
Announcements

•The class capacity has been increased to 100.


•Based on preliminary results from the survey, Abhishek’s office hours will 
be in person on Mondays 2:30-3:30p in Klaus (KACB) 3121. To get in, 
the passcode is 421, then press enter. The other office hours will be online 
in the same zoom room as the classroom at their original times.


•Survey due tomorrow by ~5pm


•HW1 is out - due Monday, Jan 22 by ~5pm


•Pre-proposal is due Thursday, Jan 18 by ~5pm
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Superlinear speedup in practice

Amdahl’s law tells us that the 
maximum theoretical speedup we 
can get on P processors is P.


In reality, there cases when we 
might achieve more than P 
speedup.


One possible reason is that more 
cache memory is available when 
running on multiple processors.

2From “Superlinear Speedup in HPC Systems: why and when?” - Ristov et al. 2016
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Let’s start with single processors - why?
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Memory limitations affect overall performance
Most applications run at <10% of “peak” performance (max possible rate of 
flops).


Much of the performance is lost on a single processor due to data 
movement.

5
Year

Performance
> 2000x

Expectation

Reality

From UC Berkeley CS267



Why should we care about serial performance in a 
course on high-performance computing?
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Starting with a fast serial implementation is 
an important first step towards a fast 
parallel implementation.


Another way to say it: If you parallelize 
slow serial code, you will get slow 
parallel code. 

Matrix multiply is extreme, but ~10x 
improvement from sequential 
optimizations is more common.

From UC Berkeley CS267



Idealized uniprocessor cost model
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Processor can:

• Name variables (e.g., integers, floats, doubles, arrays, pointers, structs, etc.)

• Perform operations (e.g., arithmetic, logical, etc.) on those variables

• Control the flow of execution as specified by the program (branches (if 

statements), loops, function calls, etc.)

Memory
Processor 

Control
Arithmetic

Load

Store

Holds data
Runs the program

Ideal cost: each 
operation (e.g., +, x, 
&, etc.) has roughly 

the same cost

Ideal cost: reading/
writing variables is 

“free”

From UC Berkeley CS267



More realistic uniprocessor cost model
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Holds data

Operations have 
similar cost on 
“free” registers

Reality: processor 
loads/stores/operates 
on values in registers

Reality: load/store is 
~100x the cost of 

operations (+, x, &, 
etc.) Memory

Processor 

Control
Arithmetic

Load

Store
Registers

In reality, processors have registers, or quickly accessible locations.

• Variables have to be loaded into registers to operate on them.

• Load/Store variables between memory and registers.


Control flow (not free) is determined by the program.

• The compiler translates higher-level code into lower-level instructions.

From UC Berkeley CS267



Compilers and assembly code
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Compilers for languages like C/C++ and Fortran:

• Check that the program is legal,

• Translate into assembly code, and

• Optimize the generated code.

void main() { 
  … 
  c = a + b 
  … 
}

void main() { 
  … 
  Load a into R1 
  Load b into R2 
  R3 = R1 + R2 
  Store R3 into c 
  … 
}

Compiler

For more details, see the lecture “C to Assembly” from MIT 6.172.From UC Berkeley CS267

https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/mit6_172f18_lec5/


Compilers manage memory and registers
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The compiler performs register allocation, which decides when to load/store 
variables vs when to reuse variables.

 a = c + d 
 e = a + b 
 f = e - 1 

 Load c into R2 
 Load d in to R3 
 Load b into R4 
 R1 = R2 + R3 
 R1 = R1 + R4 
 R1 = R1 - 1

Compiler

a R1

R1

R1

R3

R2

R4b

c

d

e

f

Nodes represent 
live ranges 
(variables, 

temporaries, etc.)

Edges connect live 
ranges that are 

simultaneously live

Register allocation 
appeared in the first Fortran 

compiler in the 1950s, 
Chaitin et al. introduced the 

idea of doing it via graph 
coloring in the 1980s. 

From UC Berkeley CS267



Compilers optimize code

11For more details, see the lecture “What Compilers Can and Cannot Do” from MIT 6.172.

Besides register allocation, the compiler performs optimizations:

Loop unrolling (because control isn’t free)

Fuses loops (merge two loops together)

Interchanges loops (reorders them)

Dead code elimination (if branch is never taken)

Reordering instructions (to improve register reuse)

Strength reduction (e.g., shift left rather than multiply by 2)

Loop vectorization (uses SIMD registers)


Why is this the programmer’s problem?

Sometimes the compiler does not do as much as you want it to…

From UC Berkeley CS267

https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/mit6_172f18_lec9/


Proebsting’s Law

Proebsting’s Law: Compilers double performance every 18 years 

(Compared to two years for Moore’s law, or 3 years for memory bandwdith)


12Slide inspired by Rich Vuduc
From “On Proebsting’s Law” - Kevin Scott (2001)

Assuming compiler 
research has been going 
since 1955 (this paper is 

from 2001), so ~8x 
improvement over 45 

years = doubling every 
15 years or so

Controversial?



Memory Hierarchies
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Even more realistic uniprocessor model
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Memory accesses (load/store) have two costs: 

Latency - the cost to load or store one word ( )

Bandwidth - the average rate (bytes / sec) to load/store a large chunk of data 
( )

α

β

Image: Katie HempeniusFrom UC Berkeley CS267



Memory bandwidth gap

15John McCalpin, SC16 invited talkFrom UC Berkeley CS267



Memory latency gap is worse

16John McCalpin, SC16 invited talkFrom UC Berkeley CS267



Two main types of locality: Spatial and Temporal
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Makes use of  
multiple elements 

transferred together

Makes use of efficient 
hierarchical 
accesses

Spatial locality: how many 
accesses an algorithm makes to 
nearby data over a short period of 
time [Denning72, Denning05].

Temporal locality: how many 
repeated accesses an algorithm 
makes to the same data over a 
short period of time [Denning72, 

Denning05].

Most programs have a high degree of locality.



Memory hierarchy
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The memory hierarchy takes advantage of locality to speed up the average case 
to handle memory latency.

Figure from MIT 6.172



Cache basics
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Cache is fast (expensive) memory which keeps a copy of the data; it is hidden 
from software.


Cache-line length: number of bytes loaded together in one entry (often 64 bytes).


Simple example: data at address xxxxx10 is stored at cache location 10.

Cache hit: access to a memory address in cache - cheap

Cache miss: non-cached memory access - expensive


Need to look in next, slower level of memory.

Processor 

Control 
Arithmetic 
Registers

Cache
Addr Value

xxxx00 ‘actg’
xxxx01
xxxx10
xxxx11

‘wait’
42
29

Memory
Addr Value

1001010 42
13

‘actg’
‘wait’

1001011
1001100
1001101
1001010
1001011
1001100
1001101

‘seen’
29

‘test’
8

Look for addr 
1001010 = hit

Look for addr 
10011101 = miss

From UC Berkeley CS267



Direct-mapped cache

20From MIT 6.172



Fully-associative cache
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To find a block in the cache, the entire cache must be searched for the tag. 
When the cache becomes full, a block must be evicted to make room for a 
new block. The replacement policy determines which block to evict.

From MIT 6.172



Set-associative cache

22From MIT 6.172



Type of cache misses - Three C’s
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Cold miss 
The first time a cache block is accessed.


Capacity miss 
The previous cached copy would have been evicted even with a fully-
associative cache.


Conflict miss 
Too many blocks from the same set in cache. The block would not have 
been evicted with a fully-associative cache.

From MIT 6.172



Conflict misses for submatrices

24From MIT 6.172



Why have multiple levels of cache?
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On-chip caches are faster but smaller compared to off-chip caches.


A large cache has delays:

Hardware to check longer addresses in cache takes more time.

Associativity, which gives a more general set of data in cache, also takes 
more time.

L1

L2

L3

Main Memory

Disk

Time Sizes

From UC Berkeley CS267



Approaches to handling memory latency
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Reuse values in fast memory (bandwidth filtering)

Needs temporal locality in program


Move larger chunks (achieve higher bandwidth)

Needs spatial locality in program


Issue multiple reads/writes in a single instruction (higher bandwidth)

Vector operations require access to a set of locations (typically neighboring)


Issue multiple reads/writes in parallel (hide latency)

Prefetching issues read hint

Delayed writes (write buffering) stages writes for later operation

C
on

cu
rre

nc
y

Requires that 
nothing dependent


is happening 
(parallelism)

From UC Berkeley CS267



How much concurrency do you need? 
(To run at bandwidth speeds rather than latency)
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Little’s Law from queueing theory says: 

concurrency = latency * bandwidth

For example, let:

Latency = 10 sec

Bandwidth = 2 bytes / sec


   -> requires finding 20 bytes in flight to hit bandwidth speeds, or finding 20 
independent things to issue.

Little’s law explains how concurrency helps to hide latency.
From UC Berkeley CS267



Real-world example

28John McCalpin, SC16 invited talkFrom UC Berkeley CS267



Ideal-Cache Model

29



Ideal-Cache Model
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Parameters

• Two-level hierarchy

• Cache size of M bytes

• Cache-line length of B bytes

• Fully associative

• Optimal, omniscient replacement.

Performance Measures 

•Work W (ordinary running time) 
•Cache misses Q (number of cache lines that need 
to be transferred between cache and memory)

From MIT 6.172



How reasonable are ideal caches?
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“LRU” Lemma [ST85]. Suppose that an algorithm incurs Q cache misses on an 
ideal cache of size M. Then on a fully associative cache of size 2M that uses the 
least-recently used (LRU) replacement policy, it incurs at most 2Q cache 
misses. 


Implication 

For asymptotic analyses, one can assume optimal or LRU replacement, as 
convenient. 

Software engineering 
• Design a theoretically good algorithm. 
• Engineer for detailed performance. 
• Real caches are not fully associative. 
• Loads and stores have different costs with 

respect to bandwidth and latency.
From MIT 6.172



Cache-miss lemma
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Lemma. Suppose that a program reads a set of r data segments, where the ith 
segment consists of si bytes, and suppose that 

Then all of the segments fit into cache, and the number of misses to read them all 
is at most 3N/B.


Proof. Suppose that a program reads a set of r data segments, where the ith 
segment consists of A single segment si incurs at most si/B misses, and so

From MIT 6.172
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Tall caches

33From MIT 6.172



What’s wrong with short caches?

34From MIT 6.172



Submatrix caching lemma

35From MIT 6.172



Cache Analysis of Matrix Multiplication
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Why matrix multiplication?
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Matrix multiplication is an important kernel in many problems:

– Dense linear algebra is a motif in every list,

– Closely related to other algorithms, e.g., transitive closure on a graph,

– And dominates training time in deep learning (CNNs)


Good model problem (well-studied, illustrates ideas).

Easy to find good libraries that are hard to beat! (e.g., Intel MKL, etc.)

https://en.wikipedia.org/wiki/Matrix_multiplicationFrom UC Berkeley CS267



Multiply square matrices
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void Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i=0; i < n; i++) 
    for (int64_t j=0; j < n; j++) 
      for (int64_t k=0; k < n; k++) 
        C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}  

Analysis of work: 
W(n) = (n3)Θ

From MIT 6.172



Memory layout of matrices
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In this matrix-multiplication code, matrices are laid out in memory in row-major 
order.

From MIT 6.172



Analysis of cache misses
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Case 1 

n > cM/B. Analyze matrix B. 

Assume LRU. 

Q(n) = (n3), since matrix B 
misses on every access. 


Θ

void Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i=0; i < n; i++) 
    for (int64_t j=0; j < n; j++) 
      for (int64_t k=0; k < n; k++) 
        C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}  

From MIT 6.172



Analysis of cache misses
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Case 2  
c’M1/2 < n < cM/B. Analyze matrix 
B. 

Assume LRU. 

Q(n) = n· (n2/B) = (n3/B), since 
matrix B can exploit spatial locality.


Θ Θ

void Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i=0; i < n; i++) 
    for (int64_t j=0; j < n; j++) 
      for (int64_t k=0; k < n; k++) 
        C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}  

From MIT 6.172



Analysis of cache misses
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Case 3 
n < c’M1/2. Analyze matrix B. 

Assume LRU. 

Q(n) = (n2/B), since everything 
fits in cache! 

Θ

void Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i=0; i < n; i++) 
    for (int64_t j=0; j < n; j++) 
      for (int64_t k=0; k < n; k++) 
        C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}  

From MIT 6.172



Swapping inner loop order
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void Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i=0; i < n; I++) 
    for (int64_t k=0; k < n; k++) 
      for (int64_t j=0; j < n; j++) 
        C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}  

Assume matrix B. Assume LRU.


Q(n) = n· (n2/B) = (n3/B), since 
matrix B can exploit spatial 
locality.


Θ Θ

From MIT 6.172



Tiling (aka Blocking)

44



Tiled (Blocked) matrix multiply
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void Tiled_Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i1=0; i1<n; i1+=s) 
    for (int64_t j1=0; j1<n; j1+=s) 
      for (int64_t k1=0; k1<n; k1+=s) 
        for (int64_t i=i1; i<i1+s && i<n; i++) 
          for (int64_t j=j1; j<j1+s && j<n; j++) 
            for (int64_t k=k1; k<k1+s && k<n; k++) 
              C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}

Analysis of work: 
W(n) = ((n/s)3(s)3) 

        = (n3)

Θ
Θ

Tile size (or 
block size)

From MIT 6.172



Tiled (Blocked) matrix multiply

46

Analysis of cache misses 
Tune s so that the submatrices just fit into cache: 


s = (M1/2).

Submatrix Caching Lemma implies (s2/B) 
misses per submatrix. 

Q(n) = ((n/s)3(s2/B) = (n3/(BM1/2). 

Θ
Θ

Θ Θ

void Tiled_Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i1=0; i1<n/s; i1+=s) 
    for (int64_t j1=0; j1<n; j1+=s) 
      for (int64_t k1=0; k1<n; k1+=s) 
        for (int64_t i=i1; i<i1+s && i<n; i++) 
          for (int64_t j=j1; j<j1+s && j<n; j++) 
            for (int64_t k=k1; k<k1+s && k<n; k++) 
              C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}

Optimal 
[HK81]

From MIT 6.172



Tiled (Blocked) matrix multiply

47

Analysis of cache misses 
Tune s so that the submatrices just fit into cache: 


s = (M1/2).

Submatrix Caching Lemma implies (s2/B) 
misses per submatrix. 

Q(n) = ((n/s)3(s2/B) = (n3/(BM1/2). 

Θ
Θ

Θ Θ
Optimal 
[HK81]

void Tiled_Mult(double *C, double *A, double *B, int64_t n) { 
  for (int64_t i1=0; i1<n/s; i1+=s) 
    for (int64_t j1=0; j1<n; j1+=s) 
      for (int64_t k1=0; k1<n; k1+=s) 
        for (int64_t i=i1; i<i1+s && i<n; i++) 
          for (int64_t j=j1; j<j1+s && j<n; j++) 
            for (int64_t k=k1; k<k1+s && k<n; k++) 
              C[i*n+j] += A[i*n+k] * B[k*n+j]; 
}

From MIT 6.172

How?



Two-level cache
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Two tuning parameters: s and t. 

Problem: multidimensional tuning 
optimization cannot be done with 
binary search.

From MIT 6.172
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Two-level cache

From MIT 6.172



Three-level cache
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Three 

Three parameters ->

12 nested for loops

Three tuning 
parameters

Multiprogrammed environment: 

Don’t know the effective cache size 

when other jobs are running 

⇒ easy to mistune the parameters! 


From MIT 6.172


