPU work = O(old + new messages)

Volume of IO = O(old + new messages)

Older data gets written over and over
again

77

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

CPU work = O(old + new messages)

Volume of IO = O(old + new messages)

Older data gets written over and over
again

Up to B times per node!ε

78

Insertions in B trees are
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B treesε

CPU work = O(old + new messages)

Volume of IO = O(old + new messages)

Older data gets written over and over
again

Up to B times per node!ε

I/O amplification

Read amplification is the ratio of the number of blocks read from the disk
versus the number of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks written to the disk
versus the number of blocks required to write the key-value pair.

79

Shortens disk
(e.g., flash, SSD)

lifespan Buffering increases
write amplification

I/O amplification

Read amplification is the ratio of the number of blocks read from the disk
versus the number of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks written to the disk
versus the number of blocks required to write the key-value pair.

80

Shortens disk
(e.g., flash, SSD)

lifespan Buffering increases
write amplification

How to fix it?

See “SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value
Stores” by Conway, Gupta, Chidambaram, Farach-Colton,

Spillane, Tai, Johnson, ATC 2020

