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Heterogeneous Computing
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Device: GPU and its 
memory (device 

memory)
Host: CPU and its 

memory (host 
memory)
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CPU / GPU Relationship
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Simple Processing Flow
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Simple Processing Flow
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Simple Processing Flow
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Cuda Programming 101
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What is CUDA?
CUDA - Compute Unified Device Architecture
•Expose GPU parallelism for general-purpose computing 
•Expose/Enable performance 

CUDA C++ 
•Based on industry-standard C++ 
•Set of extensions to enable heterogeneous programming 
•Straightforward APIs to manage devices, memory etc. 
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Example: Vector Addition

GPU computing is about massive parallelism.


Vector addition is embarrassingly parallel (pleasingly parallel) - all the 
elements are independent.
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GPU Kernels: Device Code

CUDA C++ keyword __global__ indicates a function that: 

•Runs on the device  
• Is called from host code (can also be called from other device code) 


nvcc separates source code into host and device components 

•Device functions (e.g. mykernel()) processed by NVIDIA compiler 

•Host functions (e.g. main()) processed by standard host compiler (e.g., 
gcc)
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__global__ void mykernel(void) { }

Can be any function name



GPU Kernels: Device Code

•Triple angle brackets mark a call to device code - also called a “kernel 
launch” 


•The parameters inside the triple angle brackets are the CUDA kernel 
execution configuration 


•That’s all that is required to execute a function on the GPU!
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mykernel<<<num_blocks, num_threads_per_block>>>();

Number of blocks Threads per block - max 1024



Memory Management

Host and device memory are separate entities. 


Device pointers point to GPU memory 

•Typically passed to device code 

•Typically not dereferenced in host code 


Host pointers point to CPU memory 

•Typically not passed to device code 

•Typically not dereferenced in device code 


Simple CUDA API for handling device memory 

•cudaMalloc(), cudaFree(), cudaMemcpy()  
•Similar to the C equivalents malloc(), free(), memcpy()
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Running Code in Parallel

GPU computing is about massive parallelism - how do we run code in 
parallel on the device?
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mykernel<<<1,1>>>();

mykernel<<<N,1>>>();

Instead of executing add() once, execute it N times in parallel.
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Vector length



Vector Addition on the Device
With add() running in parallel we can do vector addition 


Terminology: each parallel invocation of add() is referred to as a block 

•The set of all blocks is referred to as a grid 

•Each invocation can refer to its block index using blockIdx.x
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By using blockIdx.x to index into the array, each block handles a different 
index 


Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0..N-1, where 
N is from the kernel execution configuration indicated at the kernel launch

__global__ void add(int *a, int *b, int *c) {  
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];  

}
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Vector Addition on the Device
#define N 512  

int main(void) { 
int *a, *b, *c; // host copies of a, b, c  
int *d_a, *d_b, *d_c; // device copies of a, b, c  
int size = N * sizeof(int);  

// Alloc space for device copies of a, b, c  
cudaMalloc((void **)&d_a, size);  
cudaMalloc((void **)&d_b, size);  
cudaMalloc((void **)&d_c, size);  

// Alloc space for host copies of a, b, c and setup input values  
a = (int *)malloc(size); random_ints(a, N);  
b = (int *)malloc(size); random_ints(b, N);  
c = (int *)malloc(size); 

…
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Host pointers

Device pointers

Allocate space on device 
with cudaMalloc

Allocate space on 
host with malloc
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Vector Addition on the Device

// Copy inputs to device  
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);  
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);  

// Launch add() kernel on GPU with N blocks  
add<<N,1>>(d_a, d_b, d_c);  

// Copy result back to host  
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);  

// Cleanup  
free(a); free(b); free(c);  
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);  
return 0;  

}

From OLCF Cuda Training Series

Pass data from 
host to device

Do vector addition

Copy result 
to host

Cleanup both 
host and device



CUDA Threads
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__global__ void add(int *a, int *b, int *c) {  
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 

}

Terminology: a block can be split into parallel threads


Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x 


Need to make one change in main(): add<<< 1, N >>>();



Indexing Arrays With Blocks and Threads

Let’s adapt vector addition to use both blocks and threads - no longer as 
simple as using blockIdx.x and threadIdx.x 


Consider indexing an array with one element per thread (8 threads/block):
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With M threads/block a unique index for each thread is given by: 


int index = threadIdx.x + blockIdx.x * M;
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Indexing Arrays With Blocks and Threads

Which thread will operate on the red element?
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Vector Addition with Blocks and Threads

Use the built-in variable blockDim.x for threads per block:
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Combined version of add() to use parallel threads and parallel blocks:

int index = threadIdx.x + blockIdx.x * blockDim.x;

__global__ void add(int *a, int *b, int *c) {  
int index = threadIdx.x + blockIdx.x * blockDim.x;  
c[index] = a[index] + b[index];  

}
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Vector Addition with Blocks and Threads
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#define N (2048*2048)  
#define THREADS_PER_BLOCK 512  

int main(void) {  
int *a, *b, *c; // host copies of a, b, c  
int *d_a, *d_b, *d_c; // device copies of a, b, c  
int size = N * sizeof(int);  

// Alloc space for device copies of a, b, c  
cudaMalloc((void **)&d_a, size);  
cudaMalloc((void **)&d_b, size);  
cudaMalloc((void **)&d_c, size);  

// Alloc space for host copies of a, b, c and setup input values  
a = (int *)malloc(size); random_ints(a, N);  
b = (int *)malloc(size); random_ints(b, N);  
c = (int *)malloc(size); 

…

Host pointers

Device pointers

Allocate space on device 
with cudaMalloc

Allocate space on 
host with malloc
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Vector Addition with Blocks and Threads
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… 

// Copy inputs to device  
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);  
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);  

// Launch add() kernel on GPU  
add<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>(d_a, d_b, d_c);  

// Copy result back to host  
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);  

// Cleanup  
free(a); free(b); free(c);  
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);  
return 0; 

}

Pass data from 
host to device

Do vector addition

Copy result 
to host

Cleanup both 
host and device



Handling Arbitrary Vector Sizes
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Update the kernel launch:

__global__ void add(int *a, int *b, int *c, int n) {  
int index = threadIdx.x + blockIdx.x * blockDim.x;  
if (index < n)  
c[index] = a[index] + b[index];  

}

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of blockDim.x 


Avoid accessing beyond the end of the arrays:
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Thread 
check



Why Bother With Threads?

Threads seem unnecessary 

•They add a level of complexity 

•What do we gain? 


Unlike parallel blocks, threads have mechanisms to: 

•Communicate 

•Synchronize
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CUDA Shared Memory

25



1D Stencil

Consider applying a 1D stencil to a 1D array of elements 

•Each output element is the sum of input elements within a radius 


If radius is 3, then each output element is the sum of 7 input elements:
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Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

27From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times
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Input:

Output:



GPU Memory Hierarchy
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Shared Memory

Global Memory

•Fast on-chip memory 
•User-managed 
•Shared between threads in 
a block 
•Not visible to threads in 
other blocks 
•Usually ~kB size

•Usually in GPU DRAM 
•Allocate with cudaMalloc 
•Shared across all threads 
in all blocks 
•Usually ~GB size 



Implementing With Shared Memory

Cache data in shared memory 

•Read (blockDim.x + 2 * radius) input elements from global memory to 
shared memory 

•Compute blockDim.x output elements 

•Write blockDim.x output elements to global memory 


Each block needs a halo of radius elements at each boundary
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Stencil Kernel
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Num threads

All threads 
execute this line

Fill in the halo
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Stencil Kernel
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Issue: Data Race
•The previous code so far will not work because threads are not guaranteed 
to execute in any specific order.


•Therefore, some threads may run ahead of others. As the code is currently 
written, a thread may read uninitialized values from shared memory.


•Example with radius = 3:

40

Input:

Output:

Needed to compute the output, 
but not necessarily copied yet
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__syncthreads()

Synchronizes all threads within a block 

All threads must reach the barrier before any proceed beyond the barrier


• In conditional code, the condition must be uniform across the block
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void __syncthreads();
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Stencil Kernel With Barrier
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Optimizing for Parallelism
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Example: Kepler CC 3.6 SM
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•“SMX” (enhanced SM) 

•192 SP units (“cores”) 

•64 DP units 

•LD/ST units, 64K registers 

•4 warp schedulers 

•Each warp scheduler is dual-issue 
capable 

•K20: 13 SMX’s, 5GB 

•K20X: 14 SMX’s, 6GB 

•K40: 15 SMX’s, 12GB
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Pascal/Volta CC6.0/7.0

•64 SP units (“cores”) 

•32 DP units 

•LD/ST units 

•FP16 @ 2x SP rate 

•cc7.0: TensorCore 

•P100/V100 2/4 warp schedulers 

•Volta adds separate int32 units 

•P100: 56 SM’s, 16GB 

•V100: 80 SM’s, 16/32GB
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Execution Model
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•Threads are executed by scalar 
processors

•Thread blocks are executed on 
multiprocessors

•Thread blocks do not migrate

•Several concurrent thread blocks can 
reside on one multiprocessor - limited 
by multiprocessor resources (shared 
memory and register file)

•A kernel is launched as a grid of thread 
blocks



Warps
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•A thread block consists of 32-thread warps 

•A warp is executed physically in parallel (SIMD) on a multiprocessor



Launch Configuration

Key to understanding: 

• Instructions are issued in order 

•A thread stalls when one of the operands isn’t ready: 

• Memory read by itself doesn’t stall execution 


•Latency is hidden by switching threads 

• GMEM latency: >100 cycles (varies by architecture/design) 

• Arithmetic latency: <100 cycles (varies by architecture/design) 


How many threads/threadblocks to launch? 


Objective: Need enough threads to hide latency
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GPU Latency Hiding

In CUDA C source code:
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int idx = threadIdx.x + blockIdx.x * blockDim.x;  
c[idx] = a[idx] + b[idx]; 

In machine code:

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 GPU is inorder - I0 must 
be issued before I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

Now I1 can be issued - 
both I0 and I1 are in flight

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

Both are stalled 
due to latency

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0

Go to another 
warp 

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

Stalled

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

I0 I1

Keep issuing 
in other warps



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

I0 I1

I2

Latency is satisfied, 
so we can issue I2



GPU Latency Hiding -  
Inside the SM
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I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1
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Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

I0 I1

I2

To get the best performance, saturate the number of threads -  
keep the machine busy by having other warps issue instructions.



Maximizing Memory Throughput
Maximizing global memory throughput - need enough memory transactions 
in flight to saturate the bus 

• Depends on access pattern and word size
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Theoretical bandwidth: ~120 GB/s



Launch Configuration
Need enough total threads to keep GPU busy 

•Typically, you’d like 512+ threads per SM (aim for 2048 - maximum 
“occupancy”) 

• More if processing one fp32 element per thread 


Threadblock configuration 

•Threads per block should be a multiple of warp size (32) 

•SM can concurrently execute at least 16 thread blocks (Maxwell/Pascal/
Volta: 32) 

• Really small thread blocks prevent achieving good occupancy 

• Really large thread blocks are less flexible 

• Could generally use 128-256 threads/block, but use whatever is best for 

the application
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What is Occupancy?

A measure of the actual thread load in an SM, vs. peak theoretical/peak 
achievable 


CUDA includes an occupancy calculator spreadsheet 


Achievable occupancy is affected by limiters to occupancy 


Primary limiters: 

•Registers per thread (can be reported by the profiler, or can get at compile 
time) 

•Threads per threadblock 

•Shared memory usage
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Summary

•GPUs gain efficiency from simpler cores and more parallelism.


•Heterogeneous programming with manual offload - GPU for compute


•Massive (mostly data) parallelism required – Not as strict as CPU-SIMD


•Non-contiguous 


•CUDA documentation: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/contents.html
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Resources

•https://www.olcf.ornl.gov/cuda-training-series/


•https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/


•https://devblogs.nvidia.com/even-easier-introduction-cuda/


•https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


•https://docs.nvidia.com/cuda/index.html


•https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
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https://www.olcf.ornl.gov/cuda-training-series/
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
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BACKUP
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Optimizing for Memory Subsystem
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Memory Hierarchy Review
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Shared Memory / L1

Global Memory

Thread local storage 
(typically registers 
managed by the compiler)

•Program configurable: 
typically up to 48KB shared 
•High throughput (>1 TB/s)  
•Low latency 
•Per-thread-block resource 

Local  
Storage

L2

•Device-wide resource 
•All data goes through L2 

•Accessible by all 
threads as well as 
host 
•High latency (100s of 
cycles) 
•Throughput up to 
900GB/s (Volta V100) 
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Memory Hierarchy Review
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GMEM Operations

Loads: 

•Caching 

• Default mode 

• Attempts to hit in L1, then L2, then GMEM 

• Load granularity is 128-byte line 


Stores: 

• Invalidate L1, write-back for L2
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Load Operation

Memory operations are issued per warp (32 threads) - just like all other 
instructions 


Operation: 

•Threads in a warp provide memory addresses 

•Determine which lines/segments are needed 

•Request the needed lines/segments
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Caching Load
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Perfect coalescing - memory 
controller groups together 

address requests, and all bytes 
requested are used



Caching Load
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Perfect coalescing - memory 
controller groups together 

address requests, and all bytes 
requested are used



Caching Load
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Suppose we had a warp 
to the right - it would 

reuse some data already 
brought into the cache
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Caching Load
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Caching Load
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Non-Caching Load
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Summary

•GPUs gain efficiency from simpler cores and more parallelism –


•Heterogeneous programming with manual offload - GPU for compute


•Massive (mostly data) parallelism required – Not as strict as CPU-SIMD


•Coalescing data accesses is necessary for performance


•CUDA documentation: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/contents.html
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Launch Configuration
Hiding arithmetic latency: 

•Need ~10’s warps (~320 threads) per SM 

•Or, latency can also be hidden with independent instructions from the 
same warp 

• ->if instructions never depends on the output of preceding instruction, 

then only 5 warps are needed, etc. 


Maximizing global memory throughput: 

•Depends on the access pattern, and word size 

•Need enough memory transactions in flight to saturate the bus 

• Independent loads and stores from the same thread 

• Loads and stores from different threads 

• Larger word sizes can also help (float2 is twice the transactions of float, 

for example)
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BACKUP SLIDES
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Shared Memory

Uses: 

• Inter-thread communication within a block 

•Cache data to reduce redundant global memory accesses 

•Use it to improve global memory access patterns 


Organization: 32 banks, 4-byte wide banks 

•Successive 4-byte words belong to different banks
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Shared Memory

Performance: 

•Typically: 4 bytes per bank per 1 or 2 clocks per multiprocessor 

•shared accesses are issued per 32 threads (warp) 

•serialization: if N threads of 32 access different 4-byte words in the same 
bank, N accesses are executed serially 

•multicast: N threads access the same word in one fetch 

• Could be different bytes within the same word
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Bank Addressing Examples
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Bank Addressing Examples
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Shared Memory: Avoiding Bank Conflicts
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Shared Memory: Avoiding Bank Conflicts
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