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Motivation



Applications of GNNs

⊚ Online shopping
⊚ Social media

⊚ Content recommendation
⊚ Showing relevant ads

Source: https://pixabay.com/vectors/social-media-connections-networking-3846597/
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Graph Neural Networks

Source: CS224W Lecture 17 (GNN Scaling)
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Sampling strategies

Blue: seed vertices, green: sampled, gray: not sampled
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GNN Stages

1. Graph sampling
2. Feature loading
3. Forward-backward passes

Insights:

⊚ All are memory-bound operations.
⊚ Accelerators have fast memory.
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Outline

1. Layer-Neighbor Sampling (NeurIPS’23)
2. Cooperative Minibatching (Under review)
3. Efficient GNN training system (dgl.graphbolt, WIP)
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Background



Graph notation

Notation Definition

G= (𝑉, 𝐸) Graph Gconsisting of vertices 𝑉 and edges 𝐸 ⊂ 𝑉 ×𝑉
𝑡 → 𝑠 Edge from vertex 𝑡 to seed vertex 𝑠

𝐴𝑡𝑠 Edge weight for edge 𝑡 → 𝑠

𝑆 a set of vertices 𝑆 ⊆ 𝑉

𝑁(𝑠) 1-hop neighborhood of 𝑠, {𝑡 |(𝑡 → 𝑠) ∈ 𝐸}
𝑁(𝑆) 1-hop neighborhood for 𝑆, ∪𝑠∈𝑆𝑁(𝑠)
𝑆𝑙 𝑙-hop neighborhood of 𝑆0 = 𝑆, 𝑆(𝑙+1) = 𝑆𝑙 ∪ 𝑁(𝑆𝑙)
𝑑𝑠 the degree of 𝑠, |𝑁(𝑠)|

8



GNN notation

Notation Definition

𝐻
(𝑙)
𝑡 vertex embedding for 𝑡 at layer 𝑙

𝑓 (𝑙) GNN layer at layer 𝑙
𝑊 (𝑙) trainable weight matrix at layer 𝑙
𝑀𝑡 message from 𝑡, 𝑀𝑡 = 𝐻𝑡𝑊

𝑀𝑡𝑠 message over the edge 𝑡 → 𝑠, 𝑀𝑡𝑠 = 𝐴𝑡𝑠𝐻𝑡𝑊
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GNN sampling notation

Notation Definition

𝑘 fan-out parameter or sampling budget per vertex
𝜋𝑡 probability of sampling vertex 𝑡

𝜋𝑡𝑠 probability of sampling edge 𝑡 → 𝑠

𝑇 the sampled vertices in the next layer, 𝑇 ⊆ 𝑁(𝑆)
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Computer Hardware

Common bandwidths and storage capacities of components in a
modern PCIe-based multi-GPU computer system.

Component Capacity

1× NVMe SSD 4 TB
System memory 2 TB

GPU global memory 80 GB

Connection Bandwidth

1× PCI-e 4.0 lane 2 GB/s
NVMe SSD over 4× lanes 8 GB/s

GPU over 16× lanes 32 GB/s
CPU to system memory 400 GB/s

GPU to GPU 300 GB/s
GPU to GPU global memory 2 TB/s 11



Example Interconnect Topology
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Layer-Neighbor Sampling (LABOR)



Sampling Goals & Solution

Goals:

⊚ Unbiased sampling

⊚ Overlapping neighborhoods (LADIES)
⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)
⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.
⊚ Generalizes to any unbiased sampling method.
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GNN Sampling Background - Recap

⊚ GCN equation: 𝐻𝑠 =
1
𝑑𝑠

∑
𝑡→𝑠 𝐻𝑡𝑊 = 1

𝑑𝑠

∑
𝑡→𝑠 𝑀𝑡

⊚ Neighbor Sampling (NS):
For given 𝑠, sample 𝑘-subset of {𝑡 | 𝑡 → 𝑠}

⊚ Layer sampling:
Given 𝑆, sample 𝑇 ⊆ {𝑡 | 𝑡 → 𝑠 ∈ 𝑆},
extract edges {𝑡 → 𝑠 | 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆}
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Layer-Neighbor Sampling

⊚ LABOR-0: given 𝑠 and 𝑟𝑡 ∼ 𝑈(0, 1),
sample 𝑡 → 𝑠 if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
.

⊚ Expected 𝑘 sampled items, matching NS.
⊚ Taking top-𝑘 𝑟𝑡 values makes # sampled items

deterministic.
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LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

17



LABOR-0 example
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LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled
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LABOR-0 example
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LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled
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LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled
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Pseudocode

Algorithm LABOR-0 for uniform edge
weights

1: Input: seed vertices 𝑆, fan-out 𝑘
2: Output: sampled edges 𝐸′

3: 𝑇 ← {𝑡 | 𝑡 ∈ 𝑁(𝑆)}
4: 𝑟𝑡 ∼ 𝑈(0, 1),∀𝑡 ∈ 𝑇
5: 𝐸′← [ ]
6: for all 𝑠 ∈ 𝑆 do
7: for all 𝑡 ∈ 𝑁(𝑠) do
8: if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
then

9: 𝐸′.append(𝑡 → 𝑠)

The loop cor-
responds to a
‘copy_if‘ opera-
tion.
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Experiments - Vertex efficiency

The validation F1-score and training loss curves.
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Experiments - Edge efficiency

The validation F1-score and training loss curves.
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Experiments - PLADIES and LABOR Evaluation

Dataset Algo. |𝑽 3 | |𝑬2 | |𝑽 2 | |𝑬1 | |𝑽 1 | |𝑬0 | |𝑽 0 | it/s test F1-score

PLADIES 24 2390 14.1 927 6.0 33.2 1 1.7 96.21 ± 0.06
LADIES 25 2270 14.5 852 6.0 32.5 1 1.8 96.20 ± 0.05

reddit LABOR-* 24 1070 13.7 435 6.0 26.9 1 4.1 96.23 ± 0.05
LABOR-1 27 261 14.4 116 6.1 16.7 1 24.8 96.23 ± 0.06
LABOR-0 36 177 17.8 67 6.8 9.6 1 37.6 96.25 ± 0.05

NS 167 682 68.3 100 10.1 9.7 1 14.2 96.24 ± 0.05

PLADIES 160 2380 51.2 293 9.7 11.7 1 4.1 78.44 ± 0.24
LADIES 165 2230 51.8 270 9.7 11.5 1 4.2 78.59 ± 0.22

products LABOR-* 166 1250 51.8 167 9.8 10.6 1 6.2 78.59 ± 0.34
LABOR-1 178 799 53.4 136 9.8 10.5 1 21.3 78.47 ± 0.26
LABOR-0 237 615 62.4 100 10.1 9.9 1 32.5 78.76 ± 0.26

NS 513 944 95.4 106 10.6 9.9 1 24.6 78.48 ± 0.29

PLADIES 100 1300 29.5 183 6.2 6.9 1 5.1 61.55 ± 0.87
LADIES 102 1280 29.7 182 6.2 6.9 1 5.3 61.89 ± 0.66

yelp LABOR-* 105 991 30.7 158 6.1 6.8 1 13.3 61.57 ± 0.67
LABOR-1 109 447 31.0 96 6.2 6.8 1 27.3 61.71 ± 0.70
LABOR-0 138 318 35.1 54 6.2 6.3 1 27.2 61.55 ± 0.85

NS 188 392 42.5 55 6.3 6.3 1 23.0 61.50 ± 0.66

PLADIES 55 309 24.9 85 6.2 6.9 1 10.2 51.52 ± 0.26
LADIES 56 308 25.1 85 6.2 6.9 1 10.5 50.79 ± 0.29

flickr LABOR-* 57 308 25.6 85 6.3 6.9 1 20.3 51.67 ± 0.27
LABOR-1 58 242 25.9 73 6.3 6.9 1 32.7 51.66 ± 0.24
LABOR-0 66 219 29.1 52 6.4 6.7 1 33.3 51.65 ± 0.26

NS 73 244 32.8 52 6.4 6.7 1 31.7 51.70 ± 0.23 21



Cooperative Minibatching



Motivation

⊚ Full-batch training has no redundant computation.
⊚ Minibatch training requires repetitive calculations.
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Cooperative Minibatching Contributions

⊚ Work vs. batch size relationship
⊚ Data & intra-layer parallelism: Cooperative Minibatching.
⊚ Same idea in serial execution: Dependent Minibatching.
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Cooperative Minibatching Background

⊚ GNN equation: 𝐻(𝑙+1)
𝑠 = 𝑓 (𝑙)(𝐻(𝑙)𝑠 , {𝐻(𝑙)𝑡 | 𝑡 ∈ 𝑁(𝑠)})

⊚ Graph Sampling: 𝑆0 = 𝑆, 𝑆(𝑙+1) = 𝑆𝑙 ∪ 𝑁(𝑆𝑙)

⊚ Work of an epoch with batch size |𝑆0 |:
𝑊(|𝑆0 |) = |𝑉 |

|𝑆0 |
∑𝐿

𝑙=1 𝐸[|𝑆𝑙 |] ≥ |𝑉 ||𝑆0 |
∑𝐿

𝑙=1 |𝑆0 | = 𝐿|𝑉 |

⊚ Redundant work for layer 𝑙: 𝑊 𝑙(|𝑆0 |) ≈ 𝐸[|𝑆𝑙 |]
|𝑆0 |

25



Cooperative Minibatching Background

⊚ GNN equation: 𝐻(𝑙+1)
𝑠 = 𝑓 (𝑙)(𝐻(𝑙)𝑠 , {𝐻(𝑙)𝑡 | 𝑡 ∈ 𝑁(𝑠)})

⊚ Graph Sampling: 𝑆0 = 𝑆, 𝑆(𝑙+1) = 𝑆𝑙 ∪ 𝑁(𝑆𝑙)

⊚ Work of an epoch with batch size |𝑆0 |:
𝑊(|𝑆0 |) = |𝑉 |

|𝑆0 |
∑𝐿

𝑙=1 𝐸[|𝑆𝑙 |] ≥ |𝑉 ||𝑆0 |
∑𝐿

𝑙=1 |𝑆0 | = 𝐿|𝑉 |

⊚ Redundant work for layer 𝑙: 𝑊 𝑙(|𝑆0 |) ≈ 𝐸[|𝑆𝑙 |]
|𝑆0 |

25



Independent Minibatching

1. Each Processing Element (PE e.g., GPU) starts with its own
𝑆0.

2. Samples 𝑆1 , . . . , 𝑆𝐿 independently.
3. Loads input features and edge features for the sampled

subgraphs independently.
4. Forward-backward independently with no

communication.

⊚ Problem: Redundant computations across PEs.
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Independent Minibatching Example with 2 PEs
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Independent Minibatching Example with 2 PEs
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Cooperative Minibatching
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Work Theorems

Theorem

The work per epoch 𝐸[|𝑆𝑙 |]
|𝑆0 | required to train a GNN model using

minibatch training is monotonically nonincreasing as the batch size
|𝑆0 | increases.

Theorem
The expected subgraph size 𝐸[|𝑆𝑙 |] required to train a GNN model
using minibatch training is a concave function of batch size, |𝑆0 |.
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Datasets

Properties of the datasets used in experiments.

Dataset |𝑽 | |𝑬| |𝑬|
|𝑽 |

# feats. cache size train - val - test (%) # minibatches

flickr 89.2K 900K 10.09 500 70k 50.00 - 25.00 - 25.00 65
yelp 717K 14.0M 19.52 300 200k 75.00 - 10.00 - 15.00 595

products 2.45M 61.9M 25.26 100 400k 8.00 - 2.00 - 90.00 239
reddit 233K 115M 493.56 602 60k 66.00 - 10.00 - 24.00 172

papers100M 111M 3.2B 29.10 128 2M 1.09 - 0.11 - 0.19 1300
mag240M 244M 3.44B 14.16 768 2M 0.45 - 0.06 - 0.04 1215
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Empirical results about theorems

Monotonicity of the work. x-axis shows the batch size, y-axis shows
𝐸[|𝑆3 |]
|𝑆0 | (work per epoch) for node prediction (top row) and 𝐸[|𝑆3 |]

(expected subgraph size) for edge prediction (bottom row).
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Pseudocode

Algorithm Cooperative minibatching

1: Input: seed vertices 𝑆0
𝑝 for each PE 𝑝 ∈ 𝑃, # layers 𝐿

2: for all 𝑙 ∈ {0, . . . , 𝐿 − 1} do {Sampling}
3: for all 𝑝 ∈ 𝑃 do in parallel
4: Sample next layer vertices 𝑆̃𝑙+1

𝑝 and edges 𝐸𝑙
𝑝 for 𝑆𝑙

𝑝

5: all-to-all to redistribute vertex ids for 𝑆̃𝑙+1
𝑝 to get 𝑆𝑙+1

𝑝

6: for all 𝑝 ∈ 𝑃 do in parallel {Feature Loading}
7: Load input features 𝐻𝐿

𝑝 from Storage for vertices 𝑆𝐿
𝑝

8: all-to-all to redistribute 𝐻𝐿
𝑝 to get 𝐻̃𝐿

𝑝

9: for all 𝑙 ∈ {𝐿 − 1, . . . , 0} do {Forward Pass}
10: for all 𝑝 ∈ 𝑃 do in parallel
11: if 𝑙 + 1 < 𝐿 then
12: all-to-all to redistribute 𝐻 𝑙+1

𝑝 to get 𝐻̃ 𝑙+1
𝑝

13: Forward pass on bipartite graph 𝑆̃𝑙+1
𝑝 → 𝑆𝑙

𝑝 with edges
𝐸𝑙
𝑝 with input 𝐻̃ 𝑙+1

𝑝 and output 𝐻 𝑙
𝑝

14: for all 𝑝 ∈ 𝑃 do in parallel
15: Compute the loss and initialize gradients 𝐺0

𝑝

16: for all 𝑙 ∈ {0, . . . , 𝐿 − 1} do {Backward Pass}
17: for all 𝑝 ∈ 𝑃 do in parallel
18: Backward pass on bipartite graph 𝑆𝑙

𝑝 → 𝑆̃
(𝑙+1)
𝑝 with

edges 𝐸𝑙
𝑝 with input 𝐺𝑙

𝑝 and output 𝐺̃𝑙+1
𝑝

19: if 𝑙 + 1 < 𝐿 then
20: all-to-all to redistribute 𝐺̃𝑙+1

𝑝 to get 𝐺𝑙+1
𝑝 33



Dependent Minibatching

Any parallel algorithm can be executed sequentially.

1. Sample a mega-batch of size 𝜅𝛽.

2. Extract 𝜅 minibatches of size 𝛽 from it.
3. Static sampled neighborhoods for 𝜅 consecutive

minibatches.

34
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Smoothed Dependent Minibatching

⊚ Problem: Sampled neighborhoods change instantly every 𝜅

iterations.

⊚ Solution: continuous change.
⊚ LABOR-0 recap:
(𝑡 → 𝑠) is sampled if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
, 𝑟𝑡 ∼ 𝑈(0, 1).

⊚ 𝑟𝑡 evolves 𝜅 times slower.
⊚ Result: Increased temporal access locality.
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Dependent Minibatching example for LABOR-0 with 𝜅 = 2

Blue: seed vertices, green: sampled, gray: not sampled
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Two completely independent minibatches.
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Experimental Results - Dependent Minibatching

The validation F1-score for LABOR-0 varying 𝜅.

Cache miss rates varying 𝜅. 37



Cooperative Minibatching Runtime Results

# PEs, 𝜸
𝜶, 𝜷, |𝑺0 |

Dataset
& Model Sampler I/C Samp. Feature Copy F/B Total- Cache Cache, 𝜿

4 A100
𝛾 = 2TB/s

𝛼 = 600GB/s
𝛽 = 64GB/s
|𝑆0 | = 212

papers100M
GCN

LABOR-0 Indep 21.7 18.4 16.8 11.2 8.9 41.8
Coop 17.7 14.0 10.1 5.8 13.0 36.5

NS Indep 16.1 26.5 22.1 - 10.1 48.3
Coop 11.9 21.3 12.9 - 15.0 39.8

mag240M
R-GCN

LABOR-0 Indep 26.0 57.9 56.0 41.0 199.9 266.9
Coop 20.0 51.1 36.9 23.4 183.3 226.7

NS Indep 14.4 78.0 71.2 - 223.0 308.6
Coop 12.3 73.9 47.5 - 215.6 275.4

8 A100
𝛾 = 2TB/s

𝛼 = 600GB/s
𝛽 = 64GB/s
|𝑆0 | = 213

papers100M
GCN

LABOR-0 Indep 21.3 21.1 18.7 12.0 9.3 42.6
Coop 16.5 12.4 7.1 4.0 13.5 34.0

NS Indep 15.8 31.0 24.5 - 10.3 50.6
Coop 12.5 19.4 9.0 - 15.6 37.1

mag240M
R-GCN

LABOR-0 Indep 30.6 70.1 66.2 46.8 202.1 279.5
Coop 21.6 50.6 29.0 19.3 172.2 213.1

NS Indep 15.0 94.9 80.9 - 224.8 320.7
Coop 14.9 71.6 39.6 - 209.0 263.5

16 V100
𝛾 = 0.9TB/s
𝛼 = 300GB/s
𝛽 = 32GB/s
|𝑆0 | = 213

papers100M
GCN

LABOR-0 Indep 39.1 44.5 40.2 29.4 15.1 83.6
Coop 26.9 22.7 10.4 4.9 19.1 50.9

NS Indep 18.0 61.3 52.0 - 16.2 86.2
Coop 19.2 34.9 13.0 - 21.3 53.5

mag240M
R-GCN

LABOR-0 Indep 50.8 128.8 121.3 96.2 156.1 303.1
Coop 29.2 78.1 42.8 23.5 133.3 186.0

NS Indep 19.3 167.3 152.6 - 170.9 342.8
Coop 19.3 116.1 53.1 - 160.4 232.8 38



Speedup with changing # PEs

Improvements of cooperative batching over independent batching for
4, 8 and 16 PEs compiled from the Total column.

Dataset & Model Sampler Speedup - 4 Speedup - 8 Speedup - 16

papers100M
GCN

LABOR-0 14.5% 25.3% 64.2%
NS 21.4% 36.4% 61.1%

mag240M
R-GCN

LABOR-0 17.7% 31.2% 63.0%
NS 12.1% 21.7% 47.3%

4 cooperating PEs were used, 𝜅 is varied (1, 4, . . . ). 39



Cooperative Minibatching Summary

⊚ Work reduction with Cooperative Minibatching
⊚ Communication negligible in expensive GNN models
⊚ PEs need fast all-to-all communication
⊚ Less work = faster runtimes as expected.
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dgl.graphbolt



Efficient Cooperative GNN Framework

⊚ Graph sampling (Graph caching on the accelerator)
⊚ Feature loading (Feature caching on accelerator and system

memory)
⊚ Forward-backward on the accelerator

42



Proposed Asynchronous Algorithm to Hide Latencies

Algorithm Optimized Cooperative Minibatching

1: Input: seed vertices 𝑆0
𝑝 for each PE 𝑝 ∈ 𝑃, # layers 𝐿

2: for all 𝑙 ∈ {0, . . . , 𝐿 − 1} do {Sampling}
3: for all 𝑝 ∈ 𝑃 do in parallel
4: Query GPU graph cache and fetch vertex neighborhoods
5: co_await Load missing vertex neighborhoods from Storage
6: Sample next layer vertices 𝑆̃𝑙+1

𝑝 and edges 𝐸𝑙
𝑝 for 𝑆𝑙

𝑝

7: co_await all-to-all to redistribute vertex ids for 𝑆̃𝑙+1
𝑝 to get 𝑆𝑙+1

𝑝

8: for all 𝑝 ∈ 𝑃 do in parallel {Feature Loading}
9: Query GPU feature cache and fetch existing input features

10: co_await Load missing features 𝐻𝐿
𝑝 from Storage for vertices 𝑆𝐿

𝑝

11: co_await all-to-all to redistribute 𝐻𝐿
𝑝 to get 𝐻̃𝐿

𝑝
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dgl.graphbolt - Constructing a dataloader

1 # We use torch datapipes below , i t desc r ibes what the
operat ions are , does not run the operat ions .

2

3 def c rea te_da ta loader ( graph , fea tures , i temset ,
batch_s ize , fanout , device ) :

4 datapipe = gb . ItemSampler (
5 i temset , ba t ch_s ize=batch_s ize , s h u f f l e =True
6 )
7 datapipe = datapipe . copy_to ( device=device ,

e x t r a _ a t t r s =[ " seed_nodes " ] )
8 datapipe = datapipe . sample_layer_neighbor ( graph ,

fanout )
9 datapipe = datapipe . f e t c h _ f e a t u r e ( fea tures ,

node_feature_keys =[ " f e a t " ] )
10 re turn gb . DataLoader ( datapipe )
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Pipeline
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Feature Fetching

⊚ ‘features‘ is a huge tensor stored on CPU.

⊚ Compute: ‘features[index].to(device)‘
⊚ First, ‘features[index]‘ is executed on CPU, then

‘.to(device)‘ is performed.
⊚ This requires multiple touches to the same data, can we do

better?
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GPU Architecture, streams

⊚ GPUs are made of SMs (Streaming Multiprocessors),
similar to cores in CPUs.

⊚ CUDAStreams are queues to schedule work to the GPU.
⊚ If the work launched in a stream does not occupy all the

SMs, the work from another stream can run concurrently.
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Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘

⊚ Pinned (page-locked) memory pages can directly be
accessed by the GPU.

⊚ Pin the memory of features.
⊚ GPU can directly perform features[index].to(device) in a

single fused kernel.
⊚ 6144 threads are enough to saturate the PCI-e bandwidth.
⊚ Separate CUDAStream→ overlap PCI-e copy and

computation.
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Pipelining optimizations in gb.DataLoader - Feature Fetch

1 torch . ops . graphbolt . set_max_uva_threads ( max_uva_threads )
2 f e a t u r e _ f e t c h e r s = dp_ut i l s . f ind_dps (
3 datapipe_graph ,
4 FeatureFetcher ,
5 )
6 fo r f e a t u r e _ f e t c h e r in f e a t u r e _ f e t c h e r s :
7 f e a t u r e _ f e t c h e r . stream = _get_uva_stream ( )
8 datapipe_graph = dp_ut i l s . replace_dp (
9 datapipe_graph ,

10 f e a tu re_ f e t che r ,
11 f e a t u r e _ f e t c h e r . bu f fe r ( 1 ) . wait ( ) ,
12 )
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Transformed Pipeline
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Pipelining optimizations in gb.DataLoader - Graph Fetch

1 torch . ops . graphbolt . set_max_uva_threads ( max_uva_threads )
2 samplers = dp_ut i l s . f ind_dps (
3 datapipe_graph ,
4 SamplePerLayer ,
5 )
6 executor = ThreadPoolExecutor ( max_workers=1)
7 fo r sampler in samplers :
8 datapipe_graph = dp_ut i l s . replace_dp (
9 datapipe_graph ,

10 sampler ,
11 sampler . fetch_and_sample ( _get_uva_stream ( ) ,

executor , 1 ) ,
12 )
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Pipelining optimizations in gb.DataLoader - Graph Fetch

1 @funct ional_datapipe ( " fetch_and_sample " )
2 c l a s s FetcherAndSampler ( MiniBatchTransformer ) :
3 " " " Overlapped graph sampling operat ion replacement .

" " "
4

5 def _ _ i n i t _ _ ( s e l f , sampler , stream , executor ,
b u f f e r _ s i z e ) :

6 datapipe = sampler . datapipe .
fetch_insubgraph_data (

7 sampler , stream , executor
8 )
9 datapipe = datapipe . bu f fe r ( b u f f e r _ s i z e ) .

wai t_ future ( ) . wait ( )
10 datapipe = datapipe .

sample_per_layer_from_fetched_subgraph ( sampler )
11 super ( ) . _ _ i n i t _ _ ( datapipe )
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Transformed Pipeline
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DGL 2.1 Node Classification Speedups on ogbn-products
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DGL 2.1 Link Prediction Speedups on ogbl-citation2
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Multi-GPU Speedups on ogbn-papers100M
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Single-GPU Speedups with PyG on ogbn-products
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Cooperative Minibatching

⊚ Given a chain of datapipes, we want to enable Cooperative
Minibatching seamlessly.

⊚ Insert all-to-all operations in-between, similar to the graph
and feature fetch optimizations.

⊚ Overlap communication
⊚ Simple online graph partitioning can reduce the amount of

needed communication between GPUs.
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Thanks!

⊚ For more information
◦ Email: balin@gatech.edu
◦ Visit: mfbal.in
◦ Visit: tda.gatech.edu

⊚ Acknowledgement of Support:
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Variance formula derivation

𝐻′𝑠 =
1
𝑑𝑠

∑
𝑡→𝑠

𝑀𝑡

𝜋𝑡
1[𝑟𝑡 ≤ 𝜋𝑡]

Var(𝐻′𝑠) = Var
( 1
𝑑𝑠

∑
𝑡→𝑠

𝑀𝑡

𝜋𝑡
1[𝑟𝑡 ≤ 𝜋𝑡]

)
=

1
𝑑2
𝑠

∑
𝑡→𝑠

Var(𝑀𝑡)
𝜋2
𝑡

Var(1[𝑟𝑡 ≤ 𝜋𝑡])

=
1
𝑑2
𝑠

∑
𝑡→𝑠

Var(𝑀𝑡)
𝜋2
𝑡

𝜋𝑡(1 − 𝜋𝑡)

=
1
𝑑2
𝑠

∑
𝑡→𝑠

Var(𝑀𝑡)
𝜋𝑡

(1 − 𝜋𝑡) =
1
𝑑2
𝑠

∑
𝑡→𝑠

1
𝜋𝑡
(1 − 𝜋𝑡)

=
1
𝑑2
𝑠

∑
𝑡→𝑠

( 1
𝜋𝑡
− 1) = 1

𝑑2
𝑠

∑
𝑡→𝑠

1
𝜋𝑡
− 1

𝑑𝑠

(1)
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Smoothed Dependent Minibatching (cont.)

⊚ 𝑟𝑡 = 𝑃𝑅𝑁𝐺(𝑧, 𝑡), where 𝑧 is the random seed, 𝑡 is the
vertex id.

⊚ 𝑟𝑡(𝑐) = 𝑃𝑅𝑁𝐺(𝑧1 , 𝑧2 , 𝑐, 𝑡),∀𝑐 ∈ [0, 1],
𝑃𝑅𝑁𝐺(𝑧1 , 𝑧2 , 0, 𝑡) = 𝑃𝑅𝑁𝐺(𝑧1 , 𝑡),
𝑃𝑅𝑁𝐺(𝑧1 , 𝑧2 , 1, 𝑡) = 𝑃𝑅𝑁𝐺(𝑧2 , 𝑡).

⊚ 𝑛𝑡(𝑐) = cos( 𝑐𝜋2 )𝑛1
𝑡 (𝑧1) + sin( 𝑐𝜋2 )𝑛2

𝑡 (𝑧2)
⊚ 𝑟𝑡(𝑐) = Φ(𝑛𝑡(𝑐)) ∼ 𝑈(0, 1)
⊚ For 𝑖th minibatch, 𝑐 = 𝑖

𝜅 . When 𝑖 = 𝜅, we set 𝑧1 ← 𝑧2, 𝑧2

becomes a new random seed.
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