
Announcements

•The class capacity has been increased to 100.

•Based on preliminary results from the survey, Abhishek’s office hours will
be in person on Mondays 2:30-3:30p in Klaus (KACB) 3121. To get in,
the passcode is 421, then press enter. The other office hours will be online
in the same zoom room as the classroom at their original times.

•Survey due tomorrow by ~5pm

•HW1 is out - due Monday, Jan 22 by ~5pm

•Pre-proposal is due Thursday, Jan 18 by ~5pm

1

Superlinear speedup in practice

Amdahl’s law tells us that the
maximum theoretical speedup we
can get on P processors is P.

In reality, there cases when we
might achieve more than P
speedup.

One possible reason is that more
cache memory is available when
running on multiple processors.

2From “Superlinear Speedup in HPC Systems: why and when?” - Ristov et al. 2016

CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

(Some slides from MIT’s OCW 6.172, UC Berkeley CS267)

Lecture 2: Memory Hierarchies
and Matrix Multiplication

+

mailto:hxu615@gatech.edu

Let’s start with single processors - why?

4

Memory limitations affect overall performance
Most applications run at <10% of “peak” performance (max possible rate of
flops).

Much of the performance is lost on a single processor due to data
movement.

5
Year

Performance
> 2000x

Expectation

Reality

From UC Berkeley CS267

Why should we care about serial performance in a
course on high-performance computing?

6

Starting with a fast serial implementation is
an important first step towards a fast
parallel implementation.

Another way to say it: If you parallelize
slow serial code, you will get slow
parallel code.

Matrix multiply is extreme, but ~10x
improvement from sequential
optimizations is more common.

From UC Berkeley CS267

Idealized uniprocessor cost model

7

Processor can:

• Name variables (e.g., integers, floats, doubles, arrays, pointers, structs, etc.)

• Perform operations (e.g., arithmetic, logical, etc.) on those variables

• Control the flow of execution as specified by the program (branches (if

statements), loops, function calls, etc.)

Memory
Processor

Control
Arithmetic

Load

Store

Holds data
Runs the program

Ideal cost: each
operation (e.g., +, x,
&, etc.) has roughly

the same cost

Ideal cost: reading/
writing variables is

“free”

From UC Berkeley CS267

More realistic uniprocessor cost model

8

Holds data

Operations have
similar cost on
“free” registers

Reality: processor
loads/stores/operates
on values in registers

Reality: load/store is
~100x the cost of

operations (+, x, &,
etc.) Memory

Processor

Control
Arithmetic

Load

Store
Registers

In reality, processors have registers, or quickly accessible locations.

• Variables have to be loaded into registers to operate on them.

• Load/Store variables between memory and registers.

Control flow (not free) is determined by the program.

• The compiler translates higher-level code into lower-level instructions.

From UC Berkeley CS267

Compilers and assembly code

9

Compilers for languages like C/C++ and Fortran:

• Check that the program is legal,

• Translate into assembly code, and

• Optimize the generated code.

void main() {
 …
 c = a + b
 …
}

void main() {
 …
 Load a into R1
 Load b into R2
 R3 = R1 + R2
 Store R3 into c
 …
}

Compiler

For more details, see the lecture “C to Assembly” from MIT 6.172.From UC Berkeley CS267

https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/mit6_172f18_lec5/

Compilers manage memory and registers

10

The compiler performs register allocation, which decides when to load/store
variables vs when to reuse variables.

 a = c + d
 e = a + b
 f = e - 1

 Load c into R2
 Load d in to R3
 Load b into R4
 R1 = R2 + R3
 R1 = R1 + R4
 R1 = R1 - 1

Compiler

a R1

R1

R1

R3

R2

R4b

c

d

e

f

Nodes represent
live ranges
(variables,

temporaries, etc.)

Edges connect live
ranges that are

simultaneously live

Register allocation
appeared in the first Fortran

compiler in the 1950s,
Chaitin et al. introduced the

idea of doing it via graph
coloring in the 1980s.

From UC Berkeley CS267

Compilers optimize code

11For more details, see the lecture “What Compilers Can and Cannot Do” from MIT 6.172.

Besides register allocation, the compiler performs optimizations:

Loop unrolling (because control isn’t free)

Fuses loops (merge two loops together)

Interchanges loops (reorders them)

Dead code elimination (if branch is never taken)

Reordering instructions (to improve register reuse)

Strength reduction (e.g., shift left rather than multiply by 2)

Loop vectorization (uses SIMD registers)

Why is this the programmer’s problem?

Sometimes the compiler does not do as much as you want it to…

From UC Berkeley CS267

https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/resources/mit6_172f18_lec9/

Proebsting’s Law

Proebsting’s Law: Compilers double performance every 18 years

(Compared to two years for Moore’s law, or 3 years for memory bandwdith)

12Slide inspired by Rich Vuduc
From “On Proebsting’s Law” - Kevin Scott (2001)

Assuming compiler
research has been going
since 1955 (this paper is

from 2001), so ~8x
improvement over 45

years = doubling every
15 years or so

Controversial?

Memory Hierarchies

13

Even more realistic uniprocessor model

14

Memory accesses (load/store) have two costs:

Latency - the cost to load or store one word ()

Bandwidth - the average rate (bytes / sec) to load/store a large chunk of data
()

α

β

Image: Katie HempeniusFrom UC Berkeley CS267

Memory bandwidth gap

15John McCalpin, SC16 invited talkFrom UC Berkeley CS267

Memory latency gap is worse

16John McCalpin, SC16 invited talkFrom UC Berkeley CS267

Two main types of locality: Spatial and Temporal

17

Makes use of
multiple elements

transferred together

Makes use of efficient
hierarchical
accesses

Spatial locality: how many
accesses an algorithm makes to
nearby data over a short period of
time [Denning72, Denning05].

Temporal locality: how many
repeated accesses an algorithm
makes to the same data over a
short period of time [Denning72,

Denning05].

Most programs have a high degree of locality.

Memory hierarchy

18

The memory hierarchy takes advantage of locality to speed up the average case
to handle memory latency.

Figure from MIT 6.172

Cache basics

19

Cache is fast (expensive) memory which keeps a copy of the data; it is hidden
from software.

Cache-line length: number of bytes loaded together in one entry (often 64 bytes).

Simple example: data at address xxxxx10 is stored at cache location 10.

Cache hit: access to a memory address in cache - cheap

Cache miss: non-cached memory access - expensive

Need to look in next, slower level of memory.

Processor

Control
Arithmetic
Registers

Cache
Addr Value

xxxx00 ‘actg’
xxxx01
xxxx10
xxxx11

‘wait’
42
29

Memory
Addr Value

1001010 42
13

‘actg’
‘wait’

1001011
1001100
1001101
1001010
1001011
1001100
1001101

‘seen’
29

‘test’
8

Look for addr
1001010 = hit

Look for addr
10011101 = miss

From UC Berkeley CS267

Direct-mapped cache

20From MIT 6.172

Fully-associative cache

21

To find a block in the cache, the entire cache must be searched for the tag.
When the cache becomes full, a block must be evicted to make room for a
new block. The replacement policy determines which block to evict.

From MIT 6.172

Set-associative cache

22From MIT 6.172

Type of cache misses - Three C’s

23

Cold miss
The first time a cache block is accessed.

Capacity miss
The previous cached copy would have been evicted even with a fully-
associative cache.

Conflict miss
Too many blocks from the same set in cache. The block would not have
been evicted with a fully-associative cache.

From MIT 6.172

Conflict misses for submatrices

24From MIT 6.172

Why have multiple levels of cache?

25

On-chip caches are faster but smaller compared to off-chip caches.

A large cache has delays:

Hardware to check longer addresses in cache takes more time.

Associativity, which gives a more general set of data in cache, also takes
more time.

L1

L2

L3

Main Memory

Disk

Time Sizes

From UC Berkeley CS267

Approaches to handling memory latency

26

Reuse values in fast memory (bandwidth filtering)

Needs temporal locality in program

Move larger chunks (achieve higher bandwidth)

Needs spatial locality in program

Issue multiple reads/writes in a single instruction (higher bandwidth)

Vector operations require access to a set of locations (typically neighboring)

Issue multiple reads/writes in parallel (hide latency)

Prefetching issues read hint

Delayed writes (write buffering) stages writes for later operation

C
on

cu
rre

nc
y

Requires that
nothing dependent

is happening
(parallelism)

From UC Berkeley CS267

How much concurrency do you need?
(To run at bandwidth speeds rather than latency)

27

Little’s Law from queueing theory says:

concurrency = latency * bandwidth

For example, let:

Latency = 10 sec

Bandwidth = 2 bytes / sec

 -> requires finding 20 bytes in flight to hit bandwidth speeds, or finding 20
independent things to issue.

Little’s law explains how concurrency helps to hide latency.
From UC Berkeley CS267

Real-world example

28John McCalpin, SC16 invited talkFrom UC Berkeley CS267

Ideal-Cache Model

29

Ideal-Cache Model

30

Parameters

• Two-level hierarchy

• Cache size of M bytes

• Cache-line length of B bytes

• Fully associative

• Optimal, omniscient replacement.

Performance Measures

•Work W (ordinary running time)
•Cache misses Q (number of cache lines that need
to be transferred between cache and memory)

From MIT 6.172

How reasonable are ideal caches?

31

“LRU” Lemma [ST85]. Suppose that an algorithm incurs Q cache misses on an
ideal cache of size M. Then on a fully associative cache of size 2M that uses the
least-recently used (LRU) replacement policy, it incurs at most 2Q cache
misses.

Implication

For asymptotic analyses, one can assume optimal or LRU replacement, as
convenient.

Software engineering
• Design a theoretically good algorithm.
• Engineer for detailed performance.
• Real caches are not fully associative.
• Loads and stores have different costs with

respect to bandwidth and latency.
From MIT 6.172

Cache-miss lemma

32

Lemma. Suppose that a program reads a set of r data segments, where the ith
segment consists of si bytes, and suppose that

Then all of the segments fit into cache, and the number of misses to read them all
is at most 3N/B.

Proof. Suppose that a program reads a set of r data segments, where the ith
segment consists of A single segment si incurs at most si/B misses, and so

From MIT 6.172

+ +

+

+

()

(

Tall caches

33From MIT 6.172

What’s wrong with short caches?

34From MIT 6.172

Submatrix caching lemma

35From MIT 6.172

Cache Analysis of Matrix Multiplication

36

Why matrix multiplication?

37

Matrix multiplication is an important kernel in many problems:

– Dense linear algebra is a motif in every list,

– Closely related to other algorithms, e.g., transitive closure on a graph,

– And dominates training time in deep learning (CNNs)

Good model problem (well-studied, illustrates ideas).

Easy to find good libraries that are hard to beat! (e.g., Intel MKL, etc.)

https://en.wikipedia.org/wiki/Matrix_multiplicationFrom UC Berkeley CS267

Multiply square matrices

38

void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; i++)
 for (int64_t j=0; j < n; j++)
 for (int64_t k=0; k < n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Analysis of work: 
W(n) = (n3)Θ

From MIT 6.172

Memory layout of matrices

39

In this matrix-multiplication code, matrices are laid out in memory in row-major
order.

From MIT 6.172

Analysis of cache misses

40

Case 1

n > cM/B. Analyze matrix B.

Assume LRU.

Q(n) = (n3), since matrix B
misses on every access.

Θ

void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; i++)
 for (int64_t j=0; j < n; j++)
 for (int64_t k=0; k < n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

From MIT 6.172

Analysis of cache misses

41

Case 2
c’M1/2 < n < cM/B. Analyze matrix
B.

Assume LRU.

Q(n) = n· (n2/B) = (n3/B), since
matrix B can exploit spatial locality.

Θ Θ

void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; i++)
 for (int64_t j=0; j < n; j++)
 for (int64_t k=0; k < n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

From MIT 6.172

Analysis of cache misses

42

Case 3
n < c’M1/2. Analyze matrix B.

Assume LRU.

Q(n) = (n2/B), since everything
fits in cache!

Θ

void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; i++)
 for (int64_t j=0; j < n; j++)
 for (int64_t k=0; k < n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

From MIT 6.172

Swapping inner loop order

43

void Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i=0; i < n; I++)
 for (int64_t k=0; k < n; k++)
 for (int64_t j=0; j < n; j++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Assume matrix B. Assume LRU.

Q(n) = n· (n2/B) = (n3/B), since
matrix B can exploit spatial
locality.

Θ Θ

From MIT 6.172

Tiling (aka Blocking)

44

Tiled (Blocked) matrix multiply

45

void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i1=0; i1<n; i1+=s)
 for (int64_t j1=0; j1<n; j1+=s)
 for (int64_t k1=0; k1<n; k1+=s)
 for (int64_t i=i1; i<i1+s && i<n; i++)
 for (int64_t j=j1; j<j1+s && j<n; j++)
 for (int64_t k=k1; k<k1+s && k<n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Analysis of work: 
W(n) = ((n/s)3(s)3)

 = (n3)

Θ
Θ

Tile size (or
block size)

From MIT 6.172

Tiled (Blocked) matrix multiply

46

Analysis of cache misses 
Tune s so that the submatrices just fit into cache:

s = (M1/2).

Submatrix Caching Lemma implies (s2/B)
misses per submatrix.

Q(n) = ((n/s)3(s2/B) = (n3/(BM1/2).

Θ
Θ

Θ Θ

void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i1=0; i1<n/s; i1+=s)
 for (int64_t j1=0; j1<n; j1+=s)
 for (int64_t k1=0; k1<n; k1+=s)
 for (int64_t i=i1; i<i1+s && i<n; i++)
 for (int64_t j=j1; j<j1+s && j<n; j++)
 for (int64_t k=k1; k<k1+s && k<n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

Optimal
[HK81]

From MIT 6.172

Tiled (Blocked) matrix multiply

47

Analysis of cache misses 
Tune s so that the submatrices just fit into cache:

s = (M1/2).

Submatrix Caching Lemma implies (s2/B)
misses per submatrix.

Q(n) = ((n/s)3(s2/B) = (n3/(BM1/2).

Θ
Θ

Θ Θ
Optimal
[HK81]

void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i1=0; i1<n/s; i1+=s)
 for (int64_t j1=0; j1<n; j1+=s)
 for (int64_t k1=0; k1<n; k1+=s)
 for (int64_t i=i1; i<i1+s && i<n; i++)
 for (int64_t j=j1; j<j1+s && j<n; j++)
 for (int64_t k=k1; k<k1+s && k<n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];
}

From MIT 6.172

How?

Two-level cache

48

Two tuning parameters: s and t.

Problem: multidimensional tuning
optimization cannot be done with
binary search.

From MIT 6.172

49

Two-level cache

From MIT 6.172

Three-level cache

50

Three

Three parameters ->

12 nested for loops

Three tuning
parameters

Multiprogrammed environment:

Don’t know the effective cache size

when other jobs are running

⇒ easy to mistune the parameters!

From MIT 6.172

