
Announcements

•Office hours in announcement on Canvas 


•Pull updates to HW2 with git pull (should not affect the part you are 
changing, since it is in the test driver)


•To zip up a directory, use -r, e.g., zip -r hw2.zip hw2/
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Determinism

Definition. A program is deterministic on a given input if every memory 
location is updated with the same sequence of values in every execution. 

•The program always behaves the same way. 

•Two different memory locations may be updated in different orders, but 
each location always sees the same sequence of updates.
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Advantage: Debugging!

From MIT OCW 6.172



Mutual Exclusion & Atomicity
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Hash Table Example
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92 39

From MIT OCW 6.172

51 34

16

42 33 12

15 94 26 28

77 75

81x:

slot = hash(x->key) 
x->next = table[slot]; 
table[slot] = x; 

1:
2:
3:



Cocurrent Hash Table Example
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92 39

From MIT OCW 6.172

51 34

16

42 33 12

15 94 26 28

77 75

81x:

slot = hash(x->key) 
x->next = table[slot]; 
table[slot] = x; 

1:
2:
6:

slot = hash(y->key) 
y->next = table[slot]; 
table[slot] = y; 

3:
4:
5:

37y:
Race bug



Atomicity

A sequence of instructions is atomic if the rest of the system cannot ever 
view them as partially executed. At any moment, either no instructions in the 
sequence have executed or all have executed.


A critical section is a piece of code that accesses a shared data structure 
that must not be accessed by two or more threads at the same time (mutual 
exclusion).

7From MIT OCW 6.172

lock_t lock; 

parallel_for ( i = 0; i < n; i++ ) { 
  set_lock(&lock); 

  // CRITICAL SECTION 
   
unset_lock(&lock); 

} 



Mutexes
A mutex is an object with lock and unlock member functions. An attempt 
by a thread to lock an already locked mutex causes that thread to block 
(i.e., wait) until the mutex is unlocked.


Modified code: Each slot is a struct with a mutex L and a pointer head to 
the slot contents.

8From MIT OCW 6.172

slot = hash(x->key); 
lock(&table[slot].L); 
x->next = table[slot].head; 
table[slot].head = x; 

unlock(&table[slot].L);

Critical 
section

Mutexes can be used to implement atomicity.



Recall: Determinacy Races
A determinacy race occurs when two logically parallel instructions access the 
same memory location and at least one of the instructions performs a write.


A program execution with no determinacy races means that the program always 
behaves the same on a given input, no matter how it is scheduled and 
executed. 
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int x = 0; 

#pragma omp parallel for  
for (i = 0; i < 2; i++) { 
x++; 

} 
assert(x == 2); 

A

B, C

D

From MIT OCW 6.172



Data Races

A data race occurs when two logically parallel instructions holding no 
locks in common access the same memory location and at least one

of the instructions performs a write.


Although data-race-free programs obey atomicity constraints, they can still 
be nondeterministic, because acquiring a lock can cause a determinacy race 
with another lock acquisition.

10From MIT OCW 6.172



No Data Races =/= No Bugs

11From MIT OCW 6.172

slot = hash(x->key); 
lock(&table[slot].L); 
x->next = table[slot].head; 

unlock(&table[slot].L); 

lock(&table[slot].L); 
table[slot].head = x; 

unlock(&table[slot].L);

Nevertheless, the presence of mutexes and the absence of data races at 
least means that the programmer thought about the issue.

Example:



“Benign” Races

12From MIT OCW 6.172

Caution: This code only works correctly if the hardware writes the array 
elements atomically — e.g., it races for byte values on some architectures.

Example: Identify the set of digits in an array.

A: 4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4

for (int i=0; i<10; ++i) { 
digits[i] = 0; 

} 

parallel_for (int i = 0; i < N; ++i) { 
digits[A[i]] = 1; 

}

Benign 
race

1digits: 1 0 1 1 1 1 0 0 1
0 1 2 3 4 5 6 7 8 9



Implementation of Mutexes
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Properties of Mutexes

Yielding/spinning 
A yielding mutex returns control to the operating system when it blocks. A 
spinning mutex consumes processor cycles while blocked.


Reentrant/nonreentrant 
A reentrant mutex allows a thread that is already holding a lock to acquire it 
again. A non-reentrant mutex deadlocks if the thread attempts to reacquire a 
mutex it already holds.


Fair/unfair 
A fair mutex puts blocked threads on a FIFO queue, and the unlock 
operation unblocks the thread that has been waiting the longest. An unfair 
mutex lets any blocked thread go next.

14From MIT OCW 6.172



Simple Spinning Mutex

15

Spin_Mutex: 
cmp 0, mutex ; Check if mutex is free 
je Get_Mutex 
pause ; x86 hack to unconfuse pipeline 
jmp Spin_Mutex 

Get_Mutex: 
mov 1, %eax 
xchg mutex, %eax ; Try to get mutex 
cmp 0, %eax ; Test if successful 
jne Spin_Mutex 

Critical_Section: 
<critical-section code> 
mov 0, mutex ; Release mutex

From MIT OCW 6.172

Key 
property: 
xchg is an 

atomic 
exchange. 



Simple Yielding Mutex

16

Spin_Mutex: 
cmp 0, mutex ; Check if mutex is free 
je Get_Mutex 
call thread_yield ; Yield quantum 
jmp Spin_Mutex 

Get_Mutex: 
mov 1, %eax 
xchg mutex, %eax ; Try to get mutex 
cmp 0, %eax ; Test if successful 
jne Spin_Mutex 

Critical_Section: 
<critical-section code> 
mov 0, mutex ; Release mutex

From MIT OCW 6.172

Yield



Competitive Mutex
Competing goals:

•To claim mutex soon after it is released.

•To behave nicely and waste few cycles.


IDEA: Spin for a while, and then yield.


How long to spin?

As long as a context switch takes. Then, you

never wait longer than twice the optimal time.

• If the mutex is released while spinning, optimal.

• If the mutex is released after yield, ≤ 2 × optimal.


Randomized algorithm [Karlin, Manasse, McGeoch, Owicki 94]

A clever randomized algorithm can achieve a

competitive ratio of e/(e – 1) ≈ 1.58.

17From MIT OCW 6.172



Locking Anomaly - Deadlock

18



Deadlock

Holding more than one lock at a time can be dangerous:

19

lock(&A) 
lock(&B) 
// critical section 

unlock(&B) 
unlock(&A)

lock(&B) 
lock(&A) 
// critical section 

unlock(&A) 
unlock(&B)

Neither thread can continue - the ultimate loss of performance!

From MIT OCW 6.172

1 2

Thread 1: Thread 2:



Conditions for Deadlock

1. Mutual exclusion — Each thread claims exclusive control over the 
resources it holds.


2. Nonpreemption — Each thread does not release the resources it holds 
until it completes its use of them.


3. Circular waiting — A cycle of threads exists in which each thread is 
blocked waiting for resources held by the next thread in the cycle.

20

In the previous example

From MIT OCW 6.172



Dining Philosophers - A Story of Deadlock

Each of n philosophers needs the two 
chopsticks on either side of his/her

plate to eat his/her noodles.

21

while (1) { 
think(); 
lock(&chopstick[i].L); 
lock(&chopstick[(i+1)%n].L); 
eat(); 
unlock(&chopstick[i].L); 
unlock(&chopstick[(i+1)%n].L); 

}

Philosopher i:

From MIT OCW 6.172



Dining Philosophers - A Story of Deadlock

Each of n philosophers needs the two 
chopsticks on either side of his/her

plate to eat his/her noodles.
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while (1) { 
think(); 
lock(&chopstick[i].L); 
lock(&chopstick[(i+1)%n].L); 
eat(); 
unlock(&chopstick[i].L); 
unlock(&chopstick[(i+1)%n].L); 

}

Philosopher i:

From MIT OCW 6.172

One day they all pick up the left 
chopstick at the same time



Preventing Deadlock

Theorem. Assume that we can linearly order the mutexes  ⋖  ⋖ ⋯ ⋖  
so that whenever a thread holds a mutex  and attempts to lock another 
mutex , we have  ⋖ . Then, no deadlock can occur.


Proof. Suppose that a cycle of waiting exists. Consider the thread in the 
cycle that holds the “largest” mutex  in the ordering, and suppose that it 
is waiting on a mutex  held by the next thread in the cycle. Then, we must 
have  ⋖ . Contradiction.

L1 L2 Ln
Li

Lj Li Lj

Lmax
L

Lmax L

23From MIT OCW 6.172



Dining Philosophers

24

while (1) { 
think(); 
lock(&chopstick[min(i,(i+1)%n)].L); 
lock(&chopstick[max(i,(i+1)%n)].L); 
eat(); 
unlock(&chopstick[min(i,(i+1)%n)].L); 
unlock(&chopstick[max(i,(i+1)%n)].L); 

}

Philosopher i:

Avoid deadlock with a total ordering of locks!
From MIT OCW 6.172



Locking Anomaly - Contention

25



Summing Example

26

int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
// … 

int result = 0; 

for (size_t i = 0; i < n; ++i) { 
result += compute(myArray[i]); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

Something O(1)

From MIT OCW 6.172



Summing Example

27

int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
// … 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
result += compute(myArray[i]); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

Something O(1)

Race

From MIT OCW 6.172



Mutex Solution

28

int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
// … 
omp_lock_t lock; 
omp_init_lock(&lock); 
int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
omp_set_lock(&lock); 
result += compute(myArray[i]); 
omp_unset_lock(&lock); 

} 
omp_destroy_lock(&lock); 
printf("The result is: %d\n”, result); 
return 0; 

}

Init lock

Every thread has to get this lock

Lock contention => 
no parallelism

From MIT OCW 6.172



Performance Anomaly - False Sharing

29



Example: Serial Sum
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#define N 10000 
int main()  
{ 
int i; 
float a[N]; 
double result = 0.0; 

/* Some initializations */  
for (i = 0; i < N; i++) { a[i] = i * 1.0; }  

// do sum 
for (i = 0; i < N; i++)  
result += a[i]; 

} 

printf("Final result= %f\n", result); return 0;  
}



Example: Parallel Sum

31

#define NUM_THREADS 4 
#define N 10000 
int main()  
{ 

int i; 
float a[N]; 
double partials[NUM_THREADS]; 
double result = 0.0; 

omp_set_num_threads(NUM_THREADS);  
/* Some initializations */  
for (i = 0; i < NUM_THREADS; i++) { partials[i]  = 0.0; } 
for (i = 0; i < N; i++) { a[i] = i * 1.0; }  

#pragma omp parallel 
{ 

int id = omp_get_thread_num(); 
for (i = id; i < N; i += NUM_THREADS)  

partials[id] += a[i]; 
} 

for(i = 0; i < NUM_THREADS; i++) { result += partials[i]; } 
printf("Final result= %f\n", result); return 0;  

}

Array for partial sums - one entry per thread

Parallel region - every thread executes it

Add every id-th element into partials

Combine



Recall: Cache coherence

32From MIT OCW 6.172

P

x = 3x = 3 x = 5…

P P

x = 3

Network

Load x

x=5



False Sharing Limits Scalability
False sharing is a performance bug in which independent data elements 
happen to sit on the same cache line, so each update will cause the 
cache lines to “slosh back and forth” between threads.

33

If you promote scalars to an array to support creation of a parallel program, 
the array elements are contiguous in memory and hence share cache 
lines -> results in poor scalability


Solution: Pad arrays so elements you use are on distinct cache lines.
From UC Berkeley CS267
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#define NUM_THREADS 4 
#define N 10000 
#define PAD 8 
int main()  
{ 

int i; 
float a[N]; 
double partials[NUM_THREADS][PAD]; 
double result = 0.0; 

omp_set_num_threads(NUM_THREADS);  
/* Some initializations */  
for (i = 0; i < NUM_THREADS; i++) { partials[i][0]  = 0.0; } 
for (i = 0; i < N; i++) { a[i] = i * 1.0; }  

#pragma omp parallel 
{ 

int id = omp_get_thread_num(); 
for (i = id; i < N; i += NUM_THREADS)  

partials[id][0] += a[i]; 
} 

for(i = 0; i < NUM_THREADS; i++) { result += partials[i][0]; } 
printf("Final result= %f\n", result); return 0;  

Pad so only one real value per cache line

First element in cache line is the partial

Combine

Example: Eliminate false sharing by padding

Assuming 64-byte cache line size



Fine-Grained Synchronization
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Fine-Grained Synchronization
• Instead of using a single lock for the entire data structure, split the 
concurrent object into independently-synchronized components.


•Threads conflict when they access the same component at the same 
time.


•As opposed to coarse-grained synchronization, which locks the entire 
object.

36https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

typedef struct node {  
lock_t l;  
int data;  
struct node *next; } node_t;

Example:

Lock per 
node in list
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Example: List-Based Set

a c d

Sentinel for 
head and tail

a c d

Add node b:

b

Change a.next

a c d

Remove node c:

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

Change a.next
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Example: Coarse-Grained Locking

a c d

Change a.next

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

A simple solution is to lock the entire list for each operation e.g., by locking 
the head

Simple and clearly correct, but works poorly with contention…

b
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Example: Fine-Grained Locking

a c d

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

Split object (list) into pieces (nodes)

• Each piece (each node in the list) has its own lock

• Methods that work on disjoint pieces need not exclude each other

Hand-over-hand locking: Use two locks when traversing the list

b

Why two?
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Problem with one lock

a b c

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

Assume that we want to delete node c. 

We lock node b and set its next pointer to the node after c.

Another thread may concurrent delete node b by setting the next pointer from a to c. 

a b c

T1

T1T2 Not deleted!



Hand-Over-Hand Locking Insight

If a node is locked, no one can delete the node’s successor.


If a thread locks the node to be deleted and also its predecessor, then it 
works! 


That’s why we (have to) use two locks.

41https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a c d



Hand-Over-Hand Locking: Removing Nodes

Suppose that two threads want to remove the nodes b and c.


One thread acquires the lock on the sentinel, the other has to wait

42https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b c

Remove node b Remove node c

T2

T2T1



Hand-Over-Hand Locking: Removing Nodes

The same thread that acquired the sentinel lock can then lock the next node.

43https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b c

Remove node b Remove node c

T2 T2

T2T1



Hand-Over-Hand Locking: Removing Nodes

Before locking node b, the sentinel lock is released, so the other thread can 
now acquire the sentinel lock.

44https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b c

Remove node b Remove node c

T1 T2

T2T1

T2



Hand-Over-Hand Locking: Removing Nodes

Before locking node c, the lock of node a is released.


The other thread can now lock node a.

45https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b c

Remove node b Remove node c

T1 T2

T2T1

T2T1



Hand-Over-Hand Locking: Removing Nodes

Node c can now be removed, and the two locks can be released.

46https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b c

Remove node b Remove node c

T1 T2

T2T1

T2T1



Hand-Over-Hand Locking: Removing Nodes

Node c can now be removed, and the two locks can be released.

47https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b

Remove node b

T1

T1

T1



Hand-Over-Hand Locking: Removing Nodes

The other thread can now lock node b and remove it.

48https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b

Remove node b

T1

T1

T1



Why does this work?

To remove a node 

The node must be locked 

Its predecessor must be locked 


Therefore, if you lock a node – It can’t be removed – And neither can its 
successor

49https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a



Drawbacks

Hand-over-hand locking is sometimes better than coarse-grained locking 

• Threads can traverse in parallel 

• Sometimes, it’s worse! 


However, it’s certainly not ideal - inefficient because many locks must be 
acquired and released

50

How can we do better?

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf



Optimistic Synchronization

Traverse the list without locking!

51https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b d

T1Add node c



Optimistic Synchronization

Once the nodes are found, try to lock them.


Check that everything is ok!

52https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b d

T1Add node c

T1T1

What can go wrong?



Issue: Concurrent removal of the predecessor of 
node you want to add

Another thread may lock nodes a and b and remove b before node c is 
added.

53https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b d

T1Add node c

T2T2

Remove node bT2



Issue: Concurrent removal of the predecessor of 
node you want to add

Another thread may lock nodes a and b and remove b before node c is added.


If the pointer from node b is set to node c, then node c is not added to the list!

54https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b d

T1Add node c

T1T1

c

Problem: b is now disconnected!



Solution: Validation
After locking node b and node d, traverse the list again to verify that b is 
still reachable.


If it is not, start over.

55https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

a b d

T1Add node c Need to check that b is still reachable

T1 T1



What else can go wrong?

Another thread may lock nodes b and d and add a node b’ before c is 
added. 

56

a b d

T1Add node c

T2 T2

Add node b’T2

b’

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf



What else can go wrong?
Another thread may lock nodes b and d and add a node b’ before c is added. 


By adding node c, the addition of b’ is undone!

57

a b d

T1Add node c

T1 T1

b’

c

 has an old view 
of b.next

T1

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf

X



Solution: More validation
After locking nodes b and d, also check that node b still points to node d!


If not, start over.

58

a b d

T1Add node c

T1 T1

Make sure the pointer is 
still correct

https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf



Optimistic Synchronization Summary

Why is this correct? 

• If nodes b and c are both locked, node b still accessible, and node c still the 
successor of node b, then neither b nor c will be deleted by another thread 

•This means that it’s ok to delete node c! 


Why is it good to use optimistic synchronization? 

•Limited hot-spots: no contention on traversals 

•Fewer lock acquisitions and releases 


When is it good to use optimistic synchronization? 

•When the cost of scanning twice without locks is less than the cost of 
scanning once with locks

59https://disco.ethz.ch/courses/fs16/ti2/lecture/chapter08_2on1.pdf



B+-tree Concurrency Control

60



Reader-Writer Locks

•A reader-writer lock allows concurrent access for read-only operations, 
whereas write operations require exclusive access.


•That is, multiple threads can read the data in parallel, but an exclusive 
lock is needed for writing/modifying data.


•All other threads (both writers and readers) are blocked when the lock is 
taken in write mode.

61

1 1 0 … 0 0 1
0 num_threads

0
1

Writer flag

Readers counter



High-Level Strategy
•Goal: allow multiple threads to read and update a B+-tree at the same 
time.


•We need to protect from two kinds of problems:


• Threads trying to modify the contents of a node at the same time.


• One thread traversing the tree while another thread merges/splits 
nodes.

62

Nodes have 
size B

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root

From Utah CS6530



Latch Crabbing / Coupling

Protocol to enable multiple threads to access/modify a B+-tree at the same 
time.


Basic idea:

• Get latch for parent

• Get latch for child.

• Release latch for parent if it is deemed safe.


A safe node is one that will not split or merge when updated.

• Not full (upon insertion)

• More than half-full (upon deletion)

63

In database indexing, the term “lock” is for 
transactions, while “latches” are for operations.

From Utah CS6530



Latch Crabbing / Coupling
Find: Start at root and traverse down to the correct leaf.

• Acquire R(eader) latch on child.

• Then unlatch parent.


Insert/Delete: Start at root, and go down, obtaining W(riter) latches as 
needed. 

• Once the child is latched, check that it is safe.

• If it is safe, release all latches on ancestors.

64From Utah CS6530

Modified hand-over-
hand: can keep hold on 
ancestors, if necessary

Similar to hand-over-hand



Example #1 - Find 38

65

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

R

E F G H I

From Utah CS6530



Example #1 - Find 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

Now safe to 
release A

R

R

E F G H I

From Utah CS6530



Example #1 - Find 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11
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R

E F G H I
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Example #1 - Find 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11
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R

E F G H I
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Example #1 - Find 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11
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E F G H I

R

From Utah CS6530



Example #1 - Find 38

70

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530



Example #2 - Delete 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11
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E F G H I

W
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Example #2 - Delete 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

W

W

We may need to 
merge B, so we can’t 
release the latch on A.

From Utah CS6530



Example #2 - Delete 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

W

W We know that D 
will not merge with 
C, so it is safe to 
release A and B.

W

From Utah CS6530



Example #2 - Delete 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

We know that D 
will not merge with 
C, so it is safe to 
release A and B.

W

From Utah CS6530



Example #2 - Delete 38
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23 C 38 44 D
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W

W
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Example #2 - Delete 38
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I
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Example #2 - Delete 38
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20 A

35 B10

23 C 41 44 D

14 16 23 31 41 4435 363 4 6 9 12 1310 11

126

E F G H I

W

Promote 41
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20 A

35 B10

23 C 41 44 D

14 16 23 31 41 4435 363 4 6 9 12 1310 11

126

E F G H I
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