
CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

+

Lecture 6: Shared-Memory
Programming

mailto:hxu615@gatech.edu

2

Recall: Shared-memory multiprocessors

A shared-memory multiprocessor (SMP) connects multiple processors to a
single memory system.

All threads can access the global memory space.

Network

Processor

Memory

Processor Processor

Network

Processor Processor Processor
E.g. Intel Haswell

From UC Berkeley CS267

Multicore processors

Q: Why do semiconductor vendors
provide chips with multiple processor
cores?

A: Because of Moore’s law and the end
of the scaling of clock frequency.

3
E.g. Intel Haswell

From MIT OCW 6.172

Technology scaling

4From MIT OCW 6.172

Recall: Power density

5

The growth of power density, as seen in 2004, if the
scaling of clock frequency had continued its trend of

25%-30% increase per year.

Is it better to increase speed by doubling
frequency or cores?

Performance (cores) x (freq)

Power (cores) x (freq2.5)

∝

∝

From Rich Vuduc

Technology scaling

6From MIT OCW 6.172

Abstract multicore architecture

7From MIT OCW 6.172

P

$$

Memory I/O

$

Network

…

P P

Chip Multiprocessor (CMP)

Shared-Memory Hardware

8

Cache coherence

9From MIT OCW 6.172

P

$x = 3 $…

P P
Load x

x = 3

Network

Cache coherence

10From MIT OCW 6.172

P

x = 3x = 3 $…

P P
Load x

x = 3

Network

Cache coherence

11From MIT OCW 6.172

P

x = 3x = 3 x = 3…

P P

x = 3

Network

Load x

Cache coherence

12From MIT OCW 6.172

P

x = 3x = 3 x = 3…

P P

x = 3

Network

Store x

x=5

Cache coherence

13From MIT OCW 6.172

P

x = 3x = 3 x = 5…

P P

x = 3

Network

Store x

x=5

Cache coherence

14From MIT OCW 6.172

P

x = 3x = 3 x = 5…

P P

x = 3

Network

Load x

x=5

MSI Protocol

Each cache line is labeled with a state:

•M: cache block has been modified. No other caches contain this block in
M or S states.

•S: Other caches may be sharing this block

• I: cache block is invalid (the same as not there)

15From MIT OCW 6.172

M: x = 13
S: y = 17
I: z = 8

S: y = 17
M: z = 7

I: x = 4

I: z = 3

I: x = 12
S: y = 17

Before a cache modifies a location, the hardware first
invalidates all other copies.

MSI Protocol

Each cache line is labeled with a state:

•M: cache block has been modified. No other caches contain this block in
M or S states.

•S: Other caches may be sharing this block

• I: cache block is invalid (the same as not there)

16From MIT OCW 6.172

M: x = 13
S: y = 17
I: z = 8

S: y = 17
M: z = 7

I: x = 4

I: z = 3

I: x = 12
S: y = 17

Store y = 5

MSI Protocol

Each cache line is labeled with a state:

•M: cache block has been modified. No other caches contain this block in
M or S states.

•S: Other caches may be sharing this block

• I: cache block is invalid (the same as not there)

17From MIT OCW 6.172

M: x = 13
I: y = 17
I: z = 8

S: y = 17
M: z = 7

I: x = 4

I: z = 3

I: x = 12
I: y = 17

Store y = 5

MSI Protocol

Each cache line is labeled with a state:

•M: cache block has been modified. No other caches contain this block in
M or S states.

•S: Other caches may be sharing this block

• I: cache block is invalid (the same as not there)

18From MIT OCW 6.172

M: x = 13
I: y = 17
I: z = 8

M: y = 5
M: z = 7

I: x = 4

I: z = 3

I: x = 12
I: y = 17

Store y = 5

Concurrency Platforms

19

Concurrency platforms

•Programming directly on processor cores is painful and error-prone.

•A concurrency platform abstracts processor cores, handles
synchronization and communication protocols, and performs load
balancing.

•Examples include: Pthreads, Cilk, OpenMP.

20

Multithreading

Theory Practice

From MIT OCW 6.172

Fibonacci numbers

21From MIT OCW 6.172

Fibonacci program

22From MIT OCW 6.172

Fibonacci execution

23From MIT OCW 6.172

Pthreads
•Standard API for threading specified by ANSI/IEEE POSIX 1003.1-2008.
•Do-it-yourself concurrency platform.
•Built as a library of functions with “special” non-C semantics.
•Each thread implements an abstraction of a processor, which are
multiplexed onto machine resources.
•Threads communicate though shared memory.
•Library functions mask the protocols involved in interthread coordination.

24http://www.csc.villanova.edu/~mdamian/threads/posixthreads.htmlFrom MIT OCW 6.172

Key Pthread Functions

25

https://hpc-tutorials.llnl.gov/posix/joining_and_detaching/

From MIT OCW 6.172

Pthread implementation

26

Original
(serial) code

From MIT OCW 6.172

Pthread implementation

27

Original
(serial) code

Structure for
thread

arguments

From MIT OCW 6.172

Pthread implementation

28

Original
(serial) code

Structure for
thread

arguments

Function
called when

thread is
created

From MIT OCW 6.172

Pthread implementation

29

From MIT OCW 6.172

No point in
creating

thread if there
isn’t enough

to do

Pthread implementation

30

From MIT OCW 6.172

No point in
creating

thread if there
isn’t enough

to do

Marshal input
argument to

thread

Pthread implementation

31

From MIT OCW 6.172

No point in
creating

thread if there
isn’t enough

to do

Marshal input
argument to

thread

Create thread
to execute

fib(n-1)

Pthread implementation

32

From MIT OCW 6.172

No point in
creating

thread if there
isn’t enough

to do

Marshal input
argument to

thread

Main thread
executes
fib(n-2) in
parallel

Create thread
to execute

fib(n-1)

Pthread implementation

33

From MIT OCW 6.172

No point in
creating

thread if there
isn’t enough

to do

Marshal input
argument to

thread

Main thread
executes
fib(n-2) in
parallel

Block until
auxiliary thread

finishes

Create thread
to execute

fib(n-1)

Pthread implementation

34

From MIT OCW 6.172

No point in
creating

thread if there
isn’t enough

to do

Marshal input
argument to

thread

Main thread
executes
fib(n-2) in
parallel

Block until
auxiliary thread

finishes
Add results
together for
final output

Create thread
to execute

fib(n-1)

Issues with pthreads

35

From MIT OCW 6.172

OpenMP

•First introduced in 1997.

•Specification by an industry consortium.

•Several compilers available, both open-source and proprietary, including
GCC, ICC, Clang, and Visual Studio.

•Linguistic extensions to C/C++ and Fortran in the form of compiler
pragmas.

•Runs on top of native threads.

•Supports loop parallelism, task parallelism, and pipeline parallelism.

36From MIT OCW 6.172

https://www.openmp.org/

Three OpenMP building blocks
•Compiler directives - e.g.,

• variable types: private, shared

• parallel tasks, parallel for

•Runtime libraries / APIs - e.g.,

• omp_set/get_num_threads, omp_get_thread_num, etc.

•Environment variables - e.g.,

• OMP_NUM_THREADS, OMP_SCHEDULE, etc.

37From Ramki Kannan

Fork-join model

•OpenMP programs begin with a single process: the master thread.

•The master thread executes sequentially until the first parallel region
construct is encountered.

•Fork: the master thread then creates a team of parallel threads to execute
the code in the parallel region.

•Join: When the team threads complete the statements in the parallel
region, they synchronize and terminate, leaving only the master thread.

38From Ramki Kannan

OpenMP usage in C/C++

•Add #include <omp.h> at the top of your file with the other includes

•Usage: #pragma omp directive [clauses] newline

•Compile with the -fopenmp flag

39From Ramki Kannan

Fibonacci in OpenMP

40From MIT OCW 6.172

Compiler
directive

Fibonacci in OpenMP

41From MIT OCW 6.172

Compiler
directive

The following statement is
an independent task

Fibonacci in OpenMP

42From MIT OCW 6.172

Compiler
directive

The following statement is
an independent task

Sharing of memory is
managed explicitly

Shared variables have
one version for all the
threads.

Most variables are
shared by default:
with a few exceptions
e.g., iteration variables

Fibonacci in OpenMP

43From MIT OCW 6.172

Compiler
directive

The following statement is
an independent task

Sharing of memory is
managed explicitly

Wait for the two tasks to
complete before continuing

Shared variables have
one version for all the
threads.

Most variables are
shared by default:
with a few exceptions
e.g., iteration variables

Parallel for example- Saxpy

44

#pragma omp parallel for
for (i = 0; i < n; i++) {
 y[i] = a*x[i] + y[i]
}

OpenMP compiler directive

From Ramki Kannan

OMP Load Balancing
OpenMP provides different methods to divide iterations among threads,
indicated by the schedule clause: schedule (<method>, [chunk size])

Methods include:

• Static: the default schedule; divide iterations into chunks according to

size, then distribute chunks to each thread in a round-robin manner.

• Dynamic: each thread grabs a chunk of iterations, then requests

another chunk upon completion of the current one, until all iterations
are executed.

45From Ramki Kannan

OMP Variables Scope - private

46

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(void){
int i;
int x;
x=44;
#pragma omp parallel for private(x)
for(i=0;i<=10;i++){
x=i;
printf("Thread number: %d x:
%d\n”,omp_get_thread_num(),x);

}
printf("x is %d\n", x);

}

https://michaellindon.github.io/lindonslog/programming/openmp/openmp-tutorial-firstprivate-and-lastprivate/

Thread number: 0 x: 0
Thread number: 0 x: 1
Thread number: 0 x: 2
Thread number: 3 x: 9
Thread number: 3 x: 10
Thread number: 2 x: 6
Thread number: 2 x: 7
Thread number: 2 x: 8
Thread number: 1 x: 3
Thread number: 1 x: 4
Thread number: 1 x: 5
x is 44

Creates local
(uninitialized) copy

of the specified
variables for each

thread

Thread num at
runtime

OMP Variables Scope - lastprivate

47

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(void){
int i;
int x;
x=44;
#pragma omp parallel for lastprivate(x)
for(i=0;i<=10;i++){
x=i;
printf("Thread number: %d x:
%d\n”,omp_get_thread_num(),x);

}
printf("x is %d\n", x);

}

https://michaellindon.github.io/lindonslog/programming/openmp/openmp-tutorial-firstprivate-and-lastprivate/

Thread number: 3 x: 9
Thread number: 3 x: 10
Thread number: 1 x: 3
Thread number: 1 x: 4
Thread number: 1 x: 5
Thread number: 0 x: 0
Thread number: 0 x: 1
Thread number: 0 x: 2
Thread number: 2 x: 6
Thread number: 2 x: 7
Thread number: 2 x: 8
x is 10

Special case of
private: allows us to
keep value of x at
the last iteration
after the parallel

region

OMP Variables Scope - firstprivate

48

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(void){
int i;
int x;
x=44;
#pragma omp parallel for firstprivate(x)
for(i=0;i<=10;i++){
x=i;
printf("Thread number: %d x:
%d\n”,omp_get_thread_num(),x);

}
printf("x is %d\n", x);

}

https://michaellindon.github.io/lindonslog/programming/openmp/openmp-tutorial-firstprivate-and-lastprivate/

Thread number: 3 x: 9
Thread number: 3 x: 10
Thread number: 1 x: 3
Thread number: 1 x: 4
Thread number: 1 x: 5
Thread number: 0 x: 0
Thread number: 0 x: 1
Thread number: 0 x: 2
Thread number: 2 x: 6
Thread number: 2 x: 7
Thread number: 2 x: 8
x is 44

Special case of
private: initializes

each thread’s private
copy of the variable
with the value it had
before the parallel

construct

OMP Reduction Example

49

int main()
{
int i, n;
n = 10000;
float a[n], b[n];
double result, sequential_result;
/* Some initializations */
result = 0.0;
for (i = 0; i < n; i++) {
a[i] = i * 1.0; b[i] = i * 2.0;

}

#pragma omp parallel for default(shared)
private(i) schedule(static)
reduction(+ : result)
for (i = 0; i < n; i++)
result = result + (a[i] * b[i]);

printf("Final result= %f\n", result);
return 0;

}

•The reduction clause allows accumulative
operations on the value of variables.

•Syntax:

• reduction (operator:variable list)

•Operators:

• Arithmetic (i.e., +, *, -)

• Bitwise (i.e., &, |, ^)

• Logical (i.e., &&, ||)

From Ramki Kannan

Determinacy Races and Mutual Exclusion

50

Determinacy Races

A determinacy race occurs when two logically parallel instructions access
the same memory location and at least one of the instructions performs a
write.

51

int x = 0;

#pragma omp parallel for
for (i = 0; i < 2; i++) {
x++;

}
assert(x == 2);

A

B, C

D

From MIT OCW 6.172

A Closer Look

52From MIT OCW 6.172

Types of Races

Two sections of code are independent if they have no determinacy races
between them.

53

Suppose that instruction A and instruction B both access a location x, and
suppose that A || B (A is parallel to B).

From MIT OCW 6.172

Avoiding Races

• Iterations of parallel for should ideally be independent.

•Between parallel tasks and the corresponding taskwait, the code of the
spawned task should be independent of the code of the parent,
including code executed by additional spawned tasks.

54From MIT OCW 6.172

https://www.researchgate.net/
figure/A-dag-representing-the-
multithreaded-computation-of-
Fib4-Threads-are-shown-as-

circles_fig1_2817427

Locks and Mutual Exclusion

A thread lock is a form of mutual exclusion. If you must access the same
data in parallel, use locks to protect it.

A lock can be held by at most one thread at a time.

55From MIT OCW 6.172

lock_t lock;

parallel_for (i = 0; i < n; i++) {
 set_lock(&lock);

 // only one thread at a time can access this part

unset_lock(&lock);

}

Note: Locks are not cheap
(performance-wise)

OMP Locks

The syntax for locks in OpenMP (omp_lock_t) is as follows:

The four operations are:

•omp_init_lock(omp_lock_t *) – initialize a lock

•omp_set_lock(omp_lock_t*) – wait until the lock is available, then
set it. No other thread can set the lock until it is released

•omp_unset_lock(omp_lock_t*) – unset (release) the lock

•omp_destroy_lock(omp_lock_t*) – The reverse of omp_init_lock

56https://www.openmp.org/spec-html/5.0/openmpse31.html
https://wgropp.cs.illinois.edu/courses/cs598-s15/lectures/lecture19.pdf

OMP Lock Example

57https://www.openmp.org/spec-html/5.0/openmpse31.html

omp_lock_t writelock;

omp_init_lock(&writelock);

#pragma omp parallel for
for (i = 0; i < n; i++) {
 omp_set_lock(&writelock);

 // only one thread at a time can access this part

omp_unset_lock(&writelock);

}

omp_destroy_lock(&writelock);

Set the lock so only
this thread has

access

Unset the lock when the
thread is done to allow

others to take it

Initialize lock

(next lecture will be all about nondeterminism and locks)

Declare lock

Measuring Parallel Programs

58

Parallel Scalability

Scalability is the ability of hardware and software to deliver greater
computational power when the amount of resources is increased.

Speedup in parallel computing is defined as , where is the serial
time and is the time to run on p processors.

T1/Tp T1
Tp

59
https://web.eecs.utk.edu/~huangj/hpc/hpc_intro.php

https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

Amdahl’s Law and Strong Scaling

60

Amdahl’s law bounds strong scaling, or the speedup
of a fixed problem given more parallel resources.

s = fraction of work done seqentially (Amdahl
fraction)

1-s = parallelizable fraction

P = number of processors 

Speedup (P) = Time(1) / Time(P)

 <= 1/(s + (1-s)/P)

 <= 1/s

For a fixed problem, the upper limit of speedup is
determined by the serial fraction.

From Ramki Kannan

Work done by the
best sequential

algorithm

Gustafson’s Law and Weak Scaling
• In practice, the problem sizes often
scale with the amount of available
resources.

•Gustafson’s law - based on
approximations that the parallel part
scales, but the serial part does not
increase wrt the size of the problem

• Scaled speedup = s + (1-s) * P

• Weak scaling: scaled speedup is
calculated based on the amount of
work done for a scaled problem size.

61https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

Example: Julia Set

A Julia set is associated with a complex function and can be converted to an
image by mapping each pixel onto the complex plane.

The total size of the image in this example is parametrized by integers h and
w.

62https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/
https://en.wikipedia.org/wiki/Julia_set

Example: Julia Set Code

63https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

pragma omp parallel for schedule(dynamic) \
 shared (h, w, xl, xr, yb, yt) \
 private (i, j, k, juliaValue)
 for (j = 0; j < h; j++) {

for (i = 0; i < w; i++) {
 // some O(1) calculation
 }
 }

https://people.sc.fsu.edu/~jburkardt/c_src/julia_set_openmp/julia_set_openmp.c

Measuring Strong Scaling

Strong scaling is measured by varying the number of threads while
keeping the problem size (in this case, the width and height) constant.

64https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

Measuring Weak Scaling
Weak scaling is measured by varying the number of threads and the problem size
proportionally with the thread count. In this example, the height is scaled and the
width is kept constant.

Given p threads, scaled speedup is defined as efficiency * p, where efficiency is
.T1/Tp

65https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/

Summary

•Processors today have multiple cores, and obtaining high performance
requires parallel programming.

•Programming directly on processor cores is painful and error-prone.

•OpenMP abstracts processor cores, handles synchronization and
communication protocols, and implements load-balancing methods.

•Scalability is important for efficient parallel computing.

•Homework 2: Particle simulation in OpenMP

66From MIT OCW 6.172

