
Announcements

•HW2 out - due Feb 6


•PACE ICE down Jan 23-25

1



Recap from previous class

Binary trees


Skip lists


B/B+-trees


B  trees
ε

2

Not I/O-optimalNot I/O-optimal

I/O-optimal, but 

requires knowledge  
of cache parameter B

There is also a 
cache-friendly 

version 

(B-skip list)

https://arxiv.org/abs/1005.0662#:~:text=Like%20the%20B-tree,%20the,efficient%20one-dimensional%20range%20queries.


Proving B  tree boundsε

3Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

O(logBε n)

Each internal node is size 
, with  pivots and  

 buffered elements 
Θ(B) Θ(Bε)
Θ(B − Bε)



Proving B  tree boundsε

4Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

O(logBε n)

Each flush moves 
 ~  

elements down one level of 
the tree at the cost of  

cache misses, for an 
amortized cost of  

cache misses per element

Ω((B − Bε)/Bϵ) Ω(B1−ε)

Θ(1)

O(1/B1−ε)

Each internal node is size 
, with  pivots and  

 buffered elements 
Θ(B) Θ(Bε)
Θ(B − Bε)



Proving B  tree boundsε

5Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture10.pdf

O(logBε n)

Each flush moves 
 ~  

elements down one level of 
the tree at the cost of  

cache misses, for an 
amortized cost of  

cache misses per element

Ω((B − Bε)/Bϵ) Ω(B1−ε)

Θ(1)

O(1/B1−ε)

So the amortized total cost per 
element to go all the way down 
is (# levels) x (cost per level) =  

O((logBε(n))/B1−ε)

Each internal node is size 
, with  pivots and  

 buffered elements 
Θ(B) Θ(Bε)
Θ(B − Bε)



CSE 6230: 
HPC Tools and Applications

Helen Xu 
hxu615@gatech.edu

+

Lecture 5: I/O-efficient Data 
Structures (Part 2)

mailto:hxu615@gatech.edu


Recall: Logging vs Indexing

7Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

Logging 
e.g., with an array

Indexing 
e.g., B-trees



Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

8Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf



Goal: Optimal Data Structures

9Slide from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf

B-trees are optimal for search but not for update.


Goal: Data structure with inserts that beat B-tree inserts without 
sacrificing on queries.

This is the promise of 
write optimization

https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture11.pdf


Log-Structured Merge (LSM) Trees

10

Not optimal straight out of 
the box, but we will show 

how to get them there.



Applications of LSM trees
•Proposed by O’Neil, Cheng, and Gawlick in 1996


•Uses write-optimized techniques to significantly speed up inserts.


•Have become popular over the past ~10-15 years or so


•Accumulo, Bigtable, bLSM, Cassandra, HBase, Hypertable, LevelDB are 
LSM trees (or based on LSM trees)

11By Ben Stopford - http://www.benstopford.com/2015/02/14/log-structured-merge-trees/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57909579

Slide from Michael Bender



An LSM tree is a cascade of B-trees.


Each tree  has a target size .


The target sizes are exponentially increasing: typically, 

Tj |Tj |

|Tj+1 | = 10 |Tj |

12

Log-Structured Merge Trees
Slide from Michael Bender

T0 T1 T2 T3



13

LSM Tree Operations
Slide from Michael Bender

Point queries:

T0 T1 T2 T3



14

LSM Tree Operations
Slide from Michael Bender

T0 T1 T2 T3

Point queries:

T0 T1 T2 T3

Range queries:

e.g., get all 
elements 

between x and y



15

LSM Tree Operations

T0 T1 T2 T3

Insertions
Always insert element into smallest B-tree :T0

Insert

Slide from Michael Bender



16

LSM Tree Operations
Insertions

T0 T1 T2 T3

When a B-tree  
fills up, flush into 

:

Tj

Tj+1

T0 T1 T2 T3

Full

Flush

Slide from Michael Bender



17

LSM Tree Operations
Deletes are like inserts:

T0 T1 T2 T3

Instead of 
deleting an 
element directly, 
insert 
tombstones.


A tombstone 
knocks out a 
“real” element 
when it lands in 
the same tree.

T0 T1 T2 T3

Flush

Slide from Michael Bender



Static-to-Dynamic Transformation

An LSM tree is an example of a “static-to-dynamic” transformation [Bentley 
and Saxe ’80].


•An LSM tree can be built out of static B-trees.


•When  flushes into ,  is rebuilt from scratch.Tj Tj+1 Tj+1

18

Slide from Michael Bender

T0 T1 T2 T3

Flush



Recall: Searching an Array vs. B-tree

19

Slide from Michael Bender



Analysis of Point Queries

20

Slide from Michael Bender



Analysis of Inserts

21

Slide from Michael Bender



Samples from LSM Tradeoff Curve

22

Slide from Michael Bender



How to improve LSM-tree point queries?

Looking in all those trees is expensive, but can be improved by:


•caching,


•filters (e.g., Bloom), and


•fractional cascading.

23

Slide from Michael Bender

T0 T1 T2 T3



Caching in LSM trees

24

T0 T1 T2 T3

When the cache 
is warm, small 

trees are cached.

Slide from Michael Bender



(Sidebar into filters)

25



Recap: Dictionary Data Structure

A dictionary maintains a set S from a universe U.

26

Slide from Michael Bender

A dictionary supports membership queries on S.

a
c

b

d

S

U

member(a): yes


member(b): no


member(c): yes


member(d): no



Filter Data Structure

27
A filter supports approximate membership queries on S.

a
c

b

d

S

U

member(a): yes


member(b): no


member(c): yes


member(d): yes

A filter is an approximate dictionary.

False 
positive

Slide from Michael Bender



A Filter Guarantees a False-Positive Rate ε

If , return yes with probability 1


If , return

q ∈ S

q ∉ S

28

Slide from Michael Bender

no with probability > 1 − ε

yes with probability ≤ ε

true positive

true negative

false positive

One-sided error (no 
false negatives)



False-positive rate enables filters to be compact

29

Slide from Michael Bender

space of filter  ≥ n log(1/ε) space of dictionary  = Ω(n log |U | )



False-positive rate enables filters to be compact

30

Slide from Michael Bender

space of filter  ≥ n log(1/ε) space of dictionary  = Ω(n log |U | )

small large



Classic Filter: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

31

Slide from Michael Bender

the most well-known one

a cb d
S

U

0 0 0 0 0 0 0 0



Classic Filter: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

32

Slide from Michael Bender

a cb d
S

U

0 1 0 1 0 0 0 0

h1(a) = 1

h2(a) = 3



Classic Filter: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

33

Slide from Michael Bender

a c b d
S

U

0 1 0 1 0 1 0 0









h1(a) = 1

h2(a) = 3

h1(c) = 5

h2(c) = 3



Classic Filter: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

34

Slide from Michael Bender

member(b)?

a c b d
S

U

0 1 0 1 0 1 0 0

h1(b) = 2

h2(b) = 5



Classic Filter: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

35

Slide from Michael Bender

member(b)?

a c b d
S

U


h1(b) = 2

h2(b) = 5
0 1 0 1 0 1 0 0



Classic Filter: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

36

Slide from Michael Bender

member(d)?

a c b d
S

U


h1(d) = 3

h2(d) = 1
0 1 0 1 0 1 0 0

False positive



Bloom filters don’t support deletes

Issue: on a delete, which 1s get decremented?

37

a c b d
S

U

0 1 0 1 0 1 0 0

h1(c) = 5

h2(c) = 3

Slide from Michael Bender



Bloom Filter Space Usage

38

Slide from Michael Bender

Bloom filter space usage with false-positive rate :


~  bits per element.


Example: for  = 2%, bits / element ~ 8.

ε

1.44 lg(1/ε)

ε
Usually at least 
4 or 8 bytes per 

element (in 
implementation)

Usually about 1 
byte per 
element



Bloom filters are ubiquitous

39

Over 10k citations

Computational biology

Slide from Michael Bender

Databases

Networking

Streaming

applications

Storage systems



Types of Filters
Bloom filters are the most common filter, but there are many more types:


•Bloom filters


•Quotient filter


•Cuckoo filter


•XOR filter


•Ribbon filter

40

Generated from https://users.cs.utah.edu/~pandey/courses/cs6968/spring23/notes/filters.pdf

Dynamic: set of items not known in advance

Can support deletes

Static: set of items is known in advance



Bloom Filters in LSM Trees

Bloom filters can avoid point queries for elements that are not in a 
particular B-tree in a LSM tree.

41

T0 T1 T2 T3

Slide from Michael Bender

or any other kind 
of dictionary



Speedup from Filter Usae

Suppose we have a workload with A positive and B negative queries.

42

Slide from Michael Bender

Dictionary without  
filter

Dictionary with 
filter

A + B A + εB

Remote access to dictionary



Fractional cascading in LSM trees

Instead of avoiding searches in trees (e.g., with filters), we can use a 
technique called fractional cascading to reduce the cost of searching each 
B-tree to . 


Idea: We’re looking for a key, and we already know where it should have 
been in , try to use that information to search .

O(1)

Tj Tj+1

43

Slide from Michael Bender

T0 T1 T2 T3

Info Info Info



Searching in one tree helps the next

44

Looking up c, in  we know its between b and e.Ti

(illustrating only the leaf level of each tree)



Forwarding pointers

45

If we add forwarding pointers to the first tree, we can jump straight to the 
node in the second tree, to find c.

(illustrating only the leaf level of each tree)



Removing redundant forward pointers

46

We need only one forwarding pointer for each block in the next tree. 
Remove the redundant ones.

(illustrating only the leaf level of each tree)



Ghost pointers

47

We need a forwarding pointer for every block in the next tree, even if there 
are no corresponding pointers in this tree. Add ghosts.

(illustrating only the leaf level of each tree)



LSM tree + forward + ghost = fast queries

48

With forward pointers and ghosts, LSM trees require only one I/O per tree, 
and point queries cost only O(logR N)

From "Cache-oblivious streaming B-trees.” by Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson ’07.

number of trees



LSM tree + forward + ghost =  
Cache-oblivious lookahead array (COLA)

49

This data structure no longer uses the internal nodes of the B-trees, and 
each of the trees can be implemented by an array.

From "Cache-oblivious streaming B-trees.” by Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson ’07.



Packed Memory Array

50



Packed Memory Array

The Packed Memory Array (PMA) [ItaiKaRo81, BenderDeFa00] is a cache-oblivious 
ordered dictionary data structure that stores elements in a contiguous array 
with (a constant factor of) spaces for updatability.


That is, the PMA stores  elements in m =  cells.N Θ(N)

51

One 
contiguous 

memory 
allocation

Implicitly split into chunks 
of size , called 

PMA leaves
Θ(log N)



Searching in a PMA

Searching a PMA involves a binary search on the first element of each PMA 
leaf.


Once you reach the correct leaf, perform a linear pass through the chunk to 
look for the element. 


The search costs  cache 
misses.

O(log(N/log(N)) + log(N)/B) = O(log(N)

52



PMA Structure
The PMA maintains empty spaces according to density bounds, where the 
density is the ratio of filled cells to total cells per contiguous region.

53

Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N)

Density range

gets stricter 


(smaller allowed range)

as you go up

Implicit binary tree 
on PMA chunks

Each node includes 
all cells of all 
descendants

“PMA 
leaves”



Insert in a PMA

54

22- 15 19 897 13 -

89- 15 19 -7 13 -

(1) Search (22):

(2) Place (22):

8915 19 22 -7 13 -

(3) Redistribute:

After placing, count 
the elements in the 
leaf to check the 

density.If the place violated the 
density, redistribute by 
counting neighboring 

leaves and shifting 
elements around.

The PMA maintains density bounds during updates by redistributing 
elements after each update.

Density bound = 0.9

The insert cost of a particular element in a PMA depends on the input 
distribution and the state of the PMA.



55

PMA

B-tree

Insert Search

O((log N2)/B + log N) O(log N)

O(logB N) O(logB N)

PMA Asymptotic Guarantees

Scan

O(N/B)

O(N/B)

Worst-case 
amortized



56

PMA

B-tree

Insert Search

O((log2 N)/B + log N) O(log N)

O(logB N) O(logB N)

PMA Asymptotic Guarantees

Scan

O(N/B)

O(N/B)

Worst-case 
amortized - 
depends on 

input distribution

Why are we studying PMAs if B-trees are always 
at least as good (in a big-O sense)?



Affine Model

57



Cost of access in Disk-Access Model (DAM)

The DAM [Aggarwal and Vitter, ’88] is a classical model that measures disk page 
access (or cache-line accesses, in RAM).


Each memory block fetch has unit cost.

58

Similar to Ideal-Cache model, without tall-cache assumption

Small 
memory

Big memory

Block 

Total cost = 5



Random vs Sequential Access Cost  
in the Affine Model

The affine model [ABZ96, BCF+19] accounts for sequential block accesses being 
faster than random (due to prefetching, etc.).


Random access has unit cost, and sequential access has cost .


Originally designed for disks and accounted for disk seek vs read.

α < 1

59

Small 
memory

Big memory

Block 

Total cost = 3 + 2α



Empirically validating the affine model in memory

60

DAM model

Empirical

Affine model



Point-Range Tradeoff

61

Better than the 
worst-case 
amortized

O((log2 N)/B)



Tries

62



General drawbacks of tree data structures

•The inner nodes alone in a B+-tree or buffered B-tree (or LSM, PMA, etc.) 
cannot tell you whether a key exists in the index. You must always 
traverse to the leaf node (unless you find it earlier).


•This means you could have (at least) one cache miss per level in the tree.

63Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf



Trie index

Use a digital representation of keys to 
examine prefixes one-by-one instead 
of comparing entire key. 


Also known as Digital Search Tree, 
Prefix Tree.


Used in predictive text / approximate 
matching algorithms.

64Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf



Trie index properties

Shape only depends on key space and 
lengths. 

• Does not depend on existing keys or 
insertion order. 

• Does not require rebalancing 
operations. 


• All operations have O(k) complexity 
where k is the length of the key. 

• The path to a leaf node represents the 
key of the leaf 

• Keys are stored implicitly and can be 
reconstructed from paths.

65Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

Depends 
on 

keys



Radix tree
Uses the binary encoding of string keys in its representation.


Every node in a radix tree (or Patricia tree) contains an index, known as a 
“skip number” that stores the node’s branching index to avoid empty 
subtree traversals.

66https://en.wikipedia.org/wiki/Trie

Skip number

More space efficient than a 
naive trie implementation



Trie variants

Judy arrays (HP)


• Variant of a 256-way radix tree. First known radix tree 
that supports adaptive node representation.


ART Index (HyPER)


• 256-way radix tree that supports different node types 
based on its population.


Masstree (Silo)


• Instead of using different layouts for each trie node 
based on size, use an entire B+-tree. 

67Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf

https://db.in.tum.de/~leis/papers/ART.pdf

https://judy.sourceforge.net/

https://pdos.csail.mit.edu/papers/masstree:eurosys12.pdf



Performance comparison

68Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf
Source: https://github.com/wangziqi2016/index-microbench 



Size comparison

69Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf
Source: https://github.com/wangziqi2016/index-microbench 



Summary

•B+-trees are the go-to in-memory indexing data structure.


•B  trees achieve asymptotically faster insert without theoretical loss in 
search performance, but are harder to implement and have worse write 
amplification.


•Skip lists are great if you don’t want to implement self-balancing 
algorithms.

ε

70Slides from: https://users.cs.utah.edu/~pandey/courses/cs6530/fall23/slides/Lecture03.pdf


