Announcements

•HW2 out - due Feb 6

• PACE ICE down Jan 23-25

Recap from previous class

Not I/O-optimal

I/O-optimal, but requires knowledge of cache parameter B

Proving $B^{\mathcal{E}}$ tree bounds

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

Proving $B^{\mathcal{E}}$ tree bounds

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

79

99

80

6

81

77

82

44

Each internal node is size $\Theta(B)$, with $\Theta(B^{\varepsilon})$ pivots and $\Theta(B - B^{\varepsilon})$ buffered elements

Each flush moves $\Omega((B - B^{\varepsilon})/B^{\epsilon}) \sim \Omega(B^{1 - \varepsilon})$ elements down one level of the tree at the cost of $\Theta(1)$ cache misses, for an amortized cost of $O(1/B^{1-\varepsilon})$ cache misses per element

 $O(\log_{R^{\varepsilon}} n)$

Proving $B^{\mathcal{E}}$ tree bounds

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

79

99

80

6

81

77

82

44

Each internal node is size $\Theta(B)$, with $\Theta(B^{\varepsilon})$ pivots and $\Theta(B - B^{\varepsilon})$ buffered elements

Each flush moves $\Omega((B - B^{\varepsilon})/B^{\varepsilon}) \sim \Omega(B^{1-\varepsilon})$ elements down one level of the tree at the cost of $\Theta(1)$ cache misses, for an amortized cost of $O(1/B^{1-\varepsilon})$ cache misses per element

 $O(\log_{R^{\varepsilon}} n)$

CSE 6230: HPC Tools and Applications

Lecture 5: I/O-efficient Data Structures (Part 2) Helen Xu hxu615@gatech.edu

Georgia Tech College of Computing School of Computational Science and Engineering

Recall: Logging vs Indexing

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf

Goal: Optimal Data Structures

B-trees are optimal for search but **not for update**.

Goal: Data structure with inserts that beat B-tree inserts without sacrificing on queries.

Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

insert point query

$$\frac{\log_{1+B^{\varepsilon}}N}{B^{1-\varepsilon}}$$

$$O\left(\log_{1+B^{\varepsilon}} N\right)$$

This is the promise of write optimization

Log-Structured Merge (LSM) Trees

Not optimal straight out of the box, but we will show how to get them there.

10

Applications of LSM trees

- Proposed by O'Neil, Cheng, and Gawlick in 1996
- Uses write-optimized techniques to significantly speed up inserts.
- Have become popular over the past ~10-15 years or so
- Accumulo, Bigtable, bLSM, Cassandra, HBase, Hypertable, LevelDB are LSM trees (or based on LSM trees)

- Compaction continues creating fewer, larger and larger files
- By Ben Stopford http://www.benstopford.com/2015/02/14/log-structured-merge-trees/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57909579 11

Log-Structured Merge Trees

An LSM tree is a **cascade of B-trees**.

Each tree T_i has a **target size** $|T_i|$.

The target sizes are **exponentially increasing**: typically, $|T_{i+1}| = 10 |T_i|$

12

Point queries:

Point queries:

14

LSM Tree Operations

Insertions

Always insert element into smallest B-tree T_0 :

Insertions When a B-tree T_i fills up, flush into T_{j+1} :

Deletes are like inserts:

Instead of deleting an element directly, insert tombstones.

A tombstone knocks out a "real" element when it lands in the same tree.

17

Static-to-Dynamic Transformation

An LSM tree is an example of a "static-to-dynamic" transformation [Bentley and Saxe '80].

An LSM tree can be built out of static B-trees.

• When T_j flushes into T_{j+1} , T_{j+1} is rebuilt from scratch.

Recall: Searching an Array vs. B-tree

 $O(\log_B N) = O\left(\frac{\log_2 N}{\log_2 B}\right)$

Analysis of Point Queries Search cost:

 $= \frac{1}{\log B} \left(\log N + \log N - 1 + \log N - 2 + \log N - 3 + \dots + 1 \right)$

 $= O(\log N \log_R N)$

- $\log_{B} N + \log_{B} N/2 + \log_{B} N/4 + \cdots + \log_{B} B$

Analysis of Inserts

The cost to flush a tree *Tj* of size *X* is O(*X*/*B*).

- Flushing and rebuilding a tree is just a linear scan.
- The cost per element to flush Tj is O(1/B).
- The # times each element is moved is $\leq \log N$.
- The insert cost is O((log N)/B) amortized memory transfers.

Samples from LSM Tradeoff Curve insert point query

tradeoff (function of ε)

sizes grow by $B^{1/2}$ ($\epsilon = 1/2$)

sizes double (ε=0)

$$O\left(\frac{\log_{1+B^{\varepsilon}} N}{B^{1-\varepsilon}}\right)$$

 $O\left((\log_B N)(\log_{1+B^{\varepsilon}} N)\right)$

 $O\left(\log_B N\right)$

 $O\left((\log_B N)(\log_B N)\right)$

 $O\left(\frac{\log_B N}{\sqrt{B}}\right)$

 $\left(\frac{\log N}{2}\right)$

 $O\left((\log_B N)(\log_B N)\right)$

 $O\left((\log_B N)(\log N)\right)$

How to improve LSM-tree point queries?

- Looking in all those trees is expensive, but can be improved by:
- caching,
- filters (e.g., Bloom), and
- fractional cascading.

 T_2

When the cache is warm, small trees are cached.

 Λ T_0

 T_1

Caching in LSM trees

(Sidebar into filters)

Recap: Dictionary Data Structure

A dictionary maintains a set S from a universe U.

member(a): yes member(b): no member(c): yes member(d): no

A dictionary supports membership queries on S.

Filter Data Structure

A filter is an **approximate** dictionary.

A filter supports approximate membership queries on S.

A Filter Guarantees a False-Positive Rate ε

If $q \in S$, return yes with probability 1

no with probability $> 1 - \varepsilon$ true negative If $q \notin S$, return false positive yes with probability $\leq \varepsilon$

true positive

One-sided error (no false negatives)

False-positive rate enables filters to be compact

space of filter $\geq n \log(1/\varepsilon)$

space of dictionary $= \Omega(n \log |U|)$

False-positive rate enables filters to be compact small large space of dictionary $= \Omega(n \log |U|)$ space of filter $\geq n \log(1/\varepsilon)$

Classic Filter: The Bloom Filter [Bloom '70] the most well-known one

0	0	0	0	0	0	0	0
---	---	---	---	---	---	---	---

Classic Filter: The Bloom Filter [Bloom '70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

1 0 0 0 0

 $h_1(a) = 1$ $h_2(a) = 3$

Classic Filter: The Bloom Filter [Bloom '70]

Classic Filter: The Bloom Filter [Bloom '70]

Classic Filter: The Bloom Filter [Bloom '70]

Classic Filter: The Bloom Filter [Bloom '70]

Bloom filters don't support deletes

Issue: on a delete, which 1s get decremented?

Bloom Filter Space Usage

Bloom filter space usage with false-positive rate ε :

~ $1.44 \log(1/\epsilon)$ bits per element.

Example: for $\varepsilon = 2\%$, bits / element ~ 8.

Usually at least 4 or 8 bytes per element (in implementation)

DICTIONARY

Bloom filters are ubiquitous < Over 10k citations

Computational biology

Databases

Networking

Storage systems

Streaming applications

Types of Filters

Bloom filters are the most common filter, but there are many more types:

Dynamic: set of items not known in advance

Can support **deletes**

Static: set of items is known in advance

Bloom Filters in LSM Trees

Bloom filters can avoid point queries for elements that are not in a particular B-tree in a LSM tree.

4**1**

Speedup from Filter Usae

Suppose we have a workload with A positive and B negative queries.

Dictionary without filter

Remote access to dictionary

Dictionary with filter

 $A + \varepsilon B$

Fractional cascading in LSM trees

Instead of avoiding searches in trees (e.g., with filters), we can use a B-tree to O(1).

been in T_i , try to use that information to search T_{i+1} .

technique called fractional cascading to reduce the cost of searching each

Idea: We're looking for a key, and we already know where it should have

Searching in one tree helps the next

Looking up c, in T_i we know its between b and e.

Forwarding pointers

node in the second tree, to find c.

If we add forwarding pointers to the first tree, we can jump straight to the

Removing redundant forward pointers

We need only one forwarding pointer for each block in the next tree. Remove the redundant ones.

Ghost pointers

We need a forwarding pointer for every block in the next tree, even if there are no corresponding pointers in this tree. Add **ghosts**.

LSM tree + forward + ghost = fast queries

With forward pointers and ghosts, LSM trees require only one I/O per tree, and point queries cost only $O(\log_R N)$

From "Cache-oblivious streaming B-trees." by Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson '07.

LSM tree + forward + ghost = Cache-oblivious lookahead array (COLA)

This data structure no longer uses the internal nodes of the B-trees, and each of the trees can be **implemented by an array**.

From "Cache-oblivious streaming B-trees." by Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson '07.

Packed Memory Array

Packed Memory Array

The Packed Memory Array (PMA) [ItaiKaRo81, BenderDeFa00] is a cache-oblivious ordered dictionary data structure that stores elements in a contiguous array with (a constant factor of) spaces for updatability.

That is, the PMA stores N elements in $m = \Theta(N)$ cells.

Searching in a PMA

Searching a PMA involves a **binary search** on the first element of each PMA leaf.

Once you reach the correct leaf, perform a linear pass through the chunk to look for the element.

The search costs $O(\log(N/\log(N)) + \log(N)/B) = O(\log(N))$ cache misses.

density is the ratio of filled cells to total cells per contiguous region.

PMA Structure

The PMA maintains empty spaces according to density bounds, where the

The PMA maintains density bounds during updates by redistributing elements after each update.

The insert cost of a particular element in a PMA depends on the input **distribution** and the state of the PMA.

Insert in a PMA

PMA Asymptotic Guarantees Worst-case Insert Search amortized $O((\log N^2)/B + \log N)$ $O(\log N)$ **PMA** 35 35

Scan

PMA Asymptotic Guarantees

Search

Scan

) $O(\log N)$

O(N/B)

Why are we studying PMAs if B-trees are always at least as good (in a big-O sense)?

Affine Model

Cost of access in Disk-Access Model (DAM)

Similar to Ideal-Cache model, without tall-cache assumption

The DAM [Aggarwal and Vitter, '88] is a classical model that measures disk page access (or cache-line accesses, in RAM).

Each memory block fetch has unit cost.

Total cost = 5

Random vs Sequential Access Cost in the Affine Model

The affine model [ABZ96, BCF+19] accounts for sequential block accesses being faster than random (due to prefetching, etc.).

Originally designed for disks and accounted for disk seek vs read.

Total cost = $3 + 2\alpha$

Random access has unit cost, and sequential access has cost $\alpha < 1$.

Empirically validating the affine model in memory

Block Size (bytes)

Point-Range Tradeoff

Tries

General drawbacks of tree data structures

- cannot tell you whether a key exists in the index. You must always traverse to the leaf node (unless you find it earlier).

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

• The inner nodes alone in a B+-tree or buffered B-tree (or LSM, PMA, etc.)

This means you could have (at least) one cache miss per level in the tree.

Keys: HELLO, HAT, HAVE Α ¤ Ε ¤ 0 ¤

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

Use a digital representation of keys to examine prefixes one-by-one instead of comparing entire key.

Also known as **Digital Search Tree**, **Prefix Tree.**

Used in predictive text / approximate matching algorithms.

Trie index properties

Shape only depends on key space and lengths.

- Does not depend on existing keys or insertion order.
- Does not require rebalancing operations.
- All operations have O(k) complexity where **k** is the length of the key.
 - The path to a leaf node represents the key of the leaf
 - Keys are stored implicitly and can be reconstructed from paths.

Uses the **binary encoding of string keys** in its representation.

"skip number" that stores the node's branching index to avoid empty subtree traversals.

Every node in a radix tree (or Patricia tree) contains an index, known as a

Decimal and binary ASCII codes of the symbols

	$\overline{7}$	6	5	4	3	2	1	0			$\overline{7}$	6	5	4	3	2	1	0										
32	0	0	1	0	0	0	0	0	i	105	0	1	1	0	1	0	0	1			$\overline{7}$	6	5	4	3	2	1	0
97	0	1	1	0	0	0	0	1	1	108	0	1	1	0	0	1	0	0	t	116	0	1	1	1	0	1	0	0
99	0	1	1	0	0	0	1	1	n	110	0	1	1	0	0	1	1	0	u	117	0	1	1	1	0	1	0	1
101	0	1	1	0	0	1	0	1	r	114	0	1	1	1	0	0	1	0	v	118	0	1	1	1	0	1	1	0
103	0	1	1	0	0	1	1	1	S	115	0	1	1	1	0	0	1	1										

Strings of X as sequences of bits

00101110 integer interval_u 10010110 01110110 00101110 10100110 0 string 11001110 00101110 01001110 10010110 0 structure 11001110 00101110 01001110 10101110 1

https://en.wikipedia.org/wiki/Trie

1	1	0		•	•
1	0	0		•	•
1	1	1		•	•
1	0	0	•	•	•

Trie variants

Judy arrays (HP)

- Variant of a 256-way radix tree. First known radix tree that supports adaptive node representation.
- ART Index (HyPER)
 - 256-way radix tree that supports different node types based on its population.

Masstree (Silo)

 Instead of using different layouts for each trie node based on size, use an entire B+-tree.

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

https://pdos.csail.mit.edu/papers/masstree:eurosys12.pdf

Bytes [0-7] Bytes [8-15] Bytes [8-15]

https://db.in.tum.de/~leis/papers/ART.pdf

https://judy.sourceforge.net/

Performance comparison

Processor: 1 socket, 10 cores w/ 2×HT Workload: 50m Random Integer Keys (64-bit)

Source: https://github.com/wangziqi2016/index-microbench Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

Size comparison

Processor: 1 socket, 10 cores w/ 2×HT Workload: 50m Keys

Open Bw-Tree

Skip List

Mono Int

Source: https://github.com/wangziqi2016/index-microbench Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

Summary

- **B+-trees are the go-to** in-memory indexing data structure.
- B^E trees achieve asymptotically faster insert without theoretical loss in search performance, but are harder to implement and have worse write amplification.
- Skip lists are great if you don't want to implement self-balancing algorithms.

Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

