A type of simultaneous
- multithreading (SMT) -
Hyperthreading < yperthreading is the

proprietary Intel version.

eSMT improves parallelization by making two virtual (logical) cores for
each physical core by duplicating architectural state (e.g., registers) but not
the main resources (e.g., ALUSs)

e The first hyperthreading implementation was reported (by Intel) to use ~5%
more area for 15-30% better performance.

e Performance gains are very dependent on whether the application is
memory or compute bound.

Multiprocessor Hyper-Threading

TE (W] [

| Processor J | Processor | Processor
SET | Execution | Execution
Resources | Resources Resources

https://www.anandtech.com/show/868/3

AS = Architecture State (eax, edx, control registers, etc.), XAPIC

https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updatebk



Attainable Gflops/s

From UC Berkeley CS267

Effective Roofline (before and after)

Example machine:

256

128
Peak

64
Mul/add imbalance

32 ~ .
>

6 A A w/out SIMD
YA

s Y4 09 w/out ILP

1/2

1/8 1/4 1/2 1 2 4 8 16
Computational Intensity (flops/byte)

Before optimization, traffic,
and limited bandwidth -
performance is limited to a
very narrow window.

After optimization, ideally,
performance is significantly
better.



Roofline Example: Parallel loop

parallel for (i=0;i<N;i++) {
Z[1] = X[1] + alpha*Y[i];
}

2 flops, 3 memory references (2 reads and 1 write)
3 elements at 8 bytes each = 24 bytes
Intensity = flops / bytes = 2/24 ~ 0.083

From UC Berkeley CS267



Roofline Example: Parallel loop

A

Peak FLOP/s

Attainable Gflops/s

Loop!

>

0.083
Computational Intensity (flops/byte)

From UC Berkeley CS267



Roofline Example: Heat equation stencil

"”, _________ -
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PDE grid stencil for heat equation PDE

A 7-point constant coefficient stencil:

8 flops, 8 memory references (7 reads,
write) per point

Cl = 0.125 flops / byte

From UC Berkeley CS267

For X, y, z 1in @ to n-1

next[X,y,z] =

CO * current[x,y,z] +

Cl * (current[x-1, y, z] +

current
current
current
current
current

X+1, y, z] +
:X) y_lJ Z] +
X, y+1, z] +

:X) Y, Z'l] +




Roofline Example: Heat equation stencil
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PDE grid stencil for heat equation PDE

A 7-point constant coefficient stencil:

8 flops, 8 memory references (7 reads,
write) per point

Cl = 0.125 flops / byte

From UC Berkeley CS267

=N

For X, y, z 1in @ to n-1
next[X,y,z] =
CO * current[x,y,z] +
Cl * (current[x-1, y, z] +
current[x+1, vy, z] +
current[x, y-1, z] +

current[x, y+1, z] +

X
current[x, vy, z-1] +
X

current[x, y, z+1]);

Cache blocking can filter
out accesses to DRAM
and increase the effective
Cl to close to 0.5




Roofline Example: Heat equation stencil

A

Peak FLOP/s

Still O(1) flops/byte, but
(leading) constants matter

Attainable Gflops/s

:7-point stencil

Loop!

>

0.083 ~0.5
Computational Intensity (flops/byte)

From UC Berkeley CS267



From UC Berkeley CS267

Roofline across algorithms

Xeon X5550 (Nehalem)

single-precision peak

|

double-precis‘jon peal{

| [ | | | L « ' ; DGEMM
64 DP hdd-onlﬂ
RTM/wave'eqn:

32

27pt Stencil
7pt Stencil .
16 | | | .

GTClpushi

8 | SpMV/’

4

GTC/chargei

2

Va2 e YW Ys Vo A1 2 4 8 16 32
Algorithmic intensity: Flops/Word

NVIDIA C2050 (Fermi)

single-precision peak

dou

DP add-only,

DG EMMN ssss—

T RTM/wave eqn.

‘27pt Stencil

GTC/pushi

—GTC/chargei

WVa2 e s Ys Yo 1 2 4 8 16 32
Algorithmic intensity: Flops/Word

Work by Williams, Oliver, Shalf, Madduri, Kamil, Im, Ethier, ...



Summary

Roofline captures upper bound performance with the min of 2 upper
bounds of the machine:

Peak flops
Peak memory bandwidth

Computational / Arithmetic intensity is a key part of the model.
Usually defined as best case

Originally for single processors and shared-memory machines.

Widely used in practice and adapted to any bandwidth/compute limited
situation.



CSE 6230:
HPC Tools and Applications

Lecture 4: I/0-efficient Data Structures
(Trees, Skip Lists, and Tries)

Helen Xu

Georgia Tech College of Computing

School of Computational
Science and Engineering

Acknowlegement: some slides from University of Utah CS 6530



mailto:hxu615@gatech.edu

Recall: Ideal-Cache Model

Parameters
e [wo-level hierarchy , cache
e Cache size of M bytes _—
e Cache-line length of B bytes @@ ¢<,]:> -
e Fully associative | M5 < B>
e Optimal, omniscient replacement. cache lines

Performance Measures

e Work W (ordinary running time)

e Cache misses Q (humber of cache lines that need
to be transferred between cache and memory)

From MIT 6.172 11



Dictionary data structures

A dictionary data structure is a general-purpose data structure for supporting a
group of objects.

Dynamic dictionaries typically support the following operations:
e Search for the existence of an element

*Insert an element
*Remove an element Key-value stores

map keys to values

L~
_ -keys- -values-
If just keys -
. . ‘a’ > ‘alpha’
without values, it
is a key store > ° > [ omee3
‘g’ > ‘gamma’

dict

https://www.scaler.com/topics/dictionary-in-data-structure/
https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_data_structures/Dictionaries



Review: Self-balancing binary search trees

Self-balancing binary search trees support the basic dynamic-dictionary
operations (search, insert, delete) in O(log n) time.

Examples include: red-black trees, AVL trees, etc.

For a more in-depth review, see CLRS chapters 12-13 (pdf on Canvas).

A SN

Diagram from CLRS

13



Warmup Question

How many cache misses does it take to search/

Insert/delete in a balanced binary tree?

14



Cache misses in binary trees

A balanced binary tree follows one pointer and therefore incurs one cache
miss per level.

The height of the tree is O(log n), so every operation takes O(log n) cache
MISSes.

15



Skip lists

16



What is a skip list?

* Askip list for a set .S of distinct (key, element) items is a series of lists
S0, 8, ...,8,such that

e Each list §; contains the special keys +00 and —oo
* List.§, contains the keys of .§' in non-decreasing order

* Each list is a subsequence of the previous one, i.e.,
$o281D ... 28}

e List.§, contains only the two special keys

e Skip lists are one way to implement the dictionary

+00

31 ~+00

23 31 34 64 +00

23 26 31 34 44 56 64 78 +00

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

17



Skip list implementation

* We can implement a skip list
with quad-nodes

* A guad-node stores:

* tem

e link to the node before
* link to the node after

e |link to the node below

quad-node

* Also, we define special keys
PLUS INF and MINUS INF, and
we modify the key comparator
to handle them

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

18



Search

* We search for a key x in a a skip list as follows:
* We start at the first position of the top list

* Atthe current position p, we compare x with y <— key(after(p))

x = y: we return element(after(p))
x > y: we “scan forward”
x < y: we “drop down”
* If we try to drop down past the bottom list, we return NO SUCH KEY

 Example: search for 78

S —o0
S, B
S B——E——H-E ——
So —m

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

V\/__\

19



Insertion

* Toinsert an item (x, o) into a skip list, we use a randomized algorithm:

 We repeatedly toss a coin until we get tails, and we denote with i the
number of times the coin came up heads

e |fi>h, we add to the skip list new lists S}, ... ,8;.1, each containing
only the two special keys

* We search for x in the skip list and find the positions p,, p;, ..., p;of the
items with largest key less than x in each list S, S, ..., S;

* Forj« 0, ...,i, weinsertitem (x, o) into list.§; after position p;

* Example: insert key 15, withi =2

SE——f9
D>

S, BE——— SEdr— H—F&
11’1

S ?\——m | :> S Ed—1 HEE—

Do
S, B —— YN 256 o 1110 e I e 1231 o 13161 e 560

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

20



Randomized algorithms

A randomized algorithm controls its execution through random selection
(e.g., coin tosses).

It contains statements like:

b < randomBit()
if b=0

doA ...
else { h=1}

do B ...

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

21



Analyzing randomized algorithms

The runtime of a randomized algorithm depends on the outcomes of the
coin tosses (or dice rolls, etc.)

Through probabilistic analysis, we can derive the expected running time of
a randomized algorithm.

We make the following assumptions in the analysis:

e the coins are unbiased, and @ ’ ."
v
—

e the coin tosses are independent.

The worst-case running time is often large but has very low probability (e.g.,
it occurs when all coin tosses give “heads”).

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

22



Randomized algorithms and skip lists

When randomization is used in data structures, they are referred to as

probabilistic data structures.

We use a randomized algorithm to insert (and delete) elements into a skip list

in expected O(log n) time.

Probability depends on a
ertain number n and goes

C
The height of a skip list is O(log n) with high probability.<l to 1 as n goes to infinity

The expected space usage of a skip list is O(n).

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

23



Question

Are binary trees and skip lists optimal in the

Ideal-cache model?

24



B-trees and B+-trees

25



B-trees

A B-tree Is a self-balancing tree data
structure that keeps data sorted and allows
searches, sequential access, insertions, and

deletions in O(logz(/N)) cache-line misses in
the ideal-cache model.

The fanout of the tree is B

Generalization of a binary search tree - a
node can have more than 2 children

Optimized for systems that read/write large
blocks of data

From U of U CS6530

The Ubiquitous B-Tree

DOUGLAS COMER

Computer Science Department, Purdue Unwersity, West Lafayette, Indiana 47907

B-trees have become, de facto, a standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been proposed
and implemented using B-trees This paper reviews B-trees and shows why they have
been so successful It discusses the major variations of the B-tree, especially the B*-tree,
contrasting the relative merits and costs of each implementation. It illustrates a general
purpose access method which uses a B-tree.

Keywords and Phrases: B-tree, B*-tree, B*-tree, file organization, index

CR Categories: 3.73 3.74 4.33 4 34

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be illus-
trated by the following examples:

Sequential: “From our employee file, pre-
pare a list of all employees’
names and addresses,” and

Random: “From our employee file, ex-
tract the information about
employee J. Smith”.

We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z,” while the folders

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Permussion to copy without fee all or part of this material is granted provided that the copies are not made or

distributed for direct commercial advantage, the ACM cogm'ght notice and the title of the Bubhcation and 1ts




B-tree structure

B | Pivots

Internal nodes
... = Bchildren...

Leaf nodes B |

O (loggN)

< ... =N/ Bleaves...

27



Often used In
practice

]> B+-tree structure

Internal nodes

B | Pivots

... = Bchildren....

Leaf nhodes are

with pointers

Leaf nodes B |

chained together ||

All elements
appear in leaves

O (loggN)

... =N/ Bleaves...

28



Searches in a B+-tree begin at the root, and key comparisons direct it to a

leaf.

Search in B+-trees

Example: search for 15

Nodes have
size B

N

ROOt \

3

Based on the search, we know 15 is not in the tree!

14

19

24

|

—> 14

16

19

20

22

23

24

27

29

29



Target leaf is full:
nheed to do a data
page split

N

ROOt \

Example: Insert 8 into B+-tree

14

19

24

2 | 3

16

19

20

22

23

24

27

29

30



Example: Insert 8 into B+-tree

Target leaf is full: 141119 || 24

need to do a data
page split
N
2 | 3| 5|7 —>14 |16 —» 19 (2022 | 23 —» 24 | 27 | 29
14 | (19| | 24
Target leaf splits& \
2 | 3 > 5| 7| 8 —>» 14 | 16 —» 19 (20| 22 | 23 —>

24

27

29

31



Example: Insert 8 into B+-tree

Need to adjust

14

19

24

pivots \
3 — —> 14 | 16 —» 19 (20 (22| 23 > 24 | 27 | 29
Promo_te5asa> 5 114119 ]] 24

pivot
3 > 8 — 14 | 16 —» 19 (20 (22| 23 > 24 | 27 | 29

32



Next example: Insert 21 into B+-tree

Parent node is full: need to
do an index page split

Promote 21 as a pivot K

5 (|14 |[19|]| 24
— 8 —> 14| 16 —( 19| 20| 22|23 ——> 24 | 27| 29
14|19 || 24 ‘
— 5 | 7 —>| 14| 16 —» 19 | 20 > 21 | 22| 23 = 24 | 27 | 29

33



Next example: Insert 21 into B+-tree

Parent node is full: need to
do an index page split

\
14 19 24

2 | 3 —» 5 | 7 > 14 | 16 > 19| 20 21| 22 | 23 Y 24 | 27 | 29

Index page split

Root T adds a new level

~b
51|14 21 | | 24

2 | 3 —» 5 | 7 > 14 | 16 > 19 | 20 21 | 22 | 23 24 | 27 | 29

34



B-tree bounds

B-trees support searches (reads) and inserts (updates) in O(log, V) cache-
line transfers.

Most updates only write to the leaves, but in the worst case, an update
may propagate up the tree for O(log, N) writes.

~>
) 14 21 24

\

3 —» 5| 7 | 8 —>| 14 | 16 —> 19| 20 21| 22| 23 24 | 27




B-trees support searches (reads) and inserts (updates) in O(log, V) cache-

line transfers.

Most updates only write to the leaves, but in the worst case, an update
may propagate up the tree for O(log, N) writes.

ROOt \

B-tree bounds

19

i

5 | |14

\

3 —» 5| 7 | 8 —>

Asymptotically better

21

24

14

16

—> 19

20

than binary trees

21

22

23

27

29

36



Question

Are B-trees optimal in the ideal-cache model?

37



How can/should we organize data?

There are many different approaches...

Jeremy.

I WANT

this room

https://pbfcomics.com/comics/game-boy/

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecturel11.pdf

38



How should we organize data?

Jeremy.

T WANT

this room

1
u
“

4,0

@ing

Logging e.g., B-trees
e.d., with an array

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecturel11.pdf

39



How should we organize data?

Insert Search
| ogging O(1/B) O(N/B)
ondoflog| | @ 4 \S"aﬁ‘o";"“re
(assd:::ﬁgigg-tree) O(logy N) O(logg N)

Insert into leaf (root- Locate in leaf (root-
to-leaf traversal) to-leaf traversal)

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecturel11.pdf



Optlmal Search-Insert Tradeoff [Brodal, Fagerberg 03]

=
(Vg B-tree
|_E Optimal Curve
(7y)
)
O
)
-
O
'S
=
O
o 3
O
w
Slow Fast
Inserts

Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf 41



Optlmal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query
Optimal
tradeoff O (log1 L Be N) 0 (logy. . N)
(function of €=0...1) Bl—e
: = logg N
: = O( v B ) O (logg N)
% 0O log N
: £=0 B O (log N)

Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf
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Optlmal Search-Insert Tradeoff [Brodal, Fagerberg 03]

Target of opportunity

Fast

Optimal Curve

g Insertions improve by 10x-100x
= with almost no loss of point-query
O performance
5 SO
=
=
O
ar 3

O

V)

Slow Fast
Inserts

Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf 43



B¢ trees
(and write optimization)

44



B¢ trees

B¢ trees are search trees (like B-trees)

BE pivots the rest buffer

4

37 86

O

58 83

D

\
~—

v
A ool
' . "2 2

69 (71 |72 |73 79 (80 |81

74 82

9 (2 |50 (14 |29 99 (6 (77 |44

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf



Insertion in B€ trees

Insertions get put into the root buffer

\9092
\ v
¥ ¥ N

82

79 (80 |81

29 99 (6 (77 |44

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

\9092
\ v
¥ ¥ N

82

79 (80 |81

29 99 (6 (77 |44

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

\9092
\ v
¥ ¥ N

82

79 (80 |81

29 99 (6 (77 |44

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

\9092
\ v
¥ ¥ N

82

79 (80 |81

29 99 (6 (77 |44

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

.

.................H.‘ 90 |92
\ 4

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

94 | 39 | 64
4 2 8

.

v

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

.

.................H.‘ 90 |92
\ 4

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B€ trees

Insertions get put into the root buffer

94 | 39 | 64 | 13

~—

.

v

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B¢ trees

When a buffer is full:
1. Pick the child receiving
the most messages, and

2. Move the messages to
the child buffer

.................H.‘ 90 |92
\ 4

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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29 99 (6 (77 |44
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Insertion in B¢ trees

When a buffer is full:
1. Pick the child receiving
the most messages, and

2. Move the messages to
the child buffer

.................H.‘ 90 |92
\ 4

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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29 99 (6 (77 |44
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Insertion in B¢ trees

When a buffer is full:
1. Pick the child receiving
66 the most messages, and

6 2. Move the messages to
the child buffer

.................H.‘ 90 |92
\ 4

¥ ¥ )

\ A

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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29 99 (6 (77 |44

56



v

o2l 20

)

'

Insertion in B¢ trees

When a buffer is full:
1. Pick the child receiving
the most messages, and

2. Move the messages to
the child buffer

94 | 13 | 66

D

—
~

84 |85

\ A 4 R

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Insertion in B¢ trees

When a buffer is full:
1. Pick the child receiving
3 the most messages, and

1 2. Move the messages to
the child buffer

94 | 13 | 66

D

—
~

84 |85

\ A 4 R

59 |60 61 |65

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf
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Lookups in B¢ trees

Lookups follow pivots,
but check buffers along
the way
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/0 amplification

Read amplification is the ratio of the number of blocks read from the disk
versus the number of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks written to the disk
versus the number of blocks required to write the key-value parr.
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/0 amplification

Read amplification is the ratio of the number of blocks read from the disk
verguetha misalhar af hilaalio vacuivad da vand dlaa lear vialiia nal
How to fix it?

Wri
verd See “SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value
Stores” by Conway, Gupta, Chidambaram, Farach-Colton,

Shorte Spillane, Tai, Johnson, ATC 2020
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