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Recall: Shared-memory multiprocessors

A shared-memory multiprocessor (SMP) connects multiple processors to a 
single memory system.


All threads can access the global memory space.

Network

Processor

Memory

Processor Processor

Network

Processor Processor Processor
E.g. Intel Haswell
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Multicore processors

Q: Why do semiconductor vendors 
provide chips with multiple processor 
cores?


A: Because of Moore’s law and the end 
of the scaling of clock frequency.

3
E.g. Intel Haswell
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Technology scaling
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Recall: Power density
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The growth of power density, as seen in 2004, if the 
scaling of clock frequency had continued its trend of 

25%-30% increase per year.

Is it better to increase speed by doubling 
frequency or cores?


Performance  (cores) x (freq)


Power  (cores) x (freq2.5)

∝

∝

From Rich Vuduc



Technology scaling
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Abstract multicore architecture
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Shared-Memory Hardware
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Cache coherence
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Cache coherence
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Cache coherence
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Cache coherence
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Cache coherence
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MSI Protocol

Each cache line is labeled with a state:

•M: cache block has been modified. No other caches contain this block in 
M or S states.

•S: Other caches may be sharing this block

• I: cache block is invalid (the same as not there)

15From MIT OCW 6.172

M: x = 13 
S: y = 17 
I: z = 8

S: y = 17 
M: z = 7

I: x = 4 

I: z = 3

I: x = 12 
S: y = 17 

Before a cache modifies a location, the hardware first 
invalidates all other copies.
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MSI Protocol

Each cache line is labeled with a state:

•M: cache block has been modified. No other caches contain this block in 
M or S states.

•S: Other caches may be sharing this block

• I: cache block is invalid (the same as not there)
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M: x = 13 
I: y = 17 
I: z = 8

M: y = 5 
M: z = 7

I: x = 4 

I: z = 3

I: x = 12 
I: y = 17 

Store y = 5



Concurrency Platforms
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Concurrency platforms

•Programming directly on processor cores is painful and error-prone.

•A concurrency platform abstracts processor cores, handles 
synchronization and communication protocols, and performs load 
balancing.

•Examples include: Pthreads, Cilk, OpenMP.

20

Multithreading

Theory Practice

From MIT OCW 6.172



Fibonacci numbers
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Fibonacci program
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Fibonacci execution
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Pthreads
•Standard API for threading specified by ANSI/IEEE POSIX 1003.1-2008.
•Do-it-yourself concurrency platform.
•Built as a library of functions with “special” non-C semantics.
•Each thread implements an abstraction of a processor, which are 
multiplexed onto machine resources.
•Threads communicate though shared memory.
•Library functions mask the protocols involved in interthread coordination.

24http://www.csc.villanova.edu/~mdamian/threads/posixthreads.htmlFrom MIT OCW 6.172



Key Pthread Functions
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https://hpc-tutorials.llnl.gov/posix/joining_and_detaching/
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Pthread implementation
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Original 
(serial) code
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Pthread implementation
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Original 
(serial) code

Structure for 
thread 

arguments
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Pthread implementation
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Original 
(serial) code

Structure for 
thread 

arguments

Function 
called when 

thread is 
created
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Pthread implementation
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No point in 
creating 

thread if there 
isn’t enough 

to do



Pthread implementation
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Pthread implementation
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Pthread implementation

32

From MIT OCW 6.172

No point in 
creating 

thread if there 
isn’t enough 

to do

Marshal input 
argument to 

thread

Main thread 
executes 
fib(n-2) in 
parallel

Create thread 
to execute 

fib(n-1)



Pthread implementation
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Pthread implementation
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No point in 
creating 

thread if there 
isn’t enough 

to do

Marshal input 
argument to 

thread

Main thread 
executes 
fib(n-2) in 
parallel

Block until 
auxiliary thread 

finishes
Add results 
together for 
final output

Create thread 
to execute 

fib(n-1)



Issues with pthreads
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OpenMP

•First introduced in 1997.

•Specification by an industry consortium.

•Several compilers available, both open-source and proprietary, including 
GCC, ICC, Clang, and Visual Studio.

•Linguistic extensions to C/C++ and Fortran in the form of compiler 
pragmas.

•Runs on top of native threads.

•Supports loop parallelism, task parallelism, and pipeline parallelism.

36From MIT OCW 6.172

https://www.openmp.org/



Three OpenMP building blocks
•Compiler directives - e.g.,


• variable types: private, shared


• parallel tasks, parallel for


•Runtime libraries / APIs - e.g.,


• omp_set/get_num_threads, omp_get_thread_num, etc.


•Environment variables - e.g.,


• OMP_NUM_THREADS, OMP_SCHEDULE, etc.

37From Ramki Kannan



Fork-join model

•OpenMP programs begin with a single process: the master thread.

•The master thread executes sequentially until the first parallel region 
construct is encountered.

•Fork: the master thread then creates a team of parallel threads to execute 
the code in the parallel region.

•Join: When the team threads complete the statements in the parallel 
region, they synchronize and terminate, leaving only the master thread.

38From Ramki Kannan



OpenMP usage in C/C++

•Add #include <omp.h> at the top of your file with the other includes 

•Usage: #pragma omp directive [clauses] newline 

•Compile with the -fopenmp flag

39From Ramki Kannan



Fibonacci in OpenMP
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Compiler 
directive



Fibonacci in OpenMP
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Compiler 
directive

The following statement is 
an independent task



Fibonacci in OpenMP
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Compiler 
directive

The following statement is 
an independent task

Sharing of memory is 
managed explicitly

Shared variables have 
one version for all the 
threads.

Most variables are 
shared by default: 
with a few exceptions 
e.g., iteration variables



Fibonacci in OpenMP
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Compiler 
directive

The following statement is 
an independent task

Sharing of memory is 
managed explicitly

Wait for the two tasks to 
complete before continuing

Shared variables have 
one version for all the 
threads.

Most variables are 
shared by default: 
with a few exceptions 
e.g., iteration variables



Parallel for example- Saxpy
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#pragma omp parallel for 
for (i = 0; i < n; i++) { 
  y[i] = a*x[i] + y[i] 
}

OpenMP compiler directive

From Ramki Kannan



OMP Load Balancing
OpenMP provides different methods to divide iterations among threads, 
indicated by the schedule clause: schedule (<method>, [chunk size]) 

Methods include:

• Static: the default schedule; divide iterations into chunks according to 

size, then distribute chunks to each thread in a round-robin manner. 

• Dynamic: each thread grabs a chunk of iterations, then requests 

another chunk upon completion of the current one, until all iterations 
are executed. 

45From Ramki Kannan



OMP Variables Scope - private
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#include <stdio.h> 
#include <stdlib.h> 
#include <omp.h> 
  
int main(void){ 
int i; 
int x; 
x=44; 
#pragma omp parallel for private(x) 
for(i=0;i<=10;i++){ 
x=i; 
printf("Thread number: %d     x: 
%d\n”,omp_get_thread_num(),x); 

} 
printf("x is %d\n", x); 

} 

https://michaellindon.github.io/lindonslog/programming/openmp/openmp-tutorial-firstprivate-and-lastprivate/

Thread number: 0     x: 0 
Thread number: 0     x: 1 
Thread number: 0     x: 2 
Thread number: 3     x: 9 
Thread number: 3     x: 10 
Thread number: 2     x: 6 
Thread number: 2     x: 7 
Thread number: 2     x: 8 
Thread number: 1     x: 3 
Thread number: 1     x: 4 
Thread number: 1     x: 5 
x is 44

Creates local 
(uninitialized) copy 

of the specified 
variables for each 

thread

Thread num at 
runtime



OMP Variables Scope - lastprivate
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#include <stdio.h> 
#include <stdlib.h> 
#include <omp.h> 
  
int main(void){ 
int i; 
int x; 
x=44; 
#pragma omp parallel for lastprivate(x) 
for(i=0;i<=10;i++){ 
x=i; 
printf("Thread number: %d     x: 
%d\n”,omp_get_thread_num(),x); 

} 
printf("x is %d\n", x); 

} 

https://michaellindon.github.io/lindonslog/programming/openmp/openmp-tutorial-firstprivate-and-lastprivate/

Thread number: 3     x: 9 
Thread number: 3     x: 10 
Thread number: 1     x: 3 
Thread number: 1     x: 4 
Thread number: 1     x: 5 
Thread number: 0     x: 0 
Thread number: 0     x: 1 
Thread number: 0     x: 2 
Thread number: 2     x: 6 
Thread number: 2     x: 7 
Thread number: 2     x: 8 
x is 10

Special case of 
private: allows us to 
keep value of x at 
the last iteration 
after the parallel 

region



OMP Variables Scope - firstprivate
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#include <stdio.h> 
#include <stdlib.h> 
#include <omp.h> 
  
int main(void){ 
int i; 
int x; 
x=44; 
#pragma omp parallel for firstprivate(x) 
for(i=0;i<=10;i++){ 
x=i; 
printf("Thread number: %d     x: 
%d\n”,omp_get_thread_num(),x); 

} 
printf("x is %d\n", x); 

} 

https://michaellindon.github.io/lindonslog/programming/openmp/openmp-tutorial-firstprivate-and-lastprivate/

Thread number: 3     x: 9 
Thread number: 3     x: 10 
Thread number: 1     x: 3 
Thread number: 1     x: 4 
Thread number: 1     x: 5 
Thread number: 0     x: 0 
Thread number: 0     x: 1 
Thread number: 0     x: 2 
Thread number: 2     x: 6 
Thread number: 2     x: 7 
Thread number: 2     x: 8 
x is 44

Special case of 
private: initializes 

each thread’s private 
copy of the variable 
with the value it had 
before the parallel 

construct



OMP Reduction Example
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int main()  
{  
int i, n;  
n = 10000;  
float a[n], b[n];  
double result, sequential_result;  
/* Some initializations */  
result = 0.0;  
for (i = 0; i < n; i++) {  
a[i] = i * 1.0; b[i] = i * 2.0;  

}  

#pragma omp parallel for default(shared) 
private(i) schedule(static) 
reduction(+ : result)  
for (i = 0; i < n; i++)  
result = result + (a[i] * b[i]);  

printf("Final result= %f\n", result); 
return 0;  

}

•The reduction clause allows accumulative 
operations on the value of variables.


•Syntax: 


• reduction (operator:variable list)


•Operators:


• Arithmetic (i.e., +, *, -)


• Bitwise (i.e., &, |, ^)


• Logical (i.e., &&, ||)

From Ramki Kannan



Determinacy Races and Mutual Exclusion
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Determinacy Races

A determinacy race occurs when two logically parallel instructions access 
the same memory location and at least one of the instructions performs a 
write.

51

int x = 0; 

#pragma omp parallel for  
for (i = 0; i < 2; i++) { 
x++; 

} 
assert(x == 2); 

A

B, C

D

From MIT OCW 6.172



A Closer Look
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Types of Races

Two sections of code are independent if they have no determinacy races 
between them.

53

Suppose that instruction A and instruction B both access a location x, and 
suppose that A || B (A is parallel to B).

From MIT OCW 6.172



Avoiding Races 

• Iterations of parallel for should ideally be independent.


•Between parallel tasks and the corresponding taskwait, the code of the 
spawned task should be independent of the code of the parent, 
including code executed by additional spawned tasks.

54From MIT OCW 6.172

https://www.researchgate.net/
figure/A-dag-representing-the-
multithreaded-computation-of-
Fib4-Threads-are-shown-as-

circles_fig1_2817427



Locks and Mutual Exclusion

A thread lock is a form of mutual exclusion. If you must access the same 
data in parallel, use locks to protect it.


A lock can be held by at most one thread at a time.

55From MIT OCW 6.172

lock_t lock; 

parallel_for ( i = 0; i < n; i++ ) { 
  set_lock(&lock); 

  // only one thread at a time can access this part 
   
unset_lock(&lock); 

} 

Note: Locks are not cheap 
(performance-wise)



OMP Locks

The syntax for locks in OpenMP (omp_lock_t) is as follows:


The four operations are:

•omp_init_lock(omp_lock_t *) – initialize a lock 

•omp_set_lock(omp_lock_t*) – wait until the lock is available, then 
set it. No other thread can set the lock until it is released

•omp_unset_lock(omp_lock_t*) – unset (release) the lock

•omp_destroy_lock(omp_lock_t*) – The reverse of omp_init_lock

56https://www.openmp.org/spec-html/5.0/openmpse31.html
https://wgropp.cs.illinois.edu/courses/cs598-s15/lectures/lecture19.pdf



OMP Lock Example

57https://www.openmp.org/spec-html/5.0/openmpse31.html

omp_lock_t writelock; 

omp_init_lock(&writelock); 

#pragma omp parallel for 
for ( i = 0; i < n; i++ ) { 
  omp_set_lock(&writelock); 

  // only one thread at a time can access this part 
   
omp_unset_lock(&writelock); 

} 

omp_destroy_lock(&writelock); 

Set the lock so only 
this thread has 

access

Unset the lock when the 
thread is done to allow 

others to take it

Initialize lock

(next lecture will be all about nondeterminism and locks)

Declare lock



Measuring Parallel Programs
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Parallel Scalability

Scalability is the ability of hardware and software to deliver greater 
computational power when the amount of resources is increased.


Speedup in parallel computing is defined as , where  is the serial 
time and  is the time to run on p processors.

T1/Tp T1
Tp

59
https://web.eecs.utk.edu/~huangj/hpc/hpc_intro.php

https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/



Amdahl’s Law and Strong Scaling
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Amdahl’s law bounds strong scaling, or the speedup 
of a fixed problem given more parallel resources.


s = fraction of work done seqentially (Amdahl 
fraction)

1-s = parallelizable fraction

P = number of processors 

Speedup (P) = Time(1) / Time(P) 

                   <= 1/(s + (1-s)/P)

                   <= 1/s


For a fixed problem, the upper limit of speedup is 
determined by the serial fraction.

From Ramki Kannan

Work done by the 
best sequential 

algorithm



Gustafson’s Law and Weak Scaling
• In practice, the problem sizes often 
scale with the amount of available 
resources. 


•Gustafson’s law - based on 
approximations that the parallel part 
scales, but the serial part does not 
increase wrt the size of the problem


• Scaled speedup = s + (1-s) * P


• Weak scaling: scaled speedup is 
calculated based on the amount of 
work done for a scaled problem size.

61https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/



Example: Julia Set

A Julia set is associated with a complex function and can be converted to an 
image by mapping each pixel onto the complex plane. 


The total size of the image in this example is parametrized by integers h and 
w.

62https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/
https://en.wikipedia.org/wiki/Julia_set



Example: Julia Set Code

63https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

# pragma omp parallel for schedule(dynamic) \ 
  shared ( h, w, xl, xr, yb, yt ) \ 
  private ( i, j, k, juliaValue ) 
  for ( j = 0; j < h; j++ ) { 

for ( i = 0; i < w; i++) { 
        // some O(1) calculation 
    } 
  } 

https://people.sc.fsu.edu/~jburkardt/c_src/julia_set_openmp/julia_set_openmp.c



Measuring Strong Scaling

Strong scaling is measured by varying the number of threads while 
keeping the problem size (in this case, the width and height) constant.

64https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/



Measuring Weak Scaling
Weak scaling is measured by varying the number of threads and the problem size 
proportionally with the thread count. In this example, the height is scaled and the 
width is kept constant.


Given p threads, scaled speedup is defined as efficiency * p, where efficiency is 
.T1/Tp

65https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/



Summary

•Processors today have multiple cores, and obtaining high performance 
requires parallel programming.


•Programming directly on processor cores is painful and error-prone.


•OpenMP abstracts processor cores, handles synchronization and 
communication protocols, and implements load-balancing methods.


•Scalability is important for efficient parallel computing.


•Homework 2: Particle simulation in OpenMP

66From MIT OCW 6.172


