Hyperthreading

- SMT improves parallelization by making two virtual (logical) cores for each physical core by duplicating architectural state (e.g., registers) but not the main resources (e.g., ALUs)
-The first hyperthreading implementation was reported (by Intel) to use $\sim 5 \%$ more area for $15-30 \%$ better performance.
-Performance gains are very dependent on whether the application is memory or compute bound.

Effective Roofline (before and after)
Example machine:

Before optimization, traffic, and limited bandwidth performance is limited to a very narrow window.

After optimization, ideally, performance is significantly better.

Roofline Example: Parallel loop

```
parallel_for (i=0;i<N;i++) {
    Z[i] = X[i] + alpha*Y[i];
```

2 flops, 3 memory references (2 reads and 1 write)
3 elements at 8 bytes each $=24$ bytes
Intensity $=$ flops $/$ bytes $=2 / 24 \sim 0.083$

Roofline Example: Parallel loop

Roofline Example: Heat equation stencil


```
For x, y, z in 0 to n-1
    next[x,y,z] =
    C0 * current[x,y,z] +
    C1 * (current[x-1, y, z] +
        current[x+1, y, z] +
        current[x, y-1, z] +
        current[x, y+1, z] +
        current[x, y, z-1] +
        current[x, y, z+1]);
```

A 7-point constant coefficient stencil: 8 flops, 8 memory references (7 reads, 1 write) per point
$\mathrm{Cl}=0.125$ flops $/$ byte

Roofline Example: Heat equation stencil

A 7-point constant coefficient stencil:
8 flops, 8 memory references (7 reads, 1 write) per point
$\mathrm{Cl}=0.125$ flops $/$ byte

```
For x, y, z in 0 to n-1
    next[x,y,z] =
        C0 * current[x,y,z] +
        C1 * (current[x-1, y, z] +
        current[x+1, y, z] +
        current[x, y-1, z] +
        current[x, y+1, z] +
        current[x, y, z-1] +
        current[x, y, z+1]);
```

Cache blocking can filter out accesses to DRAM and increase the effective
Cl to close to 0.5

Roofline Example: Heat equation stencil

Roofline across algorithms

Summary

Roofline captures upper bound performance with the min of 2 upper bounds of the machine:
Peak flops
Peak memory bandwidth

Computational / Arithmetic intensity is a key part of the model. Usually defined as best case

Originally for single processors and shared-memory machines.
Widely used in practice and adapted to any bandwidth/compute limited situation.

Lecture 4: I/O-efficient Data Structures (Trees, Skip Lists, and Tries)
 Helen Xu hxu615@gatech.edu

Gr
Science and Engineering

Recall: Ideal-Cache Model

Parameters

- Two-level hierarchy
- Cache size of M bytes
- Cache-line length of B bytes
- Fully associative
- Optimal, omniscient replacement.

> Performance Measures
> - Work W (ordinary running time)
> - Cache misses Q (number of cache lines that need to be transferred between cache and memory)

Dictionary data structures

A dictionary data structure is a general-purpose data structure for supporting a group of objects.

Dynamic dictionaries typically support the following operations:

- Search for the existence of an element
- Insert an element
- Remove an element

https://www.scaler.com/topics/dictionary-in-data-structure/

Review: Self-balancing binary search trees

Self-balancing binary search trees support the basic dynamic-dictionary operations (search, insert, delete) in $O(\log n)$ time.

Examples include: red-black trees, AVL trees, etc.
For a more in-depth review, see CLRS chapters 12-13 (pdf on Canvas).

Warmup Question

How many cache misses does it take to search/ insert/delete in a balanced binary tree?

Cache misses in binary trees

A balanced binary tree follows one pointer and therefore incurs one cache miss per level.

The height of the tree is $O(\log n)$, so every operation takes $O(\log n)$ cache misses.

Skip lists

What is a skip list?

- A skip list for a set \boldsymbol{S} of distinct (key, element) items is a series of lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{h}}$ such that
- Each list $\boldsymbol{S}_{\boldsymbol{i}}$ contains the special keys $+\infty$ and $-\infty$
- List \boldsymbol{S}_{0} contains the keys of \boldsymbol{S} in non-decreasing order
- Each list is a subsequence of the previous one, i.e.,

$$
\boldsymbol{S}_{0} \supseteq \boldsymbol{S}_{1} \supseteq \ldots \supseteq \boldsymbol{S}_{\boldsymbol{h}}
$$

- List $\boldsymbol{S}_{\boldsymbol{h}}$ contains only the two special keys
- Skip lists are one way to implement the dictionary

Skip list implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
- item
- link to the node before
- link to the node after
- link to the node below
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them

Search

- We search for a key \boldsymbol{x} in a a skip list as follows:
- We start at the first position of the top list
- At the current position p, we compare x with $y \leftarrow \operatorname{key}(\boldsymbol{\operatorname { a f t e r }}(\boldsymbol{p}))$

$$
\begin{aligned}
& x=y: \text { we return element }(\boldsymbol{a f t e r}(\boldsymbol{p})) \\
& x>y: \text { we "scan forward" } \\
& x<y: \text { we "drop down" }
\end{aligned}
$$

- If we try to drop down past the bottom list, we return $\boldsymbol{N O}$ _SUCH_KEY
- Example: search for 78

Insertion

- To insert an item ($\boldsymbol{x}, \boldsymbol{o}$) into a skip list, we use a randomized algorithm:
- We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
- If $\boldsymbol{i} \geq \boldsymbol{h}$, we add to the skip list new lists $\boldsymbol{S}_{\boldsymbol{h}+1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}+1}$, each containing only the two special keys
- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i}$ of the items with largest key less than \boldsymbol{x} in each list $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}}$
- For $\boldsymbol{j} \leftarrow 0, \ldots, \boldsymbol{i}$, we insert item $(\boldsymbol{x}, \boldsymbol{o})$ into list $\boldsymbol{S}_{\boldsymbol{j}}$ after position $\boldsymbol{p}_{\boldsymbol{j}}$
- Example: insert key 15 , with $\boldsymbol{i}=2$

Randomized algorithms

A randomized algorithm controls its execution through random selection (e.g., coin tosses).

It contains statements like:
$b \leftarrow$ randomBit $($)
if $\boldsymbol{b}=0$
do A...

else $\{\boldsymbol{b}=1\}$ do B...

Analyzing randomized algorithms

The runtime of a randomized algorithm depends on the outcomes of the coin tosses (or dice rolls, etc.)

Through probabilistic analysis, we can derive the expected running time of a randomized algorithm.

We make the following assumptions in the analysis:

- the coins are unbiased, and
- the coin tosses are independent.

The worst-case running time is often large but has very low probability (e.g., it occurs when all coin tosses give "heads").

Randomized algorithms and skip lists

When randomization is used in data structures, they are referred to as probabilistic data structures.

We use a randomized algorithm to insert (and delete) elements into a skip list in expected $O(\log n)$ time.

Probability depends on a certain number n and goes to 1 as n goes to infinity

The expected space usage of a skip list is $O(n)$.

Question

Are binary trees and skip lists optimal in the ideal-cache model?

B-trees and B+-trees

B-trees

A B-tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in $O\left(\log _{B}(N)\right)$ cache-line misses in the ideal-cache model.

The fanout of the tree is B

Generalization of a binary search tree - a node can have more than 2 children

Optimized for systems that read/write large blocks of data

The Ubiquitous B-Tree
(a) DOUGLAS COMER
(atat Computer Scence Department, Purdue Unversty, West Lafayette, Indiana 47907

B.trees have become, de facto, a standard for file organization. File indexes of users, dedicated database systems, and general-purpose access methods have all been propose dedicated database systems, and general-purpose access methods have all been proposed and mplemented using B -trees This paper reviews B .trees and shows why they have cen so successtul It discusses the maior varations of the B -tree, especialt, contrasting the relative merits and costs of each implementation. It illustrates a general purpose access method which uses a B - tree.
 CR Categorres: 3.73 3.74 4.33 434

INTRODUCTION
The secondary storage facilities available on large computer systems allow users to store, update, and recall data from large
collections of information called files. A computer must retrieve an item and place it in main memory before it can be pro cessed. In order to make good use of the computer resources, one must organize files
intelligently, making the retrieval proces efficient.
The choice of a good file organization depends on the kinds of retrieval to be
performed. There are two broad classes of performed. There are two broad classes of
retrieval commands which can be illu trated by the following examples:
Sequential: From our employee file, pre pare a list of all employees
names and addresses," and Random: "From our employee file, extract the information about
employee J. Smith".
We can imagine a filing cabinet with three We can imagine a filing cabine for each employee. The drawers might be labeled "A-
G ," "H-R," and "S-Z," while the folders

Permssion to copy without fee all or part of this material is granted provided that the copies are not made or

B-tree structure

Often used in practice
 B+-tree structure

Search in B+-trees

Searches in a B+-tree begin at the root, and key comparisons direct it to a leaf.

Example: search for 15

Based on the search, we know 15 is not in the tree!

Example: Insert 8 into B+-tree

Example: Insert 8 into B+-tree

Example: Insert 8 into B+-tree

Next example: Insert 21 into B+-tree

Next example: Insert 21 into B+-tree

B-tree bounds

B-trees support searches (reads) and inserts (updates) in $O\left(\log _{B} N\right)$ cacheline transfers.

Most updates only write to the leaves, but in the worst case, an update may propagate up the tree for $O\left(\log _{B} N\right)$ writes.

B-tree bounds

Asymptotically better than binary trees

B-trees support searches (reads) and inserts (updates) in $O\left(\log _{B} N\right)$ cacheline transfers.

Most updates only write to the leaves, but in the worst case, an update may propagate up the tree for $O\left(\log _{B} N\right)$ writes.

Question

Are B-trees optimal in the ideal-cache model?

How can/should we organize data?

There are many different approaches...

https://pbfcomics.com/comics/game-boy/

How should we organize data?

How should we organize data?

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

point query

Optimal

tradeoff
(function of $\varepsilon=0$... 1)

$$
O\left(\frac{\log _{1+B^{\varepsilon}} N}{B^{1-\varepsilon}}\right) \quad O\left(\log _{1+B^{\varepsilon}} N\right)
$$

$$
\begin{gathered}
\text { B-tree } \\
(\varepsilon=1)
\end{gathered}
$$

$$
O\left(\log _{B} N\right) \quad O\left(\log _{B} N\right)
$$

$10 x-100 x$ faster inserts

$$
\begin{gathered}
\varepsilon=1 / 2 \\
\varepsilon=0
\end{gathered}
$$

$$
O\left(\frac{\log _{B} N}{\sqrt{B}}\right)
$$

$$
O\left(\log _{B} N\right)
$$

$$
O\left(\frac{\log N}{B}\right)
$$

$$
O(\log N)
$$

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

B^{ε} trees
 (and write optimization)

$B^{\mathcal{E}}$ trees

$B^{\mathcal{E}}$ trees are search trees (like B-trees)

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions get put into the root buffer

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and
2. Move the messages to

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and
2. Move the messages to

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and
2. Move the messages to

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and
2. Move the messages to

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and
2. Move the messages to

Insertion in $\mathrm{B}^{\mathcal{E}}$ trees

When a buffer is full:

1. Pick the child receiving the most messages, and
2. Move the messages to

Lookups in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

65	72	80
11	50	6

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

Merge the

data

58	83	39	64	65	66	72	80
\leftrightarrow		2	8	11	6	50	6

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

CPU work = O(old + new messages)

Volume of $I O=O$ (old + new messages)

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

Volume of $I O=O$ (old + new messages)

Older data gets written over and over again

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

58	83	39	44	64	65	66	72	80	98
\leftrightarrow	$(2$	3	8	11	6	50	6	1	

> CPU work = O(old + new messages)
> Volume of $\mathrm{IO}=\mathrm{O}$ (old + new messages)

Older data gets written over and over again

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

58	83	28	39	44	64	65	66	72	80	91	98
\leftrightarrow	Θ	24	2	3	8	11	6	50	6	43	1

> CPU work = O(old + new messages)
> Volume of $\mathrm{IO}=\mathrm{O}$ (old + new messages)

Older data gets written over and over again

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

58	83	28	39	44	64	65	66	72	80	91	98
\leftrightarrow	Θ	24	2	3	8	11	6	50	6	43	1

> CPU work = O(old + new messages)
> Volume of $\mathrm{IO}=\mathrm{O}$ (old + new messages)

Older data gets written over and over again

Up to $B^{\mathcal{E}}$ times per node!

Insertions in $\mathrm{B}^{\mathcal{E}}$ trees are more expensive than they look

Recall: Insertions in $\mathrm{B}^{\mathcal{E}}$ trees

58	83	28	39	44	64	65	66	72	80	91	98
\leftrightarrow	Θ	24	2	3	8	11	6	50	6	43	1

> CPU work = O(old + new messages)
> Volume of $\mathrm{IO}=\mathrm{O}$ (old + new messages)

Older data gets written over and over again

Up to $B^{\mathcal{E}}$ times per node!

I/O amplification

Read amplification is the ratio of the number of blocks read from the disk versus the number of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks written to the disk versus the number of blocks required to write the key-value pair.

I/O amplification

