
CSE 6230: 
HPC Tools and Applications

Helen Xu 
hxu615@gatech.edu

+

Lecture 13: GPU Programming

mailto:hxu615@gatech.edu


Heterogeneous Computing

2

Device: GPU and its 
memory (device 

memory)
Host: CPU and its 

memory (host 
memory)

From OLCF Cuda Training Series



CPU / GPU Relationship

3From OLCF Cuda Training Series



Simple Processing Flow

4From OLCF Cuda Training Series



Simple Processing Flow

5From OLCF Cuda Training Series



Simple Processing Flow

6From OLCF Cuda Training Series



Cuda Programming 101

7



What is CUDA?
CUDA - Compute Unified Device Architecture
•Expose GPU parallelism for general-purpose computing 
•Expose/Enable performance 

CUDA C++ 
•Based on industry-standard C++ 
•Set of extensions to enable heterogeneous programming 
•Straightforward APIs to manage devices, memory etc. 

8From OLCF Cuda Training Series



Example: Vector Addition

GPU computing is about massive parallelism.


Vector addition is embarrassingly parallel (pleasingly parallel) - all the 
elements are independent.

9From OLCF Cuda Training Series



GPU Kernels: Device Code

CUDA C++ keyword __global__ indicates a function that: 

•Runs on the device  
• Is called from host code (can also be called from other device code) 


nvcc separates source code into host and device components 

•Device functions (e.g. mykernel()) processed by NVIDIA compiler 

•Host functions (e.g. main()) processed by standard host compiler (e.g., 
gcc)

10From OLCF Cuda Training Series

__global__ void mykernel(void) { }

Can be any function name



GPU Kernels: Device Code

•Triple angle brackets mark a call to device code - also called a “kernel 
launch” 


•The parameters inside the triple angle brackets are the CUDA kernel 
execution configuration 


•That’s all that is required to execute a function on the GPU!

11From OLCF Cuda Training Series

mykernel<<<num_blocks, num_threads_per_block>>>();

Number of blocks Threads per block - max 1024



Memory Management

Host and device memory are separate entities. 


Device pointers point to GPU memory 

•Typically passed to device code 

•Typically not dereferenced in host code 


Host pointers point to CPU memory 

•Typically not passed to device code 

•Typically not dereferenced in device code 


Simple CUDA API for handling device memory 

•cudaMalloc(), cudaFree(), cudaMemcpy()  
•Similar to the C equivalents malloc(), free(), memcpy()

12From OLCF Cuda Training Series



Running Code in Parallel

GPU computing is about massive parallelism - how do we run code in 
parallel on the device?

13

mykernel<<<1,1>>>();

mykernel<<<N,1>>>();

Instead of executing add() once, execute it N times in parallel.

From OLCF Cuda Training Series

Vector length



Vector Addition on the Device
With add() running in parallel we can do vector addition 


Terminology: each parallel invocation of add() is referred to as a block 

•The set of all blocks is referred to as a grid 

•Each invocation can refer to its block index using blockIdx.x

14

By using blockIdx.x to index into the array, each block handles a different 
index 


Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0..N-1, where 
N is from the kernel execution configuration indicated at the kernel launch

__global__ void add(int *a, int *b, int *c) {  
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];  

}

From OLCF Cuda Training Series



15

Vector Addition on the Device
#define N 512  

int main(void) { 
int *a, *b, *c; // host copies of a, b, c  
int *d_a, *d_b, *d_c; // device copies of a, b, c  
int size = N * sizeof(int);  

// Alloc space for device copies of a, b, c  
cudaMalloc((void **)&d_a, size);  
cudaMalloc((void **)&d_b, size);  
cudaMalloc((void **)&d_c, size);  

// Alloc space for host copies of a, b, c and setup input values  
a = (int *)malloc(size); random_ints(a, N);  
b = (int *)malloc(size); random_ints(b, N);  
c = (int *)malloc(size); 

…

From OLCF Cuda Training Series

Host pointers

Device pointers

Allocate space on device 
with cudaMalloc

Allocate space on 
host with malloc



16

Vector Addition on the Device

// Copy inputs to device  
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);  
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);  

// Launch add() kernel on GPU with N blocks  
add<<N,1>>(d_a, d_b, d_c);  

// Copy result back to host  
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);  

// Cleanup  
free(a); free(b); free(c);  
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);  
return 0;  

}

From OLCF Cuda Training Series

Pass data from 
host to device

Do vector addition

Copy result 
to host

Cleanup both 
host and device



CUDA Threads

17From OLCF Cuda Training Series

__global__ void add(int *a, int *b, int *c) {  
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 

}

Terminology: a block can be split into parallel threads


Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x 


Need to make one change in main(): add<<< 1, N >>>();



Indexing Arrays With Blocks and Threads

Let’s adapt vector addition to use both blocks and threads - no longer as 
simple as using blockIdx.x and threadIdx.x 


Consider indexing an array with one element per thread (8 threads/block):

18

With M threads/block a unique index for each thread is given by: 


int index = threadIdx.x + blockIdx.x * M;

From OLCF Cuda Training Series



Indexing Arrays With Blocks and Threads

Which thread will operate on the red element?

19From OLCF Cuda Training Series



Vector Addition with Blocks and Threads

Use the built-in variable blockDim.x for threads per block:

20

Combined version of add() to use parallel threads and parallel blocks:

int index = threadIdx.x + blockIdx.x * blockDim.x;

__global__ void add(int *a, int *b, int *c) {  
int index = threadIdx.x + blockIdx.x * blockDim.x;  
c[index] = a[index] + b[index];  

}

From OLCF Cuda Training Series



21

Vector Addition with Blocks and Threads

From OLCF Cuda Training Series

#define N (2048*2048)  
#define THREADS_PER_BLOCK 512  

int main(void) {  
int *a, *b, *c; // host copies of a, b, c  
int *d_a, *d_b, *d_c; // device copies of a, b, c  
int size = N * sizeof(int);  

// Alloc space for device copies of a, b, c  
cudaMalloc((void **)&d_a, size);  
cudaMalloc((void **)&d_b, size);  
cudaMalloc((void **)&d_c, size);  

// Alloc space for host copies of a, b, c and setup input values  
a = (int *)malloc(size); random_ints(a, N);  
b = (int *)malloc(size); random_ints(b, N);  
c = (int *)malloc(size); 

…

Host pointers

Device pointers

Allocate space on device 
with cudaMalloc

Allocate space on 
host with malloc



22

Vector Addition with Blocks and Threads

From OLCF Cuda Training Series

… 

// Copy inputs to device  
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);  
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);  

// Launch add() kernel on GPU  
add<<N/THREADS_PER_BLOCK, THREADS_PER_BLOCK>>(d_a, d_b, d_c);  

// Copy result back to host  
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);  

// Cleanup  
free(a); free(b); free(c);  
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);  
return 0; 

}

Pass data from 
host to device

Do vector addition

Copy result 
to host

Cleanup both 
host and device



Handling Arbitrary Vector Sizes

23

Update the kernel launch:

__global__ void add(int *a, int *b, int *c, int n) {  
int index = threadIdx.x + blockIdx.x * blockDim.x;  
if (index < n)  
c[index] = a[index] + b[index];  

}

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Typical problems are not friendly multiples of blockDim.x 


Avoid accessing beyond the end of the arrays:

From OLCF Cuda Training Series

Thread 
check



Why Bother With Threads?

Threads seem unnecessary 

•They add a level of complexity 

•What do we gain? 


Unlike parallel blocks, threads have mechanisms to: 

•Communicate 

•Synchronize

24From OLCF Cuda Training Series



CUDA Shared Memory

25



1D Stencil

Consider applying a 1D stencil to a 1D array of elements 

•Each output element is the sum of input elements within a radius 


If radius is 3, then each output element is the sum of 7 input elements:

26From OLCF Cuda Training Series



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

27From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

28From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

29From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

30From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

31From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

32From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

33From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

34From OLCF Cuda Training Series

Input:

Output:



Implementing Within a Block

Each thread processes one output element 

•blockDim.x elements per block 


Input elements are read several times 

•With radius 3, each input element is read seven times

35From OLCF Cuda Training Series

Input:

Output:



GPU Memory Hierarchy

36

Shared Memory

Global Memory

•Fast on-chip memory 
•User-managed 
•Shared between threads in 
a block 
•Not visible to threads in 
other blocks 
•Usually ~kB size

•Usually in GPU DRAM 
•Allocate with cudaMalloc 
•Shared across all threads 
in all blocks 
•Usually ~GB size 



Implementing With Shared Memory

Cache data in shared memory 

•Read (blockDim.x + 2 * radius) input elements from global memory to 
shared memory 

•Compute blockDim.x output elements 

•Write blockDim.x output elements to global memory 


Each block needs a halo of radius elements at each boundary

37From OLCF Cuda Training Series



Stencil Kernel

38

Num threads

All threads 
execute this line

Fill in the halo

From OLCF Cuda Training Series



39

Stencil Kernel

From OLCF Cuda Training Series



Issue: Data Race
•The previous code so far will not work because threads are not guaranteed 
to execute in any specific order.


•Therefore, some threads may run ahead of others. As the code is currently 
written, a thread may read uninitialized values from shared memory.


•Example with radius = 3:

40

Input:

Output:

Needed to compute the output, 
but not necessarily copied yet

From OLCF Cuda Training Series



__syncthreads()

Synchronizes all threads within a block 

All threads must reach the barrier before any proceed beyond the barrier


• In conditional code, the condition must be uniform across the block

41

void __syncthreads();

From OLCF Cuda Training Series



Stencil Kernel With Barrier

42From OLCF Cuda Training Series



Optimizing for Parallelism

43



Example: Kepler CC 3.6 SM

44

•“SMX” (enhanced SM) 

•192 SP units (“cores”) 

•64 DP units 

•LD/ST units, 64K registers 

•4 warp schedulers 

•Each warp scheduler is dual-issue 
capable 

•K20: 13 SMX’s, 5GB 

•K20X: 14 SMX’s, 6GB 

•K40: 15 SMX’s, 12GB

From OLCF Cuda Training Series



Pascal/Volta CC6.0/7.0

•64 SP units (“cores”) 

•32 DP units 

•LD/ST units 

•FP16 @ 2x SP rate 

•cc7.0: TensorCore 

•P100/V100 2/4 warp schedulers 

•Volta adds separate int32 units 

•P100: 56 SM’s, 16GB 

•V100: 80 SM’s, 16/32GB

45From OLCF Cuda Training Series



Execution Model

46From OLCF Cuda Training Series

•Threads are executed by scalar 
processors

•Thread blocks are executed on 
multiprocessors

•Thread blocks do not migrate

•Several concurrent thread blocks can 
reside on one multiprocessor - limited 
by multiprocessor resources (shared 
memory and register file)

•A kernel is launched as a grid of thread 
blocks



Warps

47From OLCF Cuda Training Series

•A thread block consists of 32-thread warps 

•A warp is executed physically in parallel (SIMD) on a multiprocessor



Launch Configuration

Key to understanding: 

• Instructions are issued in order 

•A thread stalls when one of the operands isn’t ready: 

• Memory read by itself doesn’t stall execution 


•Latency is hidden by switching threads 

• GMEM latency: >100 cycles (varies by architecture/design) 

• Arithmetic latency: <100 cycles (varies by architecture/design) 


How many threads/threadblocks to launch? 


Objective: Need enough threads to hide latency

48From OLCF Cuda Training Series



GPU Latency Hiding

In CUDA C source code:

49

int idx = threadIdx.x + blockIdx.x * blockDim.x;  
c[idx] = a[idx] + b[idx]; 

In machine code:

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1



GPU Latency Hiding -  
Inside the SM

50

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

…



GPU Latency Hiding -  
Inside the SM

51

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 GPU is inorder - I0 must 
be issued before I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

52

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

Now I1 can be issued - 
both I0 and I1 are in flight

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

53

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

Both are stalled 
due to latency

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

54

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0

Go to another 
warp 

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

55

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

56

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

Stalled

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

57

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…



GPU Latency Hiding -  
Inside the SM

58

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

I0 I1

Keep issuing 
in other warps



GPU Latency Hiding -  
Inside the SM

59

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

I0 I1

I2

Latency is satisfied, 
so we can issue I2



GPU Latency Hiding -  
Inside the SM

60

I0: LD R0, a[idx]; 
I1: LD R1, b[idx]; 
I2: MPY R2, R0, R1

From OLCF Cuda Training Series

Clock Cycles

Warps
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 …

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

I0 I1

W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
…

I0 I1

I2

To get the best performance, saturate the number of threads -  
keep the machine busy by having other warps issue instructions.



Maximizing Memory Throughput
Maximizing global memory throughput - need enough memory transactions 
in flight to saturate the bus 

• Depends on access pattern and word size

61From OLCF Cuda Training Series

Theoretical bandwidth: ~120 GB/s



Launch Configuration
Need enough total threads to keep GPU busy 

•Typically, you’d like 512+ threads per SM (aim for 2048 - maximum 
“occupancy”) 

• More if processing one fp32 element per thread 


Threadblock configuration 

•Threads per block should be a multiple of warp size (32) 

•SM can concurrently execute at least 16 thread blocks (Maxwell/Pascal/
Volta: 32) 

• Really small thread blocks prevent achieving good occupancy 

• Really large thread blocks are less flexible 

• Could generally use 128-256 threads/block, but use whatever is best for 

the application

62From OLCF Cuda Training Series



What is Occupancy?

A measure of the actual thread load in an SM, vs. peak theoretical/peak 
achievable 


CUDA includes an occupancy calculator spreadsheet 


Achievable occupancy is affected by limiters to occupancy 


Primary limiters: 

•Registers per thread (can be reported by the profiler, or can get at compile 
time) 

•Threads per threadblock 

•Shared memory usage

63From OLCF Cuda Training Series



Summary

•GPUs gain efficiency from simpler cores and more parallelism.


•Heterogeneous programming with manual offload - GPU for compute


•Massive (mostly data) parallelism required – Not as strict as CPU-SIMD


•Non-contiguous 


•CUDA documentation: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/contents.html

64From OLCF Cuda Training Series



Resources

•https://www.olcf.ornl.gov/cuda-training-series/


•https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/


•https://devblogs.nvidia.com/even-easier-introduction-cuda/


•https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


•https://docs.nvidia.com/cuda/index.html


•https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

65

https://www.olcf.ornl.gov/cuda-training-series/
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html


66



BACKUP

67



Optimizing for Memory Subsystem

68



Memory Hierarchy Review

69

Shared Memory / L1

Global Memory

Thread local storage 
(typically registers 
managed by the compiler)

•Program configurable: 
typically up to 48KB shared 
•High throughput (>1 TB/s)  
•Low latency 
•Per-thread-block resource 

Local  
Storage

L2

•Device-wide resource 
•All data goes through L2 

•Accessible by all 
threads as well as 
host 
•High latency (100s of 
cycles) 
•Throughput up to 
900GB/s (Volta V100) 

From OLCF Cuda Training Series



70

Memory Hierarchy Review

From OLCF Cuda Training Series



GMEM Operations

Loads: 

•Caching 

• Default mode 

• Attempts to hit in L1, then L2, then GMEM 

• Load granularity is 128-byte line 


Stores: 

• Invalidate L1, write-back for L2

71From OLCF Cuda Training Series



Load Operation

Memory operations are issued per warp (32 threads) - just like all other 
instructions 


Operation: 

•Threads in a warp provide memory addresses 

•Determine which lines/segments are needed 

•Request the needed lines/segments

72From OLCF Cuda Training Series



Caching Load

73From OLCF Cuda Training Series

Perfect coalescing - memory 
controller groups together 

address requests, and all bytes 
requested are used



Caching Load

74From OLCF Cuda Training Series

Perfect coalescing - memory 
controller groups together 

address requests, and all bytes 
requested are used



Caching Load

75From OLCF Cuda Training Series

Suppose we had a warp 
to the right - it would 

reuse some data already 
brought into the cache



76

Caching Load

From OLCF Cuda Training Series



77

Caching Load

From OLCF Cuda Training Series



Non-Caching Load

78From OLCF Cuda Training Series



Summary

•GPUs gain efficiency from simpler cores and more parallelism –


•Heterogeneous programming with manual offload - GPU for compute


•Massive (mostly data) parallelism required – Not as strict as CPU-SIMD


•Coalescing data accesses is necessary for performance


•CUDA documentation: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/contents.html

79From OLCF Cuda Training Series



80



Launch Configuration
Hiding arithmetic latency: 

•Need ~10’s warps (~320 threads) per SM 

•Or, latency can also be hidden with independent instructions from the 
same warp 

• ->if instructions never depends on the output of preceding instruction, 

then only 5 warps are needed, etc. 


Maximizing global memory throughput: 

•Depends on the access pattern, and word size 

•Need enough memory transactions in flight to saturate the bus 

• Independent loads and stores from the same thread 

• Loads and stores from different threads 

• Larger word sizes can also help (float2 is twice the transactions of float, 

for example)
81From OLCF Cuda Training Series



82



BACKUP SLIDES

83



Shared Memory

Uses: 

• Inter-thread communication within a block 

•Cache data to reduce redundant global memory accesses 

•Use it to improve global memory access patterns 


Organization: 32 banks, 4-byte wide banks 

•Successive 4-byte words belong to different banks

84From OLCF Cuda Training Series



Shared Memory

Performance: 

•Typically: 4 bytes per bank per 1 or 2 clocks per multiprocessor 

•shared accesses are issued per 32 threads (warp) 

•serialization: if N threads of 32 access different 4-byte words in the same 
bank, N accesses are executed serially 

•multicast: N threads access the same word in one fetch 

• Could be different bytes within the same word

85From OLCF Cuda Training Series



Bank Addressing Examples

86From OLCF Cuda Training Series



87

Bank Addressing Examples

From OLCF Cuda Training Series



88From OLCF Cuda Training Series

Shared Memory: Avoiding Bank Conflicts



89

Shared Memory: Avoiding Bank Conflicts

From OLCF Cuda Training Series


