
Hyperthreading

•SMT improves parallelization by making two virtual (logical) cores for 
each physical core by duplicating architectural state (e.g., registers) but not 
the main resources (e.g., ALUs)


•The first hyperthreading implementation was reported (by Intel) to use ~5% 
more area for 15-30% better performance.


•Performance gains are very dependent on whether the application is 
memory or compute bound.

1

https://www.anandtech.com/show/868/3

A type of simultaneous 
multithreading (SMT) - 
hyperthreading is the 

proprietary Intel version.

https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates
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Roofline Example: Parallel loop

3

parallel_for (i=0;i<N;i++) { 

Z[i] = X[i] + alpha*Y[i]; 

} 

2 flops, 3 memory references (2 reads and 1 write)

3 elements at 8 bytes each = 24 bytes

Intensity = flops / bytes = 2/24 ~ 0.083 

From UC Berkeley CS267
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Roofline Example: Heat equation stencil

5

For x, y, z in 0 to n-1 

next[x,y,z] = 

C0 * current[x,y,z] + 

C1 * (current[x-1, y, z] + 

 current[x+1, y, z] + 

 current[x, y-1, z] + 

 current[x, y+1, z] + 

 current[x, y, z-1] + 

 current[x, y, z+1]); 

From UC Berkeley CS267

A 7-point constant coefficient stencil:

8 flops, 8 memory references (7 reads, 1 
write) per point

CI = 0.125 flops / byte



Roofline Example: Heat equation stencil

6

A 7-point constant coefficient stencil:

8 flops, 8 memory references (7 reads, 1 
write) per point

CI = 0.125 flops / byte

For x, y, z in 0 to n-1 

next[x,y,z] = 

C0 * current[x,y,z] + 

C1 * (current[x-1, y, z] + 

 current[x+1, y, z] + 

 current[x, y-1, z] + 

 current[x, y+1, z] + 

 current[x, y, z-1] + 

 current[x, y, z+1]); 

Cache blocking can filter 
out accesses to DRAM 
and increase the effective 
CI to close to 0.5

From UC Berkeley CS267
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Roofline Example: Heat equation stencil
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Roofline across algorithms

8Work by Williams, Oliver, Shalf, Madduri, Kamil, Im, Ethier, …From UC Berkeley CS267



Summary

9

Roofline captures upper bound performance with the min of 2 upper 
bounds of the machine:


Peak flops

Peak memory bandwidth


Computational / Arithmetic intensity is a key part of the model.

Usually defined as best case


Originally for single processors and shared-memory machines.


Widely used in practice and adapted to any bandwidth/compute limited 
situation.
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Recall: Ideal-Cache Model

11

Parameters

• Two-level hierarchy

• Cache size of M bytes

• Cache-line length of B bytes

• Fully associative

• Optimal, omniscient replacement.

Performance Measures 

•Work W (ordinary running time) 
•Cache misses Q (number of cache lines that need 
to be transferred between cache and memory)

From MIT 6.172



Dictionary data structures
A dictionary data structure is a general-purpose data structure for supporting a 
group of objects.


Dynamic dictionaries typically support the following operations:

•Search for the existence of an element

•Insert an element

•Remove an element

12https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_data_structures/Dictionaries
https://www.scaler.com/topics/dictionary-in-data-structure/

Key-value stores 
map keys to values

If just keys 
without values, it 

is a key store



Review: Self-balancing binary search trees

13

Self-balancing binary search trees support the basic dynamic-dictionary 
operations (search, insert, delete) in  time.


Examples include: red-black trees, AVL trees, etc.


For a more in-depth review, see CLRS chapters 12-13 (pdf on Canvas).

O(log n)

Diagram from CLRS



Warmup Question

14

How many cache misses does it take to search/
insert/delete in a balanced binary tree?



Cache misses in binary trees

A balanced binary tree follows one pointer and therefore incurs one cache 
miss per level.


The height of the tree is , so every operation takes  cache 
misses. 

O(log n) O(log n)

15

O(log n)



Skip lists

16



What is a skip list?

17Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Skip list implementation

18Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Search

19Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Insertion

20Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt



Randomized algorithms

21Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

A randomized algorithm controls its execution through random selection 
(e.g., coin tosses).


It contains statements like:



Analyzing randomized algorithms

22Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

The runtime of a randomized algorithm depends on the outcomes of the 
coin tosses (or dice rolls, etc.)


Through probabilistic analysis, we can derive the expected running time of 
a randomized algorithm.


We make the following assumptions in the analysis:


• the coins are unbiased, and


• the coin tosses are independent.


The worst-case running time is often large but has very low probability (e.g., 
it occurs when all coin tosses give “heads”).



Randomized algorithms and skip lists

When randomization is used in data structures, they are referred to as 
probabilistic data structures.


We use a randomized algorithm to insert (and delete) elements into a skip list 
in expected  time.


The height of a skip list is  with high probability.


The expected space usage of a skip list is .

O(log n)

O(log n)

O(n)

23Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Probability depends on a 
certain number n and goes 

to 1 as n goes to infinity



Question

24

Are binary trees and skip lists optimal in the 
ideal-cache model?



B-trees and B+-trees

25



B-trees

A B-tree is a self-balancing tree data 
structure that keeps data sorted and allows 
searches, sequential access, insertions, and 
deletions in  cache-line misses in 
the ideal-cache model.


The fanout of the tree is B


Generalization of a binary search tree - a 
node can have more than 2 children


Optimized for systems that read/write large 
blocks of data

O(logB(N))

26From U of U CS6530



B-tree structure

27



B+-tree structure

28

… …

Leaf nodes are 
chained together 

with pointers

Often used in 
practice

All elements 
appear in leaves



Search in B+-trees

Searches in a B+-tree begin at the root, and key comparisons direct it to a 
leaf.


Example: search for 15

29

Based on the search, we know 15 is not in the tree!

Nodes have 
size B

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root



Example: Insert 8 into B+-tree

30

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root
Target leaf is full: 
need to do a data 

page split



Example: Insert 8 into B+-tree

31

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Target leaf splits

Target leaf is full: 
need to do a data 

page split



Example: Insert 8 into B+-tree

32

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Need to adjust 
pivots

Promote 5 as a 
pivot



Next example: Insert 21 into B+-tree

33

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

5 14 19 24

2 3 14 16 19 20 24 27 295 7 8 21 22 23

Promote 21 as a pivot

Parent node is full: need to 
do an index page split



Next example: Insert 21 into B+-tree

34

5 14 19 24

2 3 14 16 19 20 24 27 295 7 8 21 22 23

Parent node is full: need to 
do an index page split

5 14

2 3 14 16 19 20 24 27 295 7 8 21 22 23

21 24

19

Index page split 
adds a new level 

to the tree
Root



B-tree bounds

35

5 14

2 3 14 16 19 20 24 27 295 7 8 21 22 23

21 24

19
Root

B-trees support searches (reads) and inserts (updates) in  cache-
line transfers.


Most updates only write to the leaves, but in the worst case, an update 
may propagate up the tree for  writes.

O(logB N)

O(logB N)



B-tree bounds
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5 14

2 3 14 16 19 20 24 27 295 7 8 21 22 23

21 24

19
Root

B-trees support searches (reads) and inserts (updates) in  cache-
line transfers.


Most updates only write to the leaves, but in the worst case, an update 
may propagate up the tree for  writes.

O(logB N)

O(logB N)

Asymptotically better 
than binary trees



Question

37

Are B-trees optimal in the ideal-cache model?



How can/should we organize data?

There are many different approaches…

38

https://pbfcomics.com/comics/game-boy/

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf



How should we organize data?

39Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

Logging 
e.g., with an array

Indexing 
e.g., B-trees



How should we organize data?

40Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

Logging

Indexing 
(assuming B-tree)

Insert Search

O(1/B) O(N/B)

O(logB N) O(logB N)

Append to 
end of log

Scan entire 
log

Locate in leaf (root-
to-leaf traversal)

Insert into leaf (root-
to-leaf traversal)



Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

41Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf



Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

42Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf



Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

43Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf

Target of opportunity

Insertions improve by 10x-100x

with almost no loss of point-query


performance



B  trees 
(and write optimization)

ε

44



B  treesε
B  trees are search trees (like B-trees)ε

45Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf



Insertion in B  treesε
Insertions get put into the root buffer

46Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94 

4



Insertion in B  treesε
Insertions get put into the root buffer

47Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94 

4



Insertion in B  treesε
Insertions get put into the root buffer

48Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94 

4

39 

2



Insertion in B  treesε
Insertions get put into the root buffer

49Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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39 
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Insertion in B  treesε
Insertions get put into the root buffer

50Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B  treesε
Insertions get put into the root buffer

51Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B  treesε
Insertions get put into the root buffer

52Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B  treesε
Insertions get put into the root buffer

53Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B  treesε

54Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer



Insertion in B  treesε

55Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer



Insertion in B  treesε

56Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer

66 

6



Insertion in B  treesε

57Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer
66 
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Insertion in B  treesε

58Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer
66 

6
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Insertion in B  treesε

59Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer
66 

6
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Insertion in B  treesε

60Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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1. Pick the child receiving 

the most messages, and 
2. Move the messages to 
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Insertion in B  treesε

61Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

94 

4

39 

2

64 

8

13 

1

When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
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Insertion in B  treesε

62Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer
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Insertion in B  treesε

63Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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When a buffer is full: 
1. Pick the child receiving 

the most messages, and 
2. Move the messages to 

the child buffer

66 
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Lookups in B  treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots, 
but check buffers along 
the way

Query(71)
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Lookups in B  treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots, 
but check buffers along 
the way

Query(71)
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Lookups in B  treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots, 
but check buffers along 
the way

Query(71)
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Lookups in B  treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots, 
but check buffers along 
the way

Query(71)
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Lookups in B  treesε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Lookups follow pivots, 
but check buffers along 
the way

Query(71)
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε

CPU work = O(old + new messages) 

Volume of IO = O(old + new messages)
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε

CPU work = O(old + new messages) 

Volume of IO = O(old + new messages)

Older data gets written over and over 
again
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε

CPU work = O(old + new messages) 

Volume of IO = O(old + new messages)

Older data gets written over and over 
again
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε

CPU work = O(old + new messages) 

Volume of IO = O(old + new messages)

Older data gets written over and over 
again
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε

CPU work = O(old + new messages) 

Volume of IO = O(old + new messages)

Older data gets written over and over 
again 

Up to B  times per node!ε
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Insertions in B  trees are  
more expensive than they look

ε

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Recall: Insertions in B  treesε

CPU work = O(old + new messages) 

Volume of IO = O(old + new messages)

Older data gets written over and over 
again 

Up to B  times per node!ε



I/O amplification

Read amplification is the ratio of the number of blocks read from the disk 
versus the number of blocks required to read the key-value pair. 


Write amplification is the ratio of the number of blocks written to the disk 
versus the number of blocks required to write the key-value pair.

79

Shortens disk 
(e.g., flash, SSD) 

lifespan Buffering increases 
write amplification



I/O amplification

Read amplification is the ratio of the number of blocks read from the disk 
versus the number of blocks required to read the key-value pair. 


Write amplification is the ratio of the number of blocks written to the disk 
versus the number of blocks required to write the key-value pair.

80

Shortens disk 
(e.g., flash, SSD) 

lifespan Buffering increases 
write amplification

How to fix it?  

See “SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value 
Stores” by Conway, Gupta, Chidambaram, Farach-Colton, 

Spillane, Tai, Johnson, ATC 2020


