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HW3 (vectorization) out today - due Feb 15 (~1.5 weeks)
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Single Instruction Multiple Data (SIMD)

3

SIMD machines run one instruction stream (all compute units run the 
same instruction).


The processing units communicate through memory.

From UC Berkeley CS267

Network
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The Power of Data Parallelism
Data parallelism: perform the same operation on multiple values (often 
array elements) 


– Also includes reductions, broadcast, scan… 


Many parallel programming models use some data parallelism 

– SIMD units (and previously SIMD supercomputers)

– CUDA / GPUs 

– MapReduce 

– MPI collectives

4https://en.algorithmica.org/hpc/simd/From UC Berkeley CS267



Data-Parallel Programming: Unary Operators

Unary operations applied to all elements of an array.


Example: squaring (or any unary function, i.e., with one argument)

5From UC Berkeley CS267

3 1 1 2 3 3 4 2 2 2A

B = f(A) 9 1 1 4 9 9 16 4 4 4
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Data-Parallel Programming: Binary Operators

Binary operations applied to all pairs of elements.


Example: minus (or any binary operator)

3 1 0 2 3 0 4 2 0 2A

B 0 1 1 4 1 0 2 1 4 3

From UC Berkeley CS267

minus applied to each pair

C 3 0 -1 -2 2 0 2 1 -4 -1



Broadcast fill a value into all elements of an array
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Data-Parallel Programming: Broadcast

3 3 3 3 3 3 3 3 3 3B

X 3 1 1 2 3 3 4 2 2 2

Y 1 2 0 2 1 3 1 2 0 2

a = scalar 
B = a

a = 3

a = 2

7 4 2 6 7 9 9 6 4 6Z

Z = a*X + Y

axpy
{s, d}axpy


is for single

or double

precision

From UC Berkeley CS267



Memory Operations: Assignment

Array assignment works if the arrays are the same shape:

8

May have a stride: i.e., might not be contiguous in memory

A = double[0:4] // 5 elements

B = double[0:4] = [0.0, 1.1, 2.2, 3.3, 4.4]

A = B

A = B[0:4:2] // copy with stride 2 
(every other element)

C = double[0:4, 0:4] // 5x5 mtx

A = C[*, 3] // copy column of C

From UC Berkeley CS267



Memory Operations: Scatter/Gather

9https://gainperformance.wordpress.com/2017/06/15/umesimd-tutorial-9-gatherscatter-operations/
Scatter/gather are often used in sparse linear algebra, sorting algorithms, FFT, etc.



Data-Parallel Programming: Masks

Can apply operations under a bitmask

10

B 0 1 1 4 1 0 2 1 4 3

M 1 0 0 1 1 0 0 0 1 1

3 2 8 2 3 3 4 2 2 2A

3 2 8 6 4 3 4 2 6 5A = A+B under M

Array of 0/1 
(True/false)

From UC Berkeley CS267



Data-Parallel Programming: Reduce
Reduce an array to a value with + or any associative op
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3 1 1 2 3 3 4 2 2 2A

b = 23 

A = array

b = scalar

b = sum(A)

Useful for dot products (ddot, sdot, etc.)

1 1 1 3 3 2 1

1 2 0 2 1 3 1

1 2 0 6 3 6 1
b = 19 

Intermediate products

X:

Y:
b = dot(X, Y) 


 = sum(X*Y)

From UC Berkeley CS267



Data-Parallel Programming: Scan

12

{yk =
x0
xk + yk−1

if k = 0
if k ≥ 1.

Input: an array  of n elements


Output: an array  of running sums, where

x = [x0, x1, …, xn−1]

y = [y0, y1, …, yn−1]



Data-Parallel Programming: Scan Examples
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Fill array with partial reductions from any associative operation

From UC Berkeley CS267

3 1 1 2 3 3 4 2 2 2A

3 4 5 7 10 13 17 19 21 23B

A = array

B = array

B = scan(A, +)

3 1 1 2 3 3 4 2 2 2A

3 3 3 3 3 3 4 4 4 4B

A = array

B = array

B = scan(A, max)



Inclusive and Exclusive Scans

14

Inclusive scan: includes  when computing  - as in our previous examples.


Another variant: exclusive scan does not include  when computing .

xk yk

xk yk

3 1 1 2 3 3 4 2 2 2A

3 4 5 7 10 13 17 19 21 23B

A = array

B = array

B = inclusive_scan(A, +)

C = array

C = exclusive_scan(A, +) 0 3 4 5 7 10 13 17 19 21C

Can easily get the inclusive version from the exclusive by adding the input 
element-wise.


For the other way, you need an inverse for the operator.
From UC Berkeley CS267



Idealized Hardware and Performance Model

15



SIMD Systems Implemented Data Parallelism

•A SIMD machine has a large number of (usually) tiny processors

• A single “control processor” issues each instruction

• Each processor executes the same instruction

• Some processors may be turned off on some instructions

16

Memory

Interconnect

PNP1 P2 P3

Memory Memory Memory

…

Control processor

From UC Berkeley CS267



Ideal Cost Model for Data Parallelism

•Machine:

• An unbounded number of processors (p)

• Control overhead is free

• Communication is free

•Cost (complexity) on this abstract machine is the algorithm’s span T∞

17

Memory

Interconnect

PNP1 P2 P3

Memory Memory Memory

…

Control processor

From UC Berkeley CS267



Reduction on Processor Tree

•Reduction of n values to 1 with  span.

•Takes advantage of associativity in +, *, min, max, etc.

log(n)

18From UC Berkeley CS267

1 3 1 0 4 -6 3 2

8



Reduction Lower Bound

Given a function  of n input variables and 1 input variable, how 
fast can we evaluate it in parallel?

• Assume we only have binary operations, one per time step

• After 1 time step, an output can depend on two inputs.

• Therefore, by induction, after k time units, an output can depend on at 

most  inputs.

f(x1, …, xn)

2k

19From UC Berkeley CS267

Binary tree 
performs such a 
computation for 

 k = log(n)



Multiplying n-by-n matrices on O(log n) span

Step 1: For all , do 


Step 2: For all , do 

1 ≤ i, j, k ≤ n P(i, j, k) = A(i, k) × B(k, j)

1 ≤ i, j ≤ n C(i, j) =
n

∑
k=1

P(i, j, k)

20

A
B

C

i
j

k

Adds 1 to span, 
using  

processors
n3

Adds  to span, 
using  trees, each with 

n/2 processors

log(n)
n2

From UC Berkeley CS267



Parallel Prefix (Scan)

21



Can we parallelize a scan?

Serial scan takes n-1 operations.


The i-th iteration iteration of the loop depends completely on the (i-1)-th 
iteration.

22

y[0] = 0; 
for (size_t i = 1; i < n; i++) { 
y[i] = y[i-1] + x[i]; 

}

From UC Berkeley CS267



First try: Parallel But Inefficient

Apply tree-like reduction at every element: put 1 processor at element 1, 2 at 
element 2, etc.

23

1 2 3 4 5 6 7 8A

1 3 6  10 15 21 28 36B

Span: lg(n)

Work: O(n2)

Work-efficient parallel 
algorithms perform no more 

than a constant factor of 
work over the best serial 
algorithm for the problem

From UC Berkeley CS267



Hillis-Steele Prefix Sum

24https://en.wikipedia.org/wiki/Prefix_sum

for i = 0 up to :

for j = 0 up to n-1:


if j < :




else:


log(n)

2i

xi+1
j ← xi

j

xi+1
j ← xi

j + xi
j−2i

What is the work and span?

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.



Hillis-Steele Prefix Sum

25https://en.wikipedia.org/wiki/Prefix_sum

for i = 0 up to :

for j = 0 up to n-1:


if j < :




else:


log(n)

2i

xi+1
j ← xi

j

xi+1
j ← xi

j + xi
j−2i

What is the work and span? 
Work =  
Span = 

O(n lg n)
O(lg n)Better, but still not 

work efficient

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.



Work-Efficient Parallel Prefix
Idea: Save the partial sums computed via parallel reduction (upsweep) and use 
those values in a downsweep pass to compute the total prefix.


The downsweep works by performing sums down the prefix-sum tree: at each 
step, each vertex at a given level passes its own value to its left child, and its 
right child gets the sum of the left child and the parent.

26https://en.wikipedia.org/wiki/Prefix_sum “Prefix Sums and Their Applications,” Blelloch, 1990.

sum[v] = sum[L[v]] + sum[R[v]]

scan[L[v]] = scan[v]

scan[R[v]] = sum[L[v]] + scan[v]

Exclusive scan:



Upsweep Example

27https://www.cs.cmu.edu/~charlie/courses/15-214/2016-fall/slides/21-concurrency%204.pdf



Downsweep Example

For an inclusive scan, only the downsweep needs to change:

28https://www.cs.cmu.edu/~charlie/courses/15-214/2016-fall/slides/21-concurrency%204.pdf



Work-Efficient Parallel Prefix Pseudocode

Upsweep: 

for  from 0 to :


parallel_for  from  to ,  += :

d lg(n) − 1

i 0 n − 1 i 2d+1

A[i + 2d+1 − 1] ← A[i + 2d − 1] + A[i + 2d+1 − 1]

29https://en.wikipedia.org/wiki/Prefix_sum “Prefix Sums and Their Applications,” Blelloch, 1990.

“upsweep”

“downsweep”

Downsweep: 

for  from  to 0:


parallel_for  from  to ,  += :

if :


d lg(n) − 1
i 2d − 1 n − 1 − 2d i 2d+1

i − 2d ≥ 0
A[i] = A[i] + A[i − 2d]



Analysis of Parallel Prefix

30

What is the work and span?



Analysis of Parallel Prefix

31

What is the work and span?

Work:  


Span:  

W(n/2) + O(n) = O(n)

S(n) = S(n/2) + O(1) = O(lg n)

Work efficient

Gave up a constant 
factor in span 

compared to Hillis-
Steele algorithm



Applications of Data-Parallelism 
(using scans)

32



A Partial List of Applications for Parallel Prefix

•Adding two n-bit integers in  time


•Evaluating polynomials


•Solving recurrences


•Radix sort


•“2D parallel prefix” for image segmentation


•Traversing linked lists


•and many others! 

O(log n)

33



Application: Stream Compression (aka Filter)

34From Julian Shun



Filter Implementation

35

Can use to filter on 
some condition



Application: Radix Sort (Serial)

36

4 7 2 6 3 5 1 0

4 2 6 0 7 3 5 1

4 2 6 0 7 3 5 1

4 0 5 1 2 6 7 3

4 0 5 1 2 6 7 3

0 1 2 3 4 5 6 7

b0 = 0 b0 = 1

b1 = 0 b1 = 1

b2 = 0 b2 = 1

Sort on least significant bit  in )

XX0 < XX1 (evens before odds)

(b0 b2b1b0

Stably sort entire array on next bit

X0X < X1X

Stably sort entire array on next bit

0XX < 1XX

From UC Berkeley CS267



Application: Data-Parallel Radix Sort

37

From UC Berkeley CS267

4 7 2 6 3 5 1 0
0 1 0 0 1 1 1 0
1 0 1 1 0 0 0 1
0 1 1 2 3 3 3 3
4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7
4 4 5 5 5 6 7 9
0 4 1 2 5 6 7 3
4 7 2 6 3 5 1 0

Input
Odds = last bit of each element
Evens = complement of odds
Even_positions = exclusive scan of evens(4)
totalEvens = broadcast last element
index = constant array of 0 .. n
odd_positions = #evens + indx - even_pos
pos = get positions using masked assignment

4 2 6 0 7 3 5 1

Scatter input according to pos

(repeat with next bit until you are out of bits)



Analyzing Data-Parallel Radix Sort

38

What is the work and span?



Analyzing Data-Parallel Radix Sort

39

What is the work and span?

Work: There are b iterations of the for loop, and iteration takes  
work, so the total work is .

O(n)
O(bn)

Span: There are b iterations of the for loop, and iteration has  
span, so the total span is .

O(log n)
O(b log n)

 spanO(log n)



Application: Adding n-bit Integers

Problem: Computing sum of two n-bit binary numbers, a and b.

 and 


 (using carry bit array )
a = an−1an−2…a0 b = bn−1bn−2…b0
s = a + b = snsn−1…s0 c = cn−1, …, c0, c−1

40

From UC Berkeley CS267

c[-1] = 0 // rightmost carry bit 
for i = 0 to n - 1: //compute right to left 
s[i] = (a[i] xor b[i]) xor c[i-1] // one or three 1s 
c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) // next carry bit

Example:

a = 22

b = 29

1 0 1 1 0
1 1 1 0 1

1 1 1 0 0 0 0
1 1 0 0 1 1

a
b
c
s

s[0] depends on these

Goal: Compute all  in  span via parallel prefixci O(log n)



Application: Adding n-bit Integers

41

c[-1] = 0 // rightmost carry bit 
for i = 0 to n - 1: //compute right to left 
c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) // next carry bit

Idea: Split carry bit into two cases that indicate information about the carry-out 
( ) regardless of carry-in ( ):

• Generate ( ): This column will generate a carry-out whether or not the 

carry-in is 1.




• Propagate ( ): This column will propagate a carry-in if there is one to the 
carry-out.


ci ci−1
gi

gi = ai & & bi
pi

pi = ai | |bi

https://ee.usc.edu/~redekopp/ee457/slides/EE457Unit2b_FastAdders.pdf

ci = gi + pici−1

can be computed in parallel



Carry Lookahead Logic

42

Idea: Define each carry-in in terms of  and the initial carry in  and not 
in terms of carry chain (i.e., unwind the recursion):

• 

• 

• …


Can be expressed with 2-by-2 boolean matrix multiplication:

pi, gi ci−1

c0 = g0 + p0c−1
c1 = g1 + p1c0 = g1 + p1g0 + p1p0c−1

M[i] = (p[i] g[i]
0 1 )

(c[i]
1 ) = M[i] × M[i − 1] × … × M[0] × (0

1)
Carry-lookahead addition is used in all computers

https://ee.usc.edu/~redekopp/ee457/slides/EE457Unit2b_FastAdders.pdf



This idea is used in all hardware

The design goes back to Babbage in the 1800s:

43https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/carry2

From UC Berkeley CS267



Application: Lexical Analysis
Lexical analysis divides a long string of characters into tokens - often the 
first thing a compiler does when processing a program.


Suppose we have a regular language - we can represent it with a finite-
state automaton that begins in a certain state and makes transitions 
between states based on the characters read.

44

From UC Berkeley CS267

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.

Goal: Perform lexical analysis in parallel

Seems to 
depend on 

the previous 
state, which 
depends on 
characters 
read up to 
some point



45

Idea: replace every character in the string with the array representation of its 
state-to-state function (column).


Then perform a parallel-prefix operation with  as the array composition. 
Each character becomes an array representing the state-to-state function 
for that prefix.


Use the initial state to index into the arrays.

⊕

Application: Lexical Analysis
From UC Berkeley CS267

“Data-Parallel Algorithms,” Hillis and Steele, CACM 1986.

Example of state-to-
state function for the 

space character



Application: Segmented Scans

Inputs: value array, flag array, associative operator  ⊕

46

From UC Berkeley CS267

1 2 3 4 5 6 7 8A:

0 0 1  0 0 1 0 1flags:

1 3 3  7 12 6 13 8Result:

Can be used to parallelize sparse-matrix vector multiply (SpMV)



Application: Image Processing

•A summed-area table is an algorithm/data structure 
for quickly generating the sum of values in some 
rectangular subset of a grid.

•Often used in image processing [Crow, 84].

•Computes prefix sums in both dimensions, and 
then inclusion-exclusion on the corners to 
compute the sum within any rectangular area.

47

From UC Berkeley CS267

https://en.wikipedia.org/wiki/Summed-area_table

I(x, y) = ∑
x′ ≤x,y′ ≤y

i(x′ , y′ )

A = (x0, y0), B = (x1, y0), C = (x0, y1), D = (x1, y1)

∑
x0<x≤x1,y0<y≤y1

i(x, y) = I(D) + I(A) − I(B) − I(C)



Application: Image Processing

•A summed-area table is an algorithm/data structure 
for quickly generating the sum of values in some 
rectangular subset of a grid.

•Often used in image processing [Crow, 84].

•Computes prefix sums in both dimensions, and 
then inclusion-exclusion on the corners to 
compute the sum within any rectangular area.

48

From UC Berkeley CS267

https://en.wikipedia.org/wiki/Summed-area_table

I(x, y) = ∑
x′ ≤x,y′ ≤y

i(x′ , y′ )

A = (x0, y0), B = (x1, y0), C = (x0, y1), D = (x1, y1)

∑
x0<x≤x1,y0<y≤y1

i(x, y) = I(D) + I(A) − I(B) − I(C)

Requires inverse



49

Application: Tensor Region Sums
Several scientific computing applications involve reducing many (potentially 
overlapping) regions of a tensor to a single value for each region, using a binary 
associative operator .


Inclusion: The summed-area table (SAT) method preprocesses an image to 
answer queries about the sum in rectangular subregions of a tensor [C84].


Exclusion: The essence of the fast multipole method (FMM) is a reduction of a 
subregion’s elements, excluding elements too close [BG97, CRW93, D00].

⊕

⊕

Summed-area Table

⊕

⊕

Fast Multipole Method 

⊕computes 
reductions 

for all N 
points

computes 
reductions 

for all 
excluded 
regions

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.
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The excluded-sums problem [DDELP05] underlies applications that require 
reducing regions of a tensor to a single value using .


In 2D, it takes as input an  matrix  and “box size”  
where .


The problem involves reducing the excluded region outside of every -box 
in the matrix.

⊕

n1 × n2 A k = (k1, k2)
k1 ≤ n1, k2 ≤ n2

k

Xk1

k2

(x1, x2)

n1

n2

-box cornered at 
coordinate 
k

(x1, x2)

N = n1n2

Excluded-sums problem
Binary associative operator

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Included-sums Problem

51

The included-sums problem takes the same input as the excluded-sums 
problem.


In 2D, the included sum at coordinate  involves reducing 
(accumulating with ) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Xk1

k2

(x1, x2)

n1

x1+k1−1

⨁
y1=x1

x2+k2−1

⨁
y2=x2

A[y1, y2]

Can be computed 
straightforwardly with 
four nested loops in 

 time.Θ(n1n2k1k2)

N = n1n2

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Binary associative operator



Inclusion and Exclusion Example

52

Input Inclusion

1 3 6 2 5
3 9 1 1

25 5 3
2

3 9
6 2 7 8
4

1
0

1

16
18
13 10

15
15

11
24

88

19
16

8
3

10 10 7
10 8 4

14
10

11
17
8

75
73
78 81
76

80
67

8383

72
75

83
78

81 81 84
81 83 87

77
81

76
74
80

83
2

Exclusion

We present an example with addition for ease of understanding, but in 
general an algorithm for these problems should work with general operators.

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Included and Excluded Sums With and Without 
Operator Inverse

53

This approach fails for operators without inverse such as max, or the 
FMM’s functions, which may exhibit singularities [DDELP05].


We refine the included- and excluded-sums problems into weak and 
strong versions. The weak version requires an operator inverse, while the 
strong version does not.

X⊖ = X

Given an 
operator inverse, 

can solve 
excluded by 

subtracting out 
included

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Algorithmic Bounds

54

Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with  elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

Corners(c) Excluded Strong Ω(2dN) Θ(cN)

Bidirectional 

box-sum (BDBS) Included Strong Θ(dN) Θ(N)

Box complement Excluded Strong Θ(N)Θ(dN)

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Weak and Strong Excluded Sums in Higher 
Dimensions

55

Box 
complement

BDBS + 
subtraction

SAT + 
subtraction

Naive ⊖ ⊖

⊖

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Bidirectional Box-sum Algorithm  
for Strong Included Sums

56

We will start with the bidirectional box-sum algorithm (BDBS) in one 
dimension then show how to extend the technique to higher dimensions.


Given a list  of length  and a (scalar) box size , output a list  of 
included sums. 

A N k A′ 

2 5 3 1 6 3 9 0

2 7 10 11 6 9 18 18

11 9 4 1 18 12 9 0

1 2 3 4 5 6 7Position

A

As

Ap

11 15 13 19 18 12 9 0A′ 

8

Prefix

Suffix

Target

Input

 = 4k Compute intermediate 
prefix and suffix arrays 
with  prefixes and 

suffixes of length  each.
N/k

k
k

Suffix

Prefix

k

 time, space in 1DΘ(N)
“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Multidimensional Bidirectional Box Sum

57

The BDBS technique extends into arbitrary dimensions by performing the 
prefixes and suffixes along each dimension in turn.


Given a -dimensional tensor with  elements, BDBS solves the strong 
included-sums problem in  time and  space.

d N
Θ(dN) Θ(N)

Bidirectional box sum
 along first dimension

Bidirectional box sum along
second dimension on result

f
ffffff

ffffff

f

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Formulating the Excluded Sum  
as the Box Complement

58

Given a -dimensional tensor and a “box size”, we will first sketch how to 
decompose the excluded region for each point into  disjoint regions.


At a high level, the “ -complement” of a box such that there is some 
coordinate in dimension  that is “out of range” in dimension , and 
the coordinates are “in range” for all dimensions  .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

Dimension 2

Dimension 1

X1 2

3

4

1-complement

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Formulating the Excluded Sum  
as the Box Complement

59

Dimension 2

Dimension 1

X1 2

3

4

1-complement2-complement

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.

Given a -dimensional tensor and a “box size”, we will first sketch how to 
decompose the excluded region for each point into  disjoint regions.


At a high level, the “ -complement” of a box such that there is some 
coordinate in dimension  that is “out of range” in dimension , and 
the coordinates are “in range” for all dimensions  .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]



Box-Complement Algorithm for 
Strong Excluded Sums

60

(i) Prefix along 
each row

(ii) 
BDBS 
along 
each 

column

f
X

(i) Suffix along 
each row

f X

f (ii) 
BDBS 
along 
each 

column

f X Prefix Suffixf X

The box-complement algorithm uses dimension reduction to compute the 
“ -complement” for all .


The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Box-Complement Algorithm for 
Strong Excluded Sums

61

The box-complement algorithm uses dimension reduction to compute the 
“ -complement” for all .


The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d

61

(i) Prefix along 
each row

(ii) 
BDBS 
along 
each 

column

f
X

(i) Suffix along 
each row

f X

f (ii) 
BDBS 
along 
each 

column

f X Prefix Suffixf X



Extending the Box-complement Algorithm to 
Higher Dimensions

62

Full Prefix / Suffix 
Dimensions:

Included Sum 
Dimensions:

1

2, 3

2
1

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Extending the Box-complement Algorithm to 
Higher Dimensions
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Full Prefix / Suffix 
Dimensions:

Included Sum 
Dimensions:

1

2, 3

1, 2

3

33

2
1 1

2

3

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Extending the Box-complement Algorithm to 
Higher Dimensions
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Full Prefix / Suffix 
Dimensions:

Included Sum 
Dimensions:

1

2, 3

1, 2

3

1, 2, 3

None

3

2
1 1

2

3

1
2

3

Each dimension-reduction step takes  time and reuses the same 
temporaries, for a total of  time and  space.

Θ(N)
Θ(dN) Θ(N)

“Multidimensional Included and Excluded Sums,” Xu, Fraser, and Leiserson. ACDA 2021.



Mapping Data Parallelism to Real Hardware
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Connection Machine (CM-1,2)

•Designed for AI by Thinking Machines 
Corporation (Hillis and Handler) 

•CM-1 and CM-2 SIMD Design 


– 65,536 1-bit processors with 4 KB 
of memory each 

– 12-D boolean n-cube network 
(Feynman) 

– CM-2 add 1 floating point 
processor per 32 1-bit 


•Programmed with data parallel 
languages (Lisp, C)

•CM-5 was RISC+Vectors

66

From UC Berkeley CS267



SIMD/Vector Processors Use Data Parallelism

SIMD instructions are specified as operations on vector registers.

67

From UC Berkeley CS267

Data-Level Parallelism  
(e.g. SIMD [Flynn72])



Mapping to GPUs

•For n-way parallelism, a GPU may use n threads divided into blocks

•Mapping threads to ALUs and blocks to streaming multiprocessors (SMs) 
is a compiler / hardware problem.

68

From UC Berkeley CS267



 Summary

•Data-parallel algorithms - applying the same operation to multiple data 
simultaneously (single-instruction multiple-data).


•Prefix sums and their applications - sometimes can find surprisingly 
parallel solutions to problems that look serial.


•SIMD implemented via vectors in CPUs, main programming model for 
GPUs.
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Backup past here

70



Application: Fibonacci via Matrix Multiply Prefix

71

From UC Berkeley CS267

Fn+1 = Fn + Fn−1

(1 1
1 0)(Fn+1

Fn ) ( Fn

Fn−1)=

Can compute all  by matmul_prefix onFn

(1 1
1 0), (1 1

1 0), (1 1
1 0), (1 1

1 0), (1 1
1 0)…

(2 1
1 1), (3 2

2 1), (5 3
3 2), (8 5

5 3), (13 8
8 5)…

Select the upper 
left entry

The same idea works for any linear recurrence.

Proof in “Prefix Sums and Their Applications,” Blelloch, 1990.



Application: List Ranking

72

From Julian Shun

What is the work 
and span?



Work-Span Analysis

73

From Julian Shun

Work = 

Span = 

O(n log n)
O(log n)

Not work-efficient: 
sequential algorithm only 

requires O(n) work


