## Announcements

HW3 (vectorization) out today - due Feb 15 (~1.5 weeks)

CSE 6230:
HPC Tools and Applications

# Lecture 9: Data-Parallel Algorithms 

## Helen Xu hxu615@gatech.edu

## Single Instruction Multiple Data (SIMD)

SIMD machines run one instruction stream (all compute units run the same instruction).

The processing units communicate through memory.


## The Power of Data Parallelism

Data parallelism: perform the same operation on multiple values (often array elements)

- Also includes reductions, broadcast, scan...

Many parallel programming models use some data parallelism

- SIMD units (and previously SIMD supercomputers)
- CUDA / GPUs
- MapReduce
- MPI collectives



## Data-Parallel Programming: Unary Operators

Unary operations applied to all elements of an array.
Example: squaring (or any unary function, i.e., with one argument)


## Data-Parallel Programming: Binary Operators

Binary operations applied to all pairs of elements.
Example: minus (or any binary operator)

A | 3 | 1 | 0 | 2 | 3 | 0 | 4 | 2 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

minus applied to each pair

B | 0 | 1 | 1 | 4 | 1 | 0 | 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

c

| 3 | 0 | -1 | -2 | 2 | 0 | 2 | 1 | -4 | -1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Data-Parallel Programming: Broadcast

Broadcast fill a value into all elements of an array

$$
\begin{array}{lll|l|l|l|l|l|l|l|l|l|} 
& \mathbf{a}=\mathbf{3} \\
\mathbf{a}=\mathbf{s c a l a r} \\
\mathbf{B}=\mathbf{a} & \mathbf{B} & \begin{array}{ll|l|l|l|l|l|}
\hline 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{array} & 3 & 3 & 3 \\
\hline
\end{array}
$$

| $\mathrm{a}=2$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | 3 | 1 | 1 | 2 | 3 | 3 | 4 | 2 | 2 | 2 |
| Y | 1 | 2 | 0 | 2 | 1 | 3 | 1 | 2 | 0 | 2 |
|  | axpy |  |  |  |  |  |  |  |  |  |
| Z | 7 | 4 | 2 | 6 | 7 | 9 | 9 | 6 | 4 | 6 |

\{s, d\}axpy is for single or double precision

## Memory Operations: Assignment

Array assignment works if the arrays are the same shape:

$$
\begin{aligned}
& A=\text { double }[0: 4] / / 5 \text { elements } \\
& B=\text { double }[0: 4]=[0.0,1.1,2.2,3.3,4.4] \\
& A=B
\end{aligned}
$$

May have a stride: i.e., might not be contiguous in memory
$\mathrm{A}=\mathrm{B}[0: 4: 2] / /$ copy with stride 2 (every other element)

C = double[0:4, 0:4] // 5x5 mtx $A=C[* 3] / /$ copy column of $C$

## Memory Operations: Scatter/Gather



Scatter/gather are often used in sparse linear algebra, sorting algorithms, FFT, etc.

## Data-Parallel Programming: Masks

Can apply operations under a bitmask


## Data-Parallel Programming: Reduce

Reduce an array to a value with + or any associative op
A = array
b = scalar
$b=\operatorname{sum}(A)$


Useful for dot products (ddot, sdot, etc.)

$$
\begin{aligned}
b & =\operatorname{dot}(X, Y) \\
& =\operatorname{sum}\left(X^{*} Y\right)
\end{aligned}
$$

| $X:$ | 1 | 1 | 1 | 3 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 | 2 | 0 | 2 |  | 1 | 3 | H

Intermediate products

$$
b=19
$$

| 1 | 2 | 0 | 6 | 3 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Data-Parallel Programming: Scan

Input: an array $x=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ of n elements
Output: an array $y=\left[y_{0}, y_{1}, \ldots, y_{n-1}\right]$ of running sums, where

$$
y_{k}= \begin{cases}x_{0} & \text { if } k=0 \\ x_{k}+y_{k-1} & \text { if } k \geq 1\end{cases}
$$

## Data-Parallel Programming: Scan Examples

Fill array with partial reductions from any associative operation

| A = array | A | 3 | 1 | 1 | 2 | 3 | 3 | 4 | 2 | 2 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B=$ array |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{B}=\operatorname{scan}(\mathrm{A},+$ ) | B | 3 | 4 | 5 | 7 | 10 | 13 | 17 | 19 | 21 | 23 |


| A = array |
| :--- |
| $\mathrm{B}=\operatorname{array}$ |
| $\mathrm{B}=\operatorname{scan}(\mathrm{A}, \max )$ |$\quad$ A B | 3 | 1 | 1 | 2 | 3 | 3 | 4 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Inclusive and Exclusive Scans

Inclusive scan: includes $x_{k}$ when computing $y_{k}$ - as in our previous examples.
Another variant: exclusive scan does not include $x_{k}$ when computing $y_{k}$.

| A = array | A | 3 | 1 | 1 |  | 2 | 3 |  | 3 | 4 | 2 | 2 |  | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B=$ array |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{B}=$ inclusive_scan( $\mathrm{A},+$ ) | B | 3 | 4 | 5 |  | 7 | 1 |  | 13 | 17 | 19 | 21 |  | 23 |
| $\mathrm{C}=$ array |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{C}=$ exclusive_scan( $\mathrm{A},+$ ) | c | 0 | 3 | 4 |  | 5 | 7 |  | 10 | 13 | 17 | 19 |  | 21 |

Can easily get the inclusive version from the exclusive by adding the input element-wise.

For the other way, you need an inverse for the operator.

## Idealized Hardware and Performance Model

## SIMD Systems Implemented Data Parallelism

- A SIMD machine has a large number of (usually) tiny processors
- A single "control processor" issues each instruction
- Each processor executes the same instruction
- Some processors may be turned off on some instructions



## Ideal Cost Model for Data Parallelism

- Machine:
- An unbounded number of processors (p)
- Control overhead is free
- Communication is free
- Cost (complexity) on this abstract machine is the algorithm's span $T_{\infty}$



## Reduction on Processor Tree

-Reduction of n values to 1 with $\log (n)$ span.

- Takes advantage of associativity in + , ${ }^{*}$, min, max, etc.



## Reduction Lower Bound

Given a function $f\left(x_{1}, \ldots, x_{n}\right)$ of n input variables and 1 input variable, how fast can we evaluate it in parallel?

- Assume we only have binary operations, one per time step
- After 1 time step, an output can depend on two inputs.
- Therefore, by induction, after $k$ time units, an output can depend on at most $2^{k}$ inputs.

Binary tree
performs such a computation for $k=\log (n)$

## Multiplying n-by-n matrices on O(log n) span



## Parallel Prefix (Scan)

## Can we parallelize a scan?

Serial scan takes $\mathrm{n}-1$ operations.
The i-th iteration iteration of the loop depends completely on the (i-1)-th iteration.


## First try: Parallel But Inefficient

Apply tree-like reduction at every element: put 1 processor at element 1, 2 at element 2, etc.


Span: $\lg (n)$

Work: $O\left(n^{2}\right)<$

Work-efficient parallel algorithms perform no more than a constant factor of work over the best serial algorithm for the problem

A \begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 <br>
\hline

 

\hline 1 \& 3 \& 6 \& 10 \& 15 \& 21 \& 28 \& 36 <br>
\hline
\end{tabular}

## Hillis-Steele Prefix Sum

$$
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { up to } \log (n): \\
& \text { for } \mathrm{j}=0 \text { up to } \mathrm{n}-1: \\
& \text { if } \mathrm{j}<2^{i} \text { : } \\
& x_{j}^{i+1} \leftarrow x_{j}^{i} \\
& \text { else: }
\end{aligned}
$$

What is the work and span?

$$
x_{j}^{i+1} \leftarrow x_{j}^{i}+x_{j-2^{i}}^{i}
$$

## Hillis-Steele Prefix Sum

$$
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { up to } \log (n): \\
& \text { for } \mathrm{j}=0 \text { up to } \mathrm{n}-1: \\
& \text { if } \mathrm{j}<2^{i} \text { : } \\
& x_{j}^{i+1} \leftarrow x_{j}^{i} \\
& \text { else: }
\end{aligned}
$$



$$
x_{j}^{i+1} \leftarrow x_{j}^{i}+x_{j-2^{i}}^{i}
$$



## Work-Efficient Parallel Prefix

Idea: Save the partial sums computed via parallel reduction (upsweep) and use those values in a downsweep pass to compute the total prefix.

The downsweep works by performing sums down the prefix-sum tree: at each step, each vertex at a given level passes its own value to its left child, and its right child gets the sum of the left child and the parent.

"Prefix Sums and Their Applications," Blelloch, 1990.

## Upsweep Example



## Downsweep Example

For an inclusive scan, only the downsweep needs to change:


- Recall, we started with:
$[13, ~ 9, ~-4, ~ 19, ~-6, ~ 2, ~ 6, ~ 3] ~$


## Work-Efficient Parallel Prefix Pseudocode

```
Upsweep:
for }d\mathrm{ from 0 to lg}(n)-1
parallel_for i from 0 to }n-1,i+=\mp@subsup{2}{}{d+1}\mathrm{ :
    A[i+2 2 d+1 - 1]\leftarrowA[i+2 2 - 1] +A[i+ 2 2d+1 - 1]
Downsweep:
for }d\mathrm{ from }\operatorname{lg}(n)-1\mathrm{ to 0:
    parallel_for i from 2d}-1\mathrm{ to }n-1-\mp@subsup{2}{}{d},i+=\mp@subsup{2}{}{d+1}\mathrm{ :
    if }i-\mp@subsup{2}{}{d}\geq0\mathrm{ :
    A[i]=A[i]+A[i-2 'd
```



## Analysis of Parallel Prefix

What is the work and span?

## Analysis of Parallel Prefix



## Applications of Data-Parallelism <br> (using scans)

## A Partial List of Applications for Parallel Prefix

- Adding two n-bit integers in $O(\log n)$ time
- Evaluating polynomials
- Solving recurrences
- Radix sort
- "2D parallel prefix" for image segmentation
- Traversing linked lists
- and many others!


## Application: Stream Compression (aka Filter)

- Definition: Given a sequence $A=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ and a Boolean array of flags $B\left[b_{0}, b_{1}, \ldots, b_{n-1}\right]$, output an array A' containing just the elements $\mathrm{A}[\mathrm{i}]$ where $\mathrm{B}[\mathrm{i}]=$ true (maintaining relative order)
- Example:

- Can you implement filter using prefix sum?

Eiter Implementation | $\begin{array}{c}\text { Can use to filter on } \\ \text { some condition }\end{array}$ |
| :---: |

$\mathrm{A}=$| 2 | 4 | 3 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- |


| 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |

```
//Assume B'[n] = total sum
parallel-for i=0 to n-1:
    if(B'[i] != B'[i+1]):
            A'[B'[i]] = A[i];
```



Allocate array of size 3


$$
A^{\prime}=\begin{array}{|l|l|l|}
\hline 2 & 3 & 1 \\
\hline
\end{array}
$$

## Application: Radix Sort (Serial)

| 4 | 7 | 2 | 6 | 3 | 5 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Sort on least significant bit ( $b_{0}$ in $b_{2} b_{1} b_{0}$ ) XX0 < XX1 (evens before odds)

| 4 | 2 | 6 | 0 | 7 | 3 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| $\mathbf{4}$ | $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $b_{1}=0$ |  |  |  |  |  |  | $b_{1}=1$ |

Stably sort entire array on next bit XOX < X1X

| 4 | 0 | 5 | $\mathbf{1}$ | 2 | 6 | 7 | 3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 0 | $\mathbf{1}$ | 2 | 3 | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 |  |  |  |
| $b_{2}=0$ |  |  |  |  |  | $b_{2}=1$ |  |  |  |  |

Stably sort entire array on next bit $0 X X<1 X X$

## Application: Data-Parallel Radix Sort

| 4 | 7 | 2 | 6 | 3 | 5 | 1 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 0 | 1 | 1 | 2 | 3 | 3 | 3 | 3 |  |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |  |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| 4 | 4 | 5 | 5 | 5 | 6 | 7 | 9 |  |
| 0 | 4 | 1 | 2 | 5 | 6 | 7 | 3 |  |
| 4 | 7 | 2 | 6 | 3 | 5 | 1 | 0 |  |
|  |  |  |  |  |  |  |  |  |
| 4 | 2 | 6 | 0 | 7 | 3 | 5 | 1 |  |

Input
Odds = last bit of each element
Evens = complement of odds
Even_positions = exclusive scan of evens
totalEvens = broadcast last element
index $=$ constant array of $0 . . n$
odd_positions = \#evens + indx - even_pos
pos = get positions using masked assignment Scatter input according to pos
(repeat with next bit until you are out of bits)

## Analyzing Data-Parallel Radix Sort

```
ALGORITHM: RADIX_SORT ( }A,b
for i from 0 to b-1
    FLAGS :={(a>>i) mod 2:a\inA}
    NOTFLAGS :={1-b:b\in FLAGS}
    R0}:=\operatorname{SCAN(NOTFLAGS)
    so:= SUM(NOTFLAGS)
    R1:= SCAN(FLAGS)
    R:={if FLAGS [j]=0 then }\mp@subsup{R}{0}{}[j]\mathrm{ else }\mp@subsup{R}{1}{}[j]+\mp@subsup{s}{0}{}:j\in[0..|A|)
    A:=A\leftarrow{(R[j],A[j]):j\in[0..|A|)}
return }
```

What is the work and span?

## Analyzing Data-Parallel Radix Sort

```
    ALGORITHM: RADIX_SORT ( }A,b
for i from 0 to b-1
        FLAGS :={(a>>i) mod 2:a\inA}
        NOTFLAGS:={1-b:b\in FLAGS}
O(log}n)\mathrm{ span
    \longrightarrow
        R0}:=\operatorname{SCAN(NOTFLAGS)
        so:= SUM(NOTFLAGS)
        R := SCAN(FLAGS)
        R:={if FLAGS[j]=0 then R}\mp@subsup{R}{0}{[j] else }\mp@subsup{R}{1}{}[j]+\mp@subsup{s}{0}{}:j\in[0..|A|)
        A:= A\leftarrow{(R[j],A[j]):j\in[0..|A|)}
    return }
```


## What is the work and span?

Work: There are b iterations of the for loop, and iteration takes $O(n)$ work, so the total work is $O(b n)$.

Span: There are b iterations of the for loop, and iteration has $O(\log n)$ span, so the total span is $O(b \log n)$.

## Application: Adding n-bit Integers

Problem: Computing sum of two n -bit binary numbers, a and b .

$$
\begin{aligned}
& a=a_{n-1} a_{n-2} \ldots a_{0} \text { and } b=b_{n-1} b_{n-2} \ldots b_{0} \\
& \left.s=a+b=s_{n} s_{n-1} \ldots s_{0} \text { (using carry bit array } c=c_{n-1}, \ldots, c_{0}, c_{-1}\right) \\
& \begin{array}{l}
c[-1]=0 / / \text { rightmost carry bit } \\
\text { for } i=0 \text { to n }-1: / / \text { compute right to left } \\
s[i]=(a[i] \text { xor } b[i]) \text { xor } c[i-1] / / \text { one or three } 1 \mathrm{~s} \\
c[i]=((a[i] \text { xor } b[i]) \text { and } c[i-1]) \text { or (a[i] and } b[i]) / / \text { next carry bit }
\end{array}
\end{aligned}
$$

Example:
a
$10110 \longleftarrow \mathrm{~s}[0]$ depends on these
$\mathrm{a}=22$
$b=29$
b
11101
c 1110000
s 110011
Goal: Compute all $c_{i}$ in $O(\log n)$ span via parallel prefix

## Application: Adding n-bit Integers

```
c[-1] = 0 // rightmost carry bit
for i = 0 to n - 1: //compute right to left
    c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) // next carry bit
```

Idea: Split carry bit into two cases that indicate information about the carry-out $\left(c_{i}\right)$ regardless of carry-in $\left(c_{i-1}\right)$ :

- Generate $\left(g_{i}\right)$ : This column will generate a carry-out whether or not the carry-in is 1 .

$$
g_{i}=a_{i} \& \& b_{i}
$$

- Propagate $\left(p_{i}\right)$ : This column will propagate a carry-in if there is one to the carry-out.

$$
p_{i}=a_{i}| | b_{i}
$$

can be computed in parallel


## Carry Lookahead Logic

Idea: Define each carry-in in terms of $p_{i}, g_{i}$ and the initial carry in $c_{i-1}$ and not in terms of carry chain (i.e., unwind the recursion):

- $c_{0}=g_{0}+p_{0} c_{-1}$
- $c_{1}=g_{1}+p_{1} c_{0}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{-1}$
- ...

Can be expressed with 2-by-2 boolean matrix multiplication:

$$
\begin{gathered}
M[i]=\left(\begin{array}{cc}
p[i] & g[i] \\
0 & 1
\end{array}\right) \\
\binom{c[i]}{1}=M[i] \times M[i-1] \times \ldots \times M[0] \times\binom{ 0}{1}
\end{gathered}
$$

## This idea is used in all hardware

The design goes back to Babbage in the 1800s:


## Application: Lexical Analysis

Lexical analysis divides a long string of characters into tokens - often the first thing a compiler does when processing a program.

Suppose we have a regular language - we can represent it with a finitestate automaton that begins in a certain state and makes transitions between states based on the characters read.


Seems to depend on the previous state, which depends on characters read up to some point

Goal: Perform lexical analysis in parallel

## Application: Lexical Analysis

Idea: replace every character in the string with the array representation of its state-to-state function (column).

Then perform a parallel-prefix operation with $\oplus$ as the array composition. Each character becomes an array representing the state-to-state function for that prefix.

Use the initial state to index into the arrays.


## Application: Segmented Scans

Inputs: value array, flag array, associative operator $\oplus$


Can be used to parallelize sparse-matrix vector multiply (SpMV)

## Application: Image Processing

- A summed-area table is an algorithm/data structure for quickly generating the sum of values in some rectangular subset of a grid.
$\bullet$ Often used in image processing [Crow, 84].
- Computes prefix sums in both dimensions, and then inclusion-exclusion on the corners to compute the sum within any rectangular area.

$$
\begin{gathered}
I(x, y)=\sum_{x^{\prime} \leq x, y^{\prime} \leq y} i\left(x^{\prime}, y^{\prime}\right) \\
A=\left(x_{0}, y_{0}\right), B=\left(x_{1}, y_{0}\right), C=\left(x_{0}, y_{1}\right), D=\left(x_{1}, y_{1}\right) \\
\sum_{x_{0}<x \leq x_{1}, y_{0}<y \leq y_{1}} i(x, y)=I(D)+I(A)-I(B)-I(C)
\end{gathered}
$$

## Application: Image Processing

- A summed-area table is an algorithm/data structure for quickly generating the sum of values in some rectangular subset of a grid.
- Often used in image processing [Crow, 84].
- Computes prefix sums in both dimensions, and then inclusion-exclusion on the corners to compute the sum within any rectangular area.

$$
\begin{gathered}
I(x, y)=\sum_{x^{\prime} \leq x, y^{\prime} \leq y} i\left(x^{\prime}, y^{\prime}\right) \\
A=\left(x_{0}, y_{0}\right), B=\left(x_{1}, y_{0}\right), C=\left(x_{0}, y_{1}\right), D=\left(x_{1}, y_{1}\right) \\
\sum_{x_{0}<x \leq x_{1}, y_{0}<y \leq y_{1}} i(x, y)=I(D)+I(A)-I(B)-I(C) \\
\text { Requires inverse }
\end{gathered}
$$

| 31 | 2 | 4 | 33 | 5 | 36 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 26 | 9 | 10 | 29 | 2 |
| 13 | 17 | 21 | 22 | 20 | 1 |
| 24 | 23 | 15 | 16 | 14 |  |
| 30 | 8 | ;28 | 27 | 11 |  |
|  |  |  |  |  |  |

2. $\begin{array}{lllllll}31 & 33 & 37 & 70 & 75 & 111\end{array}$
$\begin{array}{llllll}43 & 71 & 84 & 127 & 161 & 222\end{array}$
$\begin{array}{lllll}56 & 101 & 135 & 200 & 254 \\ 333\end{array}$
80148197278346444
110186263371450555
111222333444555666
$15+16+14+28+27+11=$
$101+450-254-186=111$

## Application: Tensor Region Sums

Several scientific computing applications involve reducing many (potentially overlapping) regions of a tensor to a single value for each region, using a binary associative operator $\oplus$.

Inclusion: The summed-area table (SAT) method preprocesses an image to answer queries about the sum in rectangular subregions of a tensor ${ }_{[684]}$.

Exclusion: The essence of the fast multipole method (FMM) is a reduction of a subregion's elements, excluding elements too close ${ }_{[B G 97,}$ c crwas, Doo).

Summed-area Table


Fast Multipole Method


## Binary associative operator <br> Excluded-sums problem

The excluded-sums problem [DDELP05] underlies applications that require reducing regions of a tensor to a single value using $\oplus$.

In 2D, it takes as input an $n_{1} \times n_{2}$ matrix $A$ and "box size" $\mathbf{k}=\left(k_{1}, k_{2}\right)$ where $k_{1} \leq n_{1}, k_{2} \leq n_{2}$.

The problem involves reducing the excluded region outside of every k-box in the matrix.


## Binary associative operator <br> Included-sums Problem

The included-sums problem takes the same input as the excluded-sums problem.

In 2D, the included sum at coordinate ( $x_{1}, x_{2}$ ) involves reducing (accumulating with $\oplus$ ) all elements in the k-box cornered at $\left(x_{1}, x_{2}\right)$.


## Inclusion and Exclusion Example

Input
$\left(\begin{array}{ccccc}1 & 3 & 6 & 2 & 5 \\ 3 & 9 & 1 & 1 & 2 \\ 5 & 1 & 5 & 3 & 2 \\ 4 & 3 & 2 & 0 & 9 \\ 6 & 2 & 1 & 7 & 8\end{array}\right)$
$c$
$\left(\begin{array}{ccccc}16 & 19 & 10 & 10 & 7 \\ 18 & 16 & 10 & 8 & 4 \\ 13 & 11 & 10 & 14 & 11 \\ 15 & 8 & 10 & 24 & 17 \\ 8 & 3 & 8 & 15 & 8\end{array}\right) \quad\left(\begin{array}{ccccc}75 & 72 & 81 & 81 & 84 \\ 73 & 75 & 81 & 83 & 87 \\ 78 & 80 & 81 & 77 & 80 \\ 76 & 83 & 81 & 67 & 74 \\ 83 & 78 & 83 & 76 & 83\end{array}\right)$

We present an example with addition for ease of understanding, but in general an algorithm for these problems should work with general operators.

## Included and Excluded Sums With and Without Operator Inverse



This approach fails for operators without inverse such as max, or the FMM's functions, which may exhibit singularities [DDELPO5].

We refine the included- and excluded-sums problems into weak and strong versions. The weak version requires an operator inverse, while the strong version does not.

## Algorithmic Bounds

Given a $d$-dimensional tensor with $N$ elements:

| Algorithm | Problem | Weak/Strong | Time | Space |
| :---: | :---: | :---: | :---: | :---: |
| Summed-area table | Included | Weak :- | $\Theta\left(2^{d} N\right):$ | $\Theta(N)$ |
| Corners(c) | Excluded | Strong 0 | $\Omega\left(2^{d} N\right):$ | $\Theta(c N)$ (16) |
| Bidirectional box-sum (BDBS) | Included | Strong $\bigcirc$ | $\Theta(d N)$ | $\Theta(N)$ |
| Box complement | Excluded | Strong $\bigcirc$ | $\Theta(d N) \bigcirc$ | $\Theta(N) \bigcirc$ |

## Weak and Strong Excluded Sums in Higher Dimensions



## Bidirectional Box-sum Algorithm for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one dimension then show how to extend the technique to higher dimensions.

Given a list $A$ of length $N$ and a (scalar) box size $k$, output a list $A^{\prime}$ of


## Multidimensional Bidirectional Box Sum

The BDBS technique extends into arbitrary dimensions by performing the prefixes and suffixes along each dimension in turn.


Given a $d$-dimensional tensor with $N$ elements, BDBS solves the strong included-sums problem in $\Theta(d N)$ time and $\Theta(N)$ space.

## Formulating the Excluded Sum as the Box Complement

Given a $d$-dimensional tensor and a "box size", we will first sketch how to decompose the excluded region for each point into $2 d$ disjoint regions.

At a high level, the " $i$-complement" of a box such that there is some coordinate in dimension $j \in[1, i]$ that is "out of range" in dimension $j$, and the coordinates are "in range" for all dimensions $m \in[i+1, d]$.


## Formulating the Excluded Sum as the Box Complement

Given a $d$-dimensional tensor and a "box size", we will first sketch how to decompose the excluded region for each point into $2 d$ disjoint regions.

At a high level, the " $i$-complement" of a box such that there is some coordinate in dimension $j \in[1, i]$ that is "out of range" in dimension $j$, and the coordinates are "in range" for all dimensions $m \in[i+1, d]$.


## Box-Complement Algorithm for Strong Excluded Sums

The box-complement algorithm uses dimension reduction to compute the " $i$-complement" for all $i=1, \ldots, d$.

The BDBS algorithm for included sums is a major subroutine in the boxcomplement algorithm to sum up elements "in the range."

(i) Prefix along each row

(i) Suffix along each row

## Box-Complement Algorithm for Strong Excluded Sums

The box-complement algorithm uses dimension reduction to compute the " $i$-complement" for all $i=1, \ldots, d$.

The BDBS algorithm for included sums is a major subroutine in the boxcomplement algorithm to sum up elements "in the range."

(i) Prefix along each row

(i) Suffix along each row


# Extending the Box-complement Algorithm to Higher Dimensions 



## Extending the Box-complement Algorithm to Higher Dimensions



## Extending the Box-complement Algorithm to Higher Dimensions



Each dimension-reduction step takes $\Theta(N)$ time and reuses the same temporaries, for a total of $\Theta(d N)$ time and $\Theta(N)$ space.

# Mapping Data Parallelism to Real Hardware 

## Connection Machine (CM-1,2)



- Designed for Al by Thinking Machines Corporation (Hillis and Handler)
-CM-1 and CM-2 SIMD Design
- 65,536 1-bit processors with 4 KB
of memory each
- 12-D boolean n-cube network
(Feynman)
- CM-2 add 1 floating point processor per 32 1-bit
- Programmed with data parallel languages (Lisp, C)
-CM-5 was RISC+Vectors


## SIMD/Vector Processors Use Data Parallelism

SIMD instructions are specified as operations on vector registers.


## Mapping to GPUs

- For n-way parallelism, a GPU may use n threads divided into blocks
- Mapping threads to ALUs and blocks to streaming multiprocessors (SMs) is a compiler / hardware problem.



## Summary

- Data-parallel algorithms - applying the same operation to multiple data simultaneously (single-instruction multiple-data).
-Prefix sums and their applications - sometimes can find surprisingly parallel solutions to problems that look serial.
- SIMD implemented via vectors in CPUs, main programming model for GPUs.


## Backup past here

## Application: Fibonacci via Matrix Multiply Prefix

$$
\begin{aligned}
& F_{n+1}=F_{n}+F_{n-1} \\
& \binom{F_{n+1}}{F_{n}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F_{n}}{F_{n-1}}
\end{aligned}
$$

Can compute all $F_{n}$ by matmul_prefix on


The same idea works for any linear recurrence.

## Application: List Ranking

- Have every node in linked list determine its distance to the end

```
parallel-for i=0 to n-1:
    if P[i] == i then rank[i] = 0
    else rank[i] = 1
for }\textrm{j}=0\mathrm{ to ceil(log n)-1:
    temp, temp2;
    parallel-for i=0 to n-1:
            temp[i] = rank[P[i]];
            temp2[i] = P[P[i]];
    parallel-for i=0 to n-1:
            rank[i] = rank[i] + temp[i];
            P[i] = temp2[i];
```

3
2
4
3


## Work-Span Analysis

```
parallel-for i=0 to n-1:
    if P[i] == i then rank[i] = 0
    else rank[i] = 1
for }\textrm{j}=0\mathrm{ to ceil(}(\operatorname{log}\textrm{n})-1
    temp, temp2;
    parallel-for i=0 to n-1:
            temp[i] = rank[P[i]];
            temp2[i] = P[P[i]];
    parallel-for i=0 to n-1:
        rank[i] = rank[i] + temp[i];
        P[i] = temp2[i];
            Not work-efficient:
                                    sequential algorithm only
            Work =O(n\operatorname{log}n)<}\begin{array}{l}{\mathrm{ requires O(n) work}}
            Span = O(log n)
```

