
Announcements

HW3 (vectorization) out today - due Feb 15 (~1.5 weeks)

1

CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

+

Lecture 9: Data-Parallel Algorithms

mailto:hxu615@gatech.edu

Single Instruction Multiple Data (SIMD)

3

SIMD machines run one instruction stream (all compute units run the
same instruction).

The processing units communicate through memory.

From UC Berkeley CS267

Network

Memory

Processor

+/x/- +/x/- +/x/-

Network

The Power of Data Parallelism
Data parallelism: perform the same operation on multiple values (often
array elements)

– Also includes reductions, broadcast, scan…

Many parallel programming models use some data parallelism

– SIMD units (and previously SIMD supercomputers)

– CUDA / GPUs

– MapReduce

– MPI collectives

4https://en.algorithmica.org/hpc/simd/From UC Berkeley CS267

Data-Parallel Programming: Unary Operators

Unary operations applied to all elements of an array.

Example: squaring (or any unary function, i.e., with one argument)

5From UC Berkeley CS267

3 1 1 2 3 3 4 2 2 2A

B = f(A) 9 1 1 4 9 9 16 4 4 4

6

Data-Parallel Programming: Binary Operators

Binary operations applied to all pairs of elements.

Example: minus (or any binary operator)

3 1 0 2 3 0 4 2 0 2A

B 0 1 1 4 1 0 2 1 4 3

From UC Berkeley CS267

minus applied to each pair

C 3 0 -1 -2 2 0 2 1 -4 -1

Broadcast fill a value into all elements of an array

7

Data-Parallel Programming: Broadcast

3 3 3 3 3 3 3 3 3 3B

X 3 1 1 2 3 3 4 2 2 2

Y 1 2 0 2 1 3 1 2 0 2

a = scalar
B = a

a = 3

a = 2

7 4 2 6 7 9 9 6 4 6Z

Z = a*X + Y

axpy
{s, d}axpy

is for single

or double

precision

From UC Berkeley CS267

Memory Operations: Assignment

Array assignment works if the arrays are the same shape:

8

May have a stride: i.e., might not be contiguous in memory

A = double[0:4] // 5 elements

B = double[0:4] = [0.0, 1.1, 2.2, 3.3, 4.4]

A = B

A = B[0:4:2] // copy with stride 2
(every other element)

C = double[0:4, 0:4] // 5x5 mtx

A = C[*, 3] // copy column of C

From UC Berkeley CS267

Memory Operations: Scatter/Gather

9https://gainperformance.wordpress.com/2017/06/15/umesimd-tutorial-9-gatherscatter-operations/
Scatter/gather are often used in sparse linear algebra, sorting algorithms, FFT, etc.

Data-Parallel Programming: Masks

Can apply operations under a bitmask

10

B 0 1 1 4 1 0 2 1 4 3

M 1 0 0 1 1 0 0 0 1 1

3 2 8 2 3 3 4 2 2 2A

3 2 8 6 4 3 4 2 6 5A = A+B under M

Array of 0/1
(True/false)

From UC Berkeley CS267

Data-Parallel Programming: Reduce
Reduce an array to a value with + or any associative op

11

3 1 1 2 3 3 4 2 2 2A

b = 23

A = array

b = scalar

b = sum(A)

Useful for dot products (ddot, sdot, etc.)

1 1 1 3 3 2 1

1 2 0 2 1 3 1

1 2 0 6 3 6 1
b = 19

Intermediate products

X:

Y:
b = dot(X, Y)

 = sum(X*Y)

From UC Berkeley CS267

Data-Parallel Programming: Scan

12

{yk =
x0
xk + yk−1

if k = 0
if k ≥ 1.

Input: an array of n elements

Output: an array of running sums, where

x = [x0, x1, …, xn−1]

y = [y0, y1, …, yn−1]

Data-Parallel Programming: Scan Examples

13

Fill array with partial reductions from any associative operation

From UC Berkeley CS267

3 1 1 2 3 3 4 2 2 2A

3 4 5 7 10 13 17 19 21 23B

A = array

B = array

B = scan(A, +)

3 1 1 2 3 3 4 2 2 2A

3 3 3 3 3 3 4 4 4 4B

A = array

B = array

B = scan(A, max)

Inclusive and Exclusive Scans

14

Inclusive scan: includes when computing - as in our previous examples.

Another variant: exclusive scan does not include when computing .

xk yk

xk yk

3 1 1 2 3 3 4 2 2 2A

3 4 5 7 10 13 17 19 21 23B

A = array

B = array

B = inclusive_scan(A, +)

C = array

C = exclusive_scan(A, +) 0 3 4 5 7 10 13 17 19 21C

Can easily get the inclusive version from the exclusive by adding the input
element-wise.

For the other way, you need an inverse for the operator.
From UC Berkeley CS267

Idealized Hardware and Performance Model

15

SIMD Systems Implemented Data Parallelism

•A SIMD machine has a large number of (usually) tiny processors

• A single “control processor” issues each instruction

• Each processor executes the same instruction

• Some processors may be turned off on some instructions

16

Memory

Interconnect

PNP1 P2 P3

Memory Memory Memory

…

Control processor

From UC Berkeley CS267

Ideal Cost Model for Data Parallelism

•Machine:

• An unbounded number of processors (p)

• Control overhead is free

• Communication is free

•Cost (complexity) on this abstract machine is the algorithm’s span T∞

17

Memory

Interconnect

PNP1 P2 P3

Memory Memory Memory

…

Control processor

From UC Berkeley CS267

Reduction on Processor Tree

•Reduction of n values to 1 with span.

•Takes advantage of associativity in +, *, min, max, etc.

log(n)

18From UC Berkeley CS267

1 3 1 0 4 -6 3 2

8

Reduction Lower Bound

Given a function of n input variables and 1 input variable, how
fast can we evaluate it in parallel?

• Assume we only have binary operations, one per time step

• After 1 time step, an output can depend on two inputs.

• Therefore, by induction, after k time units, an output can depend on at

most inputs.

f(x1, …, xn)

2k

19From UC Berkeley CS267

Binary tree
performs such a
computation for

 k = log(n)

Multiplying n-by-n matrices on O(log n) span

Step 1: For all , do

Step 2: For all , do

1 ≤ i, j, k ≤ n P(i, j, k) = A(i, k) × B(k, j)

1 ≤ i, j ≤ n C(i, j) =
n

∑
k=1

P(i, j, k)

20

A
B

C

i
j

k

Adds 1 to span,
using

processors
n3

Adds to span,
using trees, each with

n/2 processors

log(n)
n2

From UC Berkeley CS267

Parallel Prefix (Scan)

21

Can we parallelize a scan?

Serial scan takes n-1 operations.

The i-th iteration iteration of the loop depends completely on the (i-1)-th
iteration.

22

y[0] = 0;
for (size_t i = 1; i < n; i++) {
y[i] = y[i-1] + x[i];

}

From UC Berkeley CS267

First try: Parallel But Inefficient

Apply tree-like reduction at every element: put 1 processor at element 1, 2 at
element 2, etc.

23

1 2 3 4 5 6 7 8A

1 3 6 10 15 21 28 36B

Span: lg(n)

Work: O(n2)

Work-efficient parallel
algorithms perform no more

than a constant factor of
work over the best serial
algorithm for the problem

From UC Berkeley CS267

Hillis-Steele Prefix Sum

24https://en.wikipedia.org/wiki/Prefix_sum

for i = 0 up to :

for j = 0 up to n-1:

if j < :

else:

log(n)

2i

xi+1
j ← xi

j

xi+1
j ← xi

j + xi
j−2i

What is the work and span?

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.

Hillis-Steele Prefix Sum

25https://en.wikipedia.org/wiki/Prefix_sum

for i = 0 up to :

for j = 0 up to n-1:

if j < :

else:

log(n)

2i

xi+1
j ← xi

j

xi+1
j ← xi

j + xi
j−2i

What is the work and span?
Work =
Span =

O(n lg n)
O(lg n)Better, but still not

work efficient

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.

Work-Efficient Parallel Prefix
Idea: Save the partial sums computed via parallel reduction (upsweep) and use
those values in a downsweep pass to compute the total prefix.

The downsweep works by performing sums down the prefix-sum tree: at each
step, each vertex at a given level passes its own value to its left child, and its
right child gets the sum of the left child and the parent.

26https://en.wikipedia.org/wiki/Prefix_sum “Prefix Sums and Their Applications,” Blelloch, 1990.

sum[v] = sum[L[v]] + sum[R[v]]

scan[L[v]] = scan[v]

scan[R[v]] = sum[L[v]] + scan[v]

Exclusive scan:

Upsweep Example

27https://www.cs.cmu.edu/~charlie/courses/15-214/2016-fall/slides/21-concurrency%204.pdf

Downsweep Example

For an inclusive scan, only the downsweep needs to change:

28https://www.cs.cmu.edu/~charlie/courses/15-214/2016-fall/slides/21-concurrency%204.pdf

Work-Efficient Parallel Prefix Pseudocode

Upsweep:

for from 0 to :

parallel_for from to , += :

d lg(n) − 1

i 0 n − 1 i 2d+1

A[i + 2d+1 − 1] ← A[i + 2d − 1] + A[i + 2d+1 − 1]

29https://en.wikipedia.org/wiki/Prefix_sum “Prefix Sums and Their Applications,” Blelloch, 1990.

“upsweep”

“downsweep”

Downsweep:

for from to 0:

parallel_for from to , += :

if :

d lg(n) − 1
i 2d − 1 n − 1 − 2d i 2d+1

i − 2d ≥ 0
A[i] = A[i] + A[i − 2d]

Analysis of Parallel Prefix

30

What is the work and span?

Analysis of Parallel Prefix

31

What is the work and span?

Work:

Span:

W(n/2) + O(n) = O(n)

S(n) = S(n/2) + O(1) = O(lg n)

Work efficient

Gave up a constant
factor in span

compared to Hillis-
Steele algorithm

Applications of Data-Parallelism
(using scans)

32

A Partial List of Applications for Parallel Prefix

•Adding two n-bit integers in time

•Evaluating polynomials

•Solving recurrences

•Radix sort

•“2D parallel prefix” for image segmentation

•Traversing linked lists

•and many others!

O(log n)

33

Application: Stream Compression (aka Filter)

34From Julian Shun

Filter Implementation

35

Can use to filter on
some condition

Application: Radix Sort (Serial)

36

4 7 2 6 3 5 1 0

4 2 6 0 7 3 5 1

4 2 6 0 7 3 5 1

4 0 5 1 2 6 7 3

4 0 5 1 2 6 7 3

0 1 2 3 4 5 6 7

b0 = 0 b0 = 1

b1 = 0 b1 = 1

b2 = 0 b2 = 1

Sort on least significant bit in)

XX0 < XX1 (evens before odds)

(b0 b2b1b0

Stably sort entire array on next bit

X0X < X1X

Stably sort entire array on next bit

0XX < 1XX

From UC Berkeley CS267

Application: Data-Parallel Radix Sort

37

From UC Berkeley CS267

4 7 2 6 3 5 1 0
0 1 0 0 1 1 1 0
1 0 1 1 0 0 0 1
0 1 1 2 3 3 3 3
4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7
4 4 5 5 5 6 7 9
0 4 1 2 5 6 7 3
4 7 2 6 3 5 1 0

Input
Odds = last bit of each element
Evens = complement of odds
Even_positions = exclusive scan of evens(4)
totalEvens = broadcast last element
index = constant array of 0 .. n
odd_positions = #evens + indx - even_pos
pos = get positions using masked assignment

4 2 6 0 7 3 5 1

Scatter input according to pos

(repeat with next bit until you are out of bits)

Analyzing Data-Parallel Radix Sort

38

What is the work and span?

Analyzing Data-Parallel Radix Sort

39

What is the work and span?

Work: There are b iterations of the for loop, and iteration takes
work, so the total work is .

O(n)
O(bn)

Span: There are b iterations of the for loop, and iteration has
span, so the total span is .

O(log n)
O(b log n)

 spanO(log n)

Application: Adding n-bit Integers

Problem: Computing sum of two n-bit binary numbers, a and b.

 and

 (using carry bit array)
a = an−1an−2…a0 b = bn−1bn−2…b0
s = a + b = snsn−1…s0 c = cn−1, …, c0, c−1

40

From UC Berkeley CS267

c[-1] = 0 // rightmost carry bit
for i = 0 to n - 1: //compute right to left
s[i] = (a[i] xor b[i]) xor c[i-1] // one or three 1s
c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) // next carry bit

Example:

a = 22

b = 29

1 0 1 1 0
1 1 1 0 1

1 1 1 0 0 0 0
1 1 0 0 1 1

a
b
c
s

s[0] depends on these

Goal: Compute all in span via parallel prefixci O(log n)

Application: Adding n-bit Integers

41

c[-1] = 0 // rightmost carry bit
for i = 0 to n - 1: //compute right to left
c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) // next carry bit

Idea: Split carry bit into two cases that indicate information about the carry-out
() regardless of carry-in ():

• Generate (): This column will generate a carry-out whether or not the

carry-in is 1.

• Propagate (): This column will propagate a carry-in if there is one to the
carry-out.

ci ci−1
gi

gi = ai & & bi
pi

pi = ai | |bi

https://ee.usc.edu/~redekopp/ee457/slides/EE457Unit2b_FastAdders.pdf

ci = gi + pici−1

can be computed in parallel

Carry Lookahead Logic

42

Idea: Define each carry-in in terms of and the initial carry in and not
in terms of carry chain (i.e., unwind the recursion):

•

•

• …

Can be expressed with 2-by-2 boolean matrix multiplication:

pi, gi ci−1

c0 = g0 + p0c−1
c1 = g1 + p1c0 = g1 + p1g0 + p1p0c−1

M[i] = (p[i] g[i]
0 1)

(c[i]
1) = M[i] × M[i − 1] × … × M[0] × (0

1)
Carry-lookahead addition is used in all computers

https://ee.usc.edu/~redekopp/ee457/slides/EE457Unit2b_FastAdders.pdf

This idea is used in all hardware

The design goes back to Babbage in the 1800s:

43https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/carry2

From UC Berkeley CS267

Application: Lexical Analysis
Lexical analysis divides a long string of characters into tokens - often the
first thing a compiler does when processing a program.

Suppose we have a regular language - we can represent it with a finite-
state automaton that begins in a certain state and makes transitions
between states based on the characters read.

44

From UC Berkeley CS267

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.

Goal: Perform lexical analysis in parallel

Seems to
depend on

the previous
state, which
depends on
characters
read up to
some point

45

Idea: replace every character in the string with the array representation of its
state-to-state function (column).

Then perform a parallel-prefix operation with as the array composition.
Each character becomes an array representing the state-to-state function
for that prefix.

Use the initial state to index into the arrays.

⊕

Application: Lexical Analysis
From UC Berkeley CS267

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.

Example of state-to-
state function for the

space character

Application: Segmented Scans

Inputs: value array, flag array, associative operator ⊕

46

From UC Berkeley CS267

1 2 3 4 5 6 7 8A:

0 0 1 0 0 1 0 1flags:

1 3 3 7 12 6 13 8Result:

Can be used to parallelize sparse-matrix vector multiply (SpMV)

Application: Image Processing

•A summed-area table is an algorithm/data structure
for quickly generating the sum of values in some
rectangular subset of a grid.

•Often used in image processing [Crow, 84].

•Computes prefix sums in both dimensions, and
then inclusion-exclusion on the corners to
compute the sum within any rectangular area.

47

From UC Berkeley CS267

https://en.wikipedia.org/wiki/Summed-area_table

I(x, y) = ∑
x′ ≤x,y′ ≤y

i(x′ , y′)

A = (x0, y0), B = (x1, y0), C = (x0, y1), D = (x1, y1)

∑
x0<x≤x1,y0<y≤y1

i(x, y) = I(D) + I(A) − I(B) − I(C)

Application: Image Processing

•A summed-area table is an algorithm/data structure
for quickly generating the sum of values in some
rectangular subset of a grid.

•Often used in image processing [Crow, 84].

•Computes prefix sums in both dimensions, and
then inclusion-exclusion on the corners to
compute the sum within any rectangular area.

48

From UC Berkeley CS267

https://en.wikipedia.org/wiki/Summed-area_table

I(x, y) = ∑
x′ ≤x,y′ ≤y

i(x′ , y′)

A = (x0, y0), B = (x1, y0), C = (x0, y1), D = (x1, y1)

∑
x0<x≤x1,y0<y≤y1

i(x, y) = I(D) + I(A) − I(B) − I(C)

Requires inverse

49

Application: Tensor Region Sums
Several scientific computing applications involve reducing many (potentially
overlapping) regions of a tensor to a single value for each region, using a binary
associative operator .

Inclusion: The summed-area table (SAT) method preprocesses an image to
answer queries about the sum in rectangular subregions of a tensor [C84].

Exclusion: The essence of the fast multipole method (FMM) is a reduction of a
subregion’s elements, excluding elements too close [BG97, CRW93, D00].

⊕

⊕

Summed-area Table

⊕

⊕

Fast Multipole Method

⊕computes
reductions

for all N
points

computes
reductions

for all
excluded
regions

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

50

The excluded-sums problem [DDELP05] underlies applications that require
reducing regions of a tensor to a single value using .

In 2D, it takes as input an matrix and “box size”
where .

The problem involves reducing the excluded region outside of every -box
in the matrix.

⊕

n1 × n2 A k = (k1, k2)
k1 ≤ n1, k2 ≤ n2

k

Xk1

k2

(x1, x2)

n1

n2

-box cornered at
coordinate
k

(x1, x2)

N = n1n2

Excluded-sums problem
Binary associative operator

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Included-sums Problem

51

The included-sums problem takes the same input as the excluded-sums
problem.

In 2D, the included sum at coordinate involves reducing
(accumulating with) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Xk1

k2

(x1, x2)

n1

x1+k1−1

⨁
y1=x1

x2+k2−1

⨁
y2=x2

A[y1, y2]

Can be computed
straightforwardly with
four nested loops in

 time.Θ(n1n2k1k2)

N = n1n2

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Binary associative operator

Inclusion and Exclusion Example

52

Input Inclusion

1 3 6 2 5
3 9 1 1

25 5 3
2

3 9
6 2 7 8
4

1
0

1

16
18
13 10

15
15

11
24

88

19
16

8
3

10 10 7
10 8 4

14
10

11
17
8

75
73
78 81
76

80
67

8383

72
75

83
78

81 81 84
81 83 87

77
81

76
74
80

83
2

Exclusion

We present an example with addition for ease of understanding, but in
general an algorithm for these problems should work with general operators.

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Included and Excluded Sums With and Without
Operator Inverse

53

This approach fails for operators without inverse such as max, or the
FMM’s functions, which may exhibit singularities [DDELP05].

We refine the included- and excluded-sums problems into weak and
strong versions. The weak version requires an operator inverse, while the
strong version does not.

X⊖ = X

Given an
operator inverse,

can solve
excluded by

subtracting out
included

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Algorithmic Bounds

54

Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

Corners(c) Excluded Strong Ω(2dN) Θ(cN)

Bidirectional

box-sum (BDBS) Included Strong Θ(dN) Θ(N)

Box complement Excluded Strong Θ(N)Θ(dN)

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Weak and Strong Excluded Sums in Higher
Dimensions

55

Box
complement

BDBS +
subtraction

SAT +
subtraction

Naive ⊖ ⊖

⊖

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Bidirectional Box-sum Algorithm
for Strong Included Sums

56

We will start with the bidirectional box-sum algorithm (BDBS) in one
dimension then show how to extend the technique to higher dimensions.

Given a list of length and a (scalar) box size , output a list of
included sums.

A N k A′

2 5 3 1 6 3 9 0

2 7 10 11 6 9 18 18

11 9 4 1 18 12 9 0

1 2 3 4 5 6 7Position

A

As

Ap

11 15 13 19 18 12 9 0A′

8

Prefix

Suffix

Target

Input

 = 4k Compute intermediate
prefix and suffix arrays
with prefixes and

suffixes of length each.
N/k

k
k

Suffix

Prefix

k

 time, space in 1DΘ(N)
“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Multidimensional Bidirectional Box Sum

57

The BDBS technique extends into arbitrary dimensions by performing the
prefixes and suffixes along each dimension in turn.

Given a -dimensional tensor with elements, BDBS solves the strong
included-sums problem in time and space.

d N
Θ(dN) Θ(N)

Bidirectional box sum
 along first dimension

Bidirectional box sum along
second dimension on result

f
ffffff

ffffff

f

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Formulating the Excluded Sum
as the Box Complement

58

Given a -dimensional tensor and a “box size”, we will first sketch how to
decompose the excluded region for each point into disjoint regions.

At a high level, the “ -complement” of a box such that there is some
coordinate in dimension that is “out of range” in dimension , and
the coordinates are “in range” for all dimensions .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

Dimension 2

Dimension 1

X1 2

3

4

1-complement

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Formulating the Excluded Sum
as the Box Complement

59

Dimension 2

Dimension 1

X1 2

3

4

1-complement2-complement

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Given a -dimensional tensor and a “box size”, we will first sketch how to
decompose the excluded region for each point into disjoint regions.

At a high level, the “ -complement” of a box such that there is some
coordinate in dimension that is “out of range” in dimension , and
the coordinates are “in range” for all dimensions .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

Box-Complement Algorithm for
Strong Excluded Sums

60

(i) Prefix along
each row

(ii)
BDBS
along
each

column

f
X

(i) Suffix along
each row

f X

f (ii)
BDBS
along
each

column

f X Prefix Suffixf X

The box-complement algorithm uses dimension reduction to compute the
“ -complement” for all .

The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Box-Complement Algorithm for
Strong Excluded Sums

61

The box-complement algorithm uses dimension reduction to compute the
“ -complement” for all .

The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d

61

(i) Prefix along
each row

(ii)
BDBS
along
each

column

f
X

(i) Suffix along
each row

f X

f (ii)
BDBS
along
each

column

f X Prefix Suffixf X

Extending the Box-complement Algorithm to
Higher Dimensions

62

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1

2, 3

2
1

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Extending the Box-complement Algorithm to
Higher Dimensions

63

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1

2, 3

1, 2

3

33

2
1 1

2

3

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Extending the Box-complement Algorithm to
Higher Dimensions

64

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1

2, 3

1, 2

3

1, 2, 3

None

3

2
1 1

2

3

1
2

3

Each dimension-reduction step takes time and reuses the same
temporaries, for a total of time and space.

Θ(N)
Θ(dN) Θ(N)

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Mapping Data Parallelism to Real Hardware

65

Connection Machine (CM-1,2)

•Designed for AI by Thinking Machines
Corporation (Hillis and Handler)

•CM-1 and CM-2 SIMD Design

– 65,536 1-bit processors with 4 KB
of memory each

– 12-D boolean n-cube network
(Feynman)

– CM-2 add 1 floating point
processor per 32 1-bit

•Programmed with data parallel
languages (Lisp, C)

•CM-5 was RISC+Vectors

66

From UC Berkeley CS267

SIMD/Vector Processors Use Data Parallelism

SIMD instructions are specified as operations on vector registers.

67

From UC Berkeley CS267

Data-Level Parallelism
(e.g. SIMD [Flynn72])

Mapping to GPUs

•For n-way parallelism, a GPU may use n threads divided into blocks

•Mapping threads to ALUs and blocks to streaming multiprocessors (SMs)
is a compiler / hardware problem.

68

From UC Berkeley CS267

 Summary

•Data-parallel algorithms - applying the same operation to multiple data
simultaneously (single-instruction multiple-data).

•Prefix sums and their applications - sometimes can find surprisingly
parallel solutions to problems that look serial.

•SIMD implemented via vectors in CPUs, main programming model for
GPUs.

69

Backup past here

70

Application: Fibonacci via Matrix Multiply Prefix

71

From UC Berkeley CS267

Fn+1 = Fn + Fn−1

(1 1
1 0)(Fn+1

Fn) (Fn

Fn−1)=

Can compute all by matmul_prefix onFn

(1 1
1 0), (1 1

1 0), (1 1
1 0), (1 1

1 0), (1 1
1 0)…

(2 1
1 1), (3 2

2 1), (5 3
3 2), (8 5

5 3), (13 8
8 5)…

Select the upper
left entry

The same idea works for any linear recurrence.

Proof in “Prefix Sums and Their Applications,” Blelloch, 1990.

Application: List Ranking

72

From Julian Shun

What is the work
and span?

Work-Span Analysis

73

From Julian Shun

Work =

Span =

O(n log n)
O(log n)

Not work-efficient:
sequential algorithm only

requires O(n) work

