
Accelerating GNN Dataloading on
Multi-GPU Systems: dgl.graphbolt
Muhammed Fatih Balın1

Guest Lecture at Georgia Tech for CSE 6230
March 5

1Computational Science and Engineering, Georgia Institute of Technology

TDAlab

Motivation

Applications of GNNs

⊚ Online shopping
⊚ Social media

⊚ Content recommendation
⊚ Showing relevant ads

Source: https://pixabay.com/vectors/social-media-connections-networking-3846597/

2

https://pixabay.com/vectors/social-media-connections-networking-3846597/

Graph Neural Networks

Source: CS224W Lecture 17 (GNN Scaling)

3

Sampling strategies

Blue: seed vertices, green: sampled, gray: not sampled

Node Layer Subgraph

2

1

4

6

5

7

3

2

1

4

6

5

7

3

2

1

4

6

5

7

3

4

GNN Stages

1. Graph sampling
2. Feature loading
3. Forward-backward passes

Insights:

⊚ All are memory-bound operations.
⊚ Accelerators have fast memory.

5

Outline

1. Layer-Neighbor Sampling (NeurIPS’23)
2. Cooperative Minibatching (Under review)
3. Efficient GNN training system (dgl.graphbolt, WIP)

6

Background

Graph notation

Notation Definition

G= (𝑉, 𝐸) Graph Gconsisting of vertices 𝑉 and edges 𝐸 ⊂ 𝑉 ×𝑉
𝑡 → 𝑠 Edge from vertex 𝑡 to seed vertex 𝑠

𝐴𝑡𝑠 Edge weight for edge 𝑡 → 𝑠

𝑆 a set of vertices 𝑆 ⊆ 𝑉

𝑁(𝑠) 1-hop neighborhood of 𝑠, {𝑡 |(𝑡 → 𝑠) ∈ 𝐸}
𝑁(𝑆) 1-hop neighborhood for 𝑆, ∪𝑠∈𝑆𝑁(𝑠)
𝑆𝑙 𝑙-hop neighborhood of 𝑆0 = 𝑆, 𝑆(𝑙+1) = 𝑆𝑙 ∪ 𝑁(𝑆𝑙)
𝑑𝑠 the degree of 𝑠, |𝑁(𝑠)|

8

GNN notation

Notation Definition

𝐻
(𝑙)
𝑡 vertex embedding for 𝑡 at layer 𝑙

𝑓 (𝑙) GNN layer at layer 𝑙
𝑊 (𝑙) trainable weight matrix at layer 𝑙
𝑀𝑡 message from 𝑡, 𝑀𝑡 = 𝐻𝑡𝑊

𝑀𝑡𝑠 message over the edge 𝑡 → 𝑠, 𝑀𝑡𝑠 = 𝐴𝑡𝑠𝐻𝑡𝑊

9

GNN sampling notation

Notation Definition

𝑘 fan-out parameter or sampling budget per vertex
𝜋𝑡 probability of sampling vertex 𝑡

𝜋𝑡𝑠 probability of sampling edge 𝑡 → 𝑠

𝑇 the sampled vertices in the next layer, 𝑇 ⊆ 𝑁(𝑆)

10

Computer Hardware

Common bandwidths and storage capacities of components in a
modern PCIe-based multi-GPU computer system.

Component Capacity

1× NVMe SSD 4 TB
System memory 2 TB

GPU global memory 80 GB

Connection Bandwidth

1× PCI-e 4.0 lane 2 GB/s
NVMe SSD over 4× lanes 8 GB/s

GPU over 16× lanes 32 GB/s
CPU to system memory 400 GB/s

GPU to GPU 300 GB/s
GPU to GPU global memory 2 TB/s 11

Example Interconnect Topology

12

Layer-Neighbor Sampling (LABOR)

Sampling Goals & Solution

Goals:

⊚ Unbiased sampling

⊚ Overlapping neighborhoods (LADIES)
⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)
⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.
⊚ Generalizes to any unbiased sampling method.

14

Sampling Goals & Solution

Goals:

⊚ Unbiased sampling
⊚ Overlapping neighborhoods (LADIES)

⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)
⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.
⊚ Generalizes to any unbiased sampling method.

14

Sampling Goals & Solution

Goals:

⊚ Unbiased sampling
⊚ Overlapping neighborhoods (LADIES)
⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)
⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.
⊚ Generalizes to any unbiased sampling method.

14

Sampling Goals & Solution

Goals:

⊚ Unbiased sampling
⊚ Overlapping neighborhoods (LADIES)
⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)

⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.
⊚ Generalizes to any unbiased sampling method.

14

Sampling Goals & Solution

Goals:

⊚ Unbiased sampling
⊚ Overlapping neighborhoods (LADIES)
⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)
⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.

⊚ Generalizes to any unbiased sampling method.

14

Sampling Goals & Solution

Goals:

⊚ Unbiased sampling
⊚ Overlapping neighborhoods (LADIES)
⊚ Uniformly good approximation (NS)

Solution:

⊚ Poisson Sampling - flip biased coins: 𝑟 ≤ 𝜋, 𝑟 ∼ 𝑈(0, 1)
⊚ Combine NS & LADIES to get best-of-both-worlds LABOR.
⊚ Generalizes to any unbiased sampling method.

14

GNN Sampling Background - Recap

⊚ GCN equation: 𝐻𝑠 =
1
𝑑𝑠

∑
𝑡→𝑠 𝐻𝑡𝑊 = 1

𝑑𝑠

∑
𝑡→𝑠 𝑀𝑡

⊚ Neighbor Sampling (NS):
For given 𝑠, sample 𝑘-subset of {𝑡 | 𝑡 → 𝑠}

⊚ Layer sampling:
Given 𝑆, sample 𝑇 ⊆ {𝑡 | 𝑡 → 𝑠 ∈ 𝑆},
extract edges {𝑡 → 𝑠 | 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆}

15

GNN Sampling Background - Recap

⊚ GCN equation: 𝐻𝑠 =
1
𝑑𝑠

∑
𝑡→𝑠 𝐻𝑡𝑊 = 1

𝑑𝑠

∑
𝑡→𝑠 𝑀𝑡

⊚ Neighbor Sampling (NS):
For given 𝑠, sample 𝑘-subset of {𝑡 | 𝑡 → 𝑠}

⊚ Layer sampling:
Given 𝑆, sample 𝑇 ⊆ {𝑡 | 𝑡 → 𝑠 ∈ 𝑆},
extract edges {𝑡 → 𝑠 | 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆}

15

GNN Sampling Background - Recap

⊚ GCN equation: 𝐻𝑠 =
1
𝑑𝑠

∑
𝑡→𝑠 𝐻𝑡𝑊 = 1

𝑑𝑠

∑
𝑡→𝑠 𝑀𝑡

⊚ Neighbor Sampling (NS):
For given 𝑠, sample 𝑘-subset of {𝑡 | 𝑡 → 𝑠}

⊚ Layer sampling:
Given 𝑆, sample 𝑇 ⊆ {𝑡 | 𝑡 → 𝑠 ∈ 𝑆},
extract edges {𝑡 → 𝑠 | 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆}

15

Layer-Neighbor Sampling

⊚ LABOR-0: given 𝑠 and 𝑟𝑡 ∼ 𝑈(0, 1),
sample 𝑡 → 𝑠 if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
.

⊚ Expected 𝑘 sampled items, matching NS.
⊚ Taking top-𝑘 𝑟𝑡 values makes # sampled items

deterministic.

16

Layer-Neighbor Sampling

⊚ LABOR-0: given 𝑠 and 𝑟𝑡 ∼ 𝑈(0, 1),
sample 𝑡 → 𝑠 if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
.

⊚ Expected 𝑘 sampled items, matching NS.

⊚ Taking top-𝑘 𝑟𝑡 values makes # sampled items
deterministic.

16

Layer-Neighbor Sampling

⊚ LABOR-0: given 𝑠 and 𝑟𝑡 ∼ 𝑈(0, 1),
sample 𝑡 → 𝑠 if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
.

⊚ Expected 𝑘 sampled items, matching NS.
⊚ Taking top-𝑘 𝑟𝑡 values makes # sampled items

deterministic.

16

LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

17

LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

1d1=3

k=2

d2=4 2

2

3

2

4

17

LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

r3=0.7

r4=0.3

r5=0.4

r6=0.6

r7=0.9

1d1=3

k=2

d2=4 2

2

3

3

4

6

5

7

2

4

17

LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

r3=0.7

r4=0.3

r5=0.4

r6=0.6

r7=0.9

1d1=3

k=2

d2=4

2
3

2

4
2

3

4

6

5

7

17

LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

d1=3

k=2

d2=4
2
4

2

2

3

r4=0.3

r5=0.4

r6=0.6

r7=0.9

r3=0.7

1

4

6

5

7

3

17

LABOR-0 example

Blue: seed vertices, green: sampled, gray: not sampled

d1=3

k=2

d2=4 2

2

31

4

6

5

7

3

r4=0.3

r6=0.6

r7=0.9

r3=0.7

r5=0.4
2

4

17

Pseudocode

Algorithm LABOR-0 for uniform edge
weights

1: Input: seed vertices 𝑆, fan-out 𝑘
2: Output: sampled edges 𝐸′

3: 𝑇 ← {𝑡 | 𝑡 ∈ 𝑁(𝑆)}
4: 𝑟𝑡 ∼ 𝑈(0, 1),∀𝑡 ∈ 𝑇
5: 𝐸′← []
6: for all 𝑠 ∈ 𝑆 do
7: for all 𝑡 ∈ 𝑁(𝑠) do
8: if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
then

9: 𝐸′.append(𝑡 → 𝑠)

The loop cor-
responds to a
‘copy_if‘ opera-
tion.

18

Experiments - Vertex efficiency

The validation F1-score and training loss curves.

19

Experiments - Edge efficiency

The validation F1-score and training loss curves.

20

Experiments - PLADIES and LABOR Evaluation

Dataset Algo. |𝑽 3 | |𝑬2 | |𝑽 2 | |𝑬1 | |𝑽 1 | |𝑬0 | |𝑽 0 | it/s test F1-score

PLADIES 24 2390 14.1 927 6.0 33.2 1 1.7 96.21 ± 0.06
LADIES 25 2270 14.5 852 6.0 32.5 1 1.8 96.20 ± 0.05

reddit LABOR-* 24 1070 13.7 435 6.0 26.9 1 4.1 96.23 ± 0.05
LABOR-1 27 261 14.4 116 6.1 16.7 1 24.8 96.23 ± 0.06
LABOR-0 36 177 17.8 67 6.8 9.6 1 37.6 96.25 ± 0.05

NS 167 682 68.3 100 10.1 9.7 1 14.2 96.24 ± 0.05

PLADIES 160 2380 51.2 293 9.7 11.7 1 4.1 78.44 ± 0.24
LADIES 165 2230 51.8 270 9.7 11.5 1 4.2 78.59 ± 0.22

products LABOR-* 166 1250 51.8 167 9.8 10.6 1 6.2 78.59 ± 0.34
LABOR-1 178 799 53.4 136 9.8 10.5 1 21.3 78.47 ± 0.26
LABOR-0 237 615 62.4 100 10.1 9.9 1 32.5 78.76 ± 0.26

NS 513 944 95.4 106 10.6 9.9 1 24.6 78.48 ± 0.29

PLADIES 100 1300 29.5 183 6.2 6.9 1 5.1 61.55 ± 0.87
LADIES 102 1280 29.7 182 6.2 6.9 1 5.3 61.89 ± 0.66

yelp LABOR-* 105 991 30.7 158 6.1 6.8 1 13.3 61.57 ± 0.67
LABOR-1 109 447 31.0 96 6.2 6.8 1 27.3 61.71 ± 0.70
LABOR-0 138 318 35.1 54 6.2 6.3 1 27.2 61.55 ± 0.85

NS 188 392 42.5 55 6.3 6.3 1 23.0 61.50 ± 0.66

PLADIES 55 309 24.9 85 6.2 6.9 1 10.2 51.52 ± 0.26
LADIES 56 308 25.1 85 6.2 6.9 1 10.5 50.79 ± 0.29

flickr LABOR-* 57 308 25.6 85 6.3 6.9 1 20.3 51.67 ± 0.27
LABOR-1 58 242 25.9 73 6.3 6.9 1 32.7 51.66 ± 0.24
LABOR-0 66 219 29.1 52 6.4 6.7 1 33.3 51.65 ± 0.26

NS 73 244 32.8 52 6.4 6.7 1 31.7 51.70 ± 0.23 21

Cooperative Minibatching

Motivation

⊚ Full-batch training has no redundant computation.
⊚ Minibatch training requires repetitive calculations.

23

Cooperative Minibatching Contributions

⊚ Work vs. batch size relationship
⊚ Data & intra-layer parallelism: Cooperative Minibatching.
⊚ Same idea in serial execution: Dependent Minibatching.

24

Cooperative Minibatching Background

⊚ GNN equation: 𝐻(𝑙+1)
𝑠 = 𝑓 (𝑙)(𝐻(𝑙)𝑠 , {𝐻(𝑙)𝑡 | 𝑡 ∈ 𝑁(𝑠)})

⊚ Graph Sampling: 𝑆0 = 𝑆, 𝑆(𝑙+1) = 𝑆𝑙 ∪ 𝑁(𝑆𝑙)

⊚ Work of an epoch with batch size |𝑆0 |:
𝑊(|𝑆0 |) = |𝑉 |

|𝑆0 |
∑𝐿

𝑙=1 𝐸[|𝑆𝑙 |] ≥ |𝑉 ||𝑆0 |
∑𝐿

𝑙=1 |𝑆0 | = 𝐿|𝑉 |

⊚ Redundant work for layer 𝑙: 𝑊 𝑙(|𝑆0 |) ≈ 𝐸[|𝑆𝑙 |]
|𝑆0 |

25

Cooperative Minibatching Background

⊚ GNN equation: 𝐻(𝑙+1)
𝑠 = 𝑓 (𝑙)(𝐻(𝑙)𝑠 , {𝐻(𝑙)𝑡 | 𝑡 ∈ 𝑁(𝑠)})

⊚ Graph Sampling: 𝑆0 = 𝑆, 𝑆(𝑙+1) = 𝑆𝑙 ∪ 𝑁(𝑆𝑙)

⊚ Work of an epoch with batch size |𝑆0 |:
𝑊(|𝑆0 |) = |𝑉 |

|𝑆0 |
∑𝐿

𝑙=1 𝐸[|𝑆𝑙 |] ≥ |𝑉 ||𝑆0 |
∑𝐿

𝑙=1 |𝑆0 | = 𝐿|𝑉 |

⊚ Redundant work for layer 𝑙: 𝑊 𝑙(|𝑆0 |) ≈ 𝐸[|𝑆𝑙 |]
|𝑆0 |

25

Independent Minibatching

1. Each Processing Element (PE e.g., GPU) starts with its own
𝑆0.

2. Samples 𝑆1 , . . . , 𝑆𝐿 independently.
3. Loads input features and edge features for the sampled

subgraphs independently.
4. Forward-backward independently with no

communication.

⊚ Problem: Redundant computations across PEs.

26

Independent Minibatching Example with 2 PEs

A

B

C

D

E

F

G

L1 Input
Nodes

L1 output/L0 Input
Nodes

L0 output
Nodes

PE 0

27

Independent Minibatching Example with 2 PEs

B

C

D

E

F

G

H

L1 Input
Nodes

L1 output/L0 Input
Nodes

L0 output
Nodes

PE 1

28

Cooperative Minibatching

A

B

C

D

E

F

G

H

ଶ ଵ

PE 1

PE 0

Green edges represent work savings.

29

Work Theorems

Theorem

The work per epoch 𝐸[|𝑆𝑙 |]
|𝑆0 | required to train a GNN model using

minibatch training is monotonically nonincreasing as the batch size
|𝑆0 | increases.

Theorem
The expected subgraph size 𝐸[|𝑆𝑙 |] required to train a GNN model
using minibatch training is a concave function of batch size, |𝑆0 |.

30

Work Theorems

Theorem

The work per epoch 𝐸[|𝑆𝑙 |]
|𝑆0 | required to train a GNN model using

minibatch training is monotonically nonincreasing as the batch size
|𝑆0 | increases.

Theorem
The expected subgraph size 𝐸[|𝑆𝑙 |] required to train a GNN model
using minibatch training is a concave function of batch size, |𝑆0 |.

30

Datasets

Properties of the datasets used in experiments.

Dataset |𝑽 | |𝑬| |𝑬|
|𝑽 |

feats. cache size train - val - test (%) # minibatches

flickr 89.2K 900K 10.09 500 70k 50.00 - 25.00 - 25.00 65
yelp 717K 14.0M 19.52 300 200k 75.00 - 10.00 - 15.00 595

products 2.45M 61.9M 25.26 100 400k 8.00 - 2.00 - 90.00 239
reddit 233K 115M 493.56 602 60k 66.00 - 10.00 - 24.00 172

papers100M 111M 3.2B 29.10 128 2M 1.09 - 0.11 - 0.19 1300
mag240M 244M 3.44B 14.16 768 2M 0.45 - 0.06 - 0.04 1215

31

Empirical results about theorems

Monotonicity of the work. x-axis shows the batch size, y-axis shows
𝐸[|𝑆3 |]
|𝑆0 | (work per epoch) for node prediction (top row) and 𝐸[|𝑆3 |]

(expected subgraph size) for edge prediction (bottom row).

32

Pseudocode

Algorithm Cooperative minibatching

1: Input: seed vertices 𝑆0
𝑝 for each PE 𝑝 ∈ 𝑃, # layers 𝐿

2: for all 𝑙 ∈ {0, . . . , 𝐿 − 1} do {Sampling}
3: for all 𝑝 ∈ 𝑃 do in parallel
4: Sample next layer vertices �̃�𝑙+1

𝑝 and edges 𝐸𝑙
𝑝 for 𝑆𝑙

𝑝

5: all-to-all to redistribute vertex ids for �̃�𝑙+1
𝑝 to get 𝑆𝑙+1

𝑝

6: for all 𝑝 ∈ 𝑃 do in parallel {Feature Loading}
7: Load input features 𝐻𝐿

𝑝 from Storage for vertices 𝑆𝐿
𝑝

8: all-to-all to redistribute 𝐻𝐿
𝑝 to get �̃�𝐿

𝑝

9: for all 𝑙 ∈ {𝐿 − 1, . . . , 0} do {Forward Pass}
10: for all 𝑝 ∈ 𝑃 do in parallel
11: if 𝑙 + 1 < 𝐿 then
12: all-to-all to redistribute 𝐻 𝑙+1

𝑝 to get �̃� 𝑙+1
𝑝

13: Forward pass on bipartite graph �̃�𝑙+1
𝑝 → 𝑆𝑙

𝑝 with edges
𝐸𝑙
𝑝 with input �̃� 𝑙+1

𝑝 and output 𝐻 𝑙
𝑝

14: for all 𝑝 ∈ 𝑃 do in parallel
15: Compute the loss and initialize gradients 𝐺0

𝑝

16: for all 𝑙 ∈ {0, . . . , 𝐿 − 1} do {Backward Pass}
17: for all 𝑝 ∈ 𝑃 do in parallel
18: Backward pass on bipartite graph 𝑆𝑙

𝑝 → �̃�
(𝑙+1)
𝑝 with

edges 𝐸𝑙
𝑝 with input 𝐺𝑙

𝑝 and output �̃�𝑙+1
𝑝

19: if 𝑙 + 1 < 𝐿 then
20: all-to-all to redistribute �̃�𝑙+1

𝑝 to get 𝐺𝑙+1
𝑝 33

Dependent Minibatching

Any parallel algorithm can be executed sequentially.

1. Sample a mega-batch of size 𝜅𝛽.

2. Extract 𝜅 minibatches of size 𝛽 from it.
3. Static sampled neighborhoods for 𝜅 consecutive

minibatches.

34

Dependent Minibatching

Any parallel algorithm can be executed sequentially.

1. Sample a mega-batch of size 𝜅𝛽.
2. Extract 𝜅 minibatches of size 𝛽 from it.

3. Static sampled neighborhoods for 𝜅 consecutive
minibatches.

34

Dependent Minibatching

Any parallel algorithm can be executed sequentially.

1. Sample a mega-batch of size 𝜅𝛽.
2. Extract 𝜅 minibatches of size 𝛽 from it.
3. Static sampled neighborhoods for 𝜅 consecutive

minibatches.

34

Smoothed Dependent Minibatching

⊚ Problem: Sampled neighborhoods change instantly every 𝜅

iterations.

⊚ Solution: continuous change.
⊚ LABOR-0 recap:
(𝑡 → 𝑠) is sampled if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
, 𝑟𝑡 ∼ 𝑈(0, 1).

⊚ 𝑟𝑡 evolves 𝜅 times slower.
⊚ Result: Increased temporal access locality.

35

Smoothed Dependent Minibatching

⊚ Problem: Sampled neighborhoods change instantly every 𝜅

iterations.
⊚ Solution: continuous change.

⊚ LABOR-0 recap:
(𝑡 → 𝑠) is sampled if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
, 𝑟𝑡 ∼ 𝑈(0, 1).

⊚ 𝑟𝑡 evolves 𝜅 times slower.
⊚ Result: Increased temporal access locality.

35

Smoothed Dependent Minibatching

⊚ Problem: Sampled neighborhoods change instantly every 𝜅

iterations.
⊚ Solution: continuous change.
⊚ LABOR-0 recap:
(𝑡 → 𝑠) is sampled if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
, 𝑟𝑡 ∼ 𝑈(0, 1).

⊚ 𝑟𝑡 evolves 𝜅 times slower.
⊚ Result: Increased temporal access locality.

35

Smoothed Dependent Minibatching

⊚ Problem: Sampled neighborhoods change instantly every 𝜅

iterations.
⊚ Solution: continuous change.
⊚ LABOR-0 recap:
(𝑡 → 𝑠) is sampled if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
, 𝑟𝑡 ∼ 𝑈(0, 1).

⊚ 𝑟𝑡 evolves 𝜅 times slower.

⊚ Result: Increased temporal access locality.

35

Smoothed Dependent Minibatching

⊚ Problem: Sampled neighborhoods change instantly every 𝜅

iterations.
⊚ Solution: continuous change.
⊚ LABOR-0 recap:
(𝑡 → 𝑠) is sampled if 𝑟𝑡 ≤ 𝑘

𝑑𝑠
, 𝑟𝑡 ∼ 𝑈(0, 1).

⊚ 𝑟𝑡 evolves 𝜅 times slower.
⊚ Result: Increased temporal access locality.

35

Dependent Minibatching example for LABOR-0 with 𝜅 = 2

Blue: seed vertices, green: sampled, gray: not sampled

d1=3

k=2

d2=4 2

2

31

4

6

5

7

3

r4=0.3

r6=0.6

r7=0.9

r3=0.7

r5=0.4
2

4

d1=3

k=2

d2=4 2

2

31

6

4

5

7

3

r4=0.8

r6=0.7

r7=0.3

r3=0.5

r5=0.2
2

4

Two completely independent minibatches.

36

Dependent Minibatching example for LABOR-0 with 𝜅 = 2

Blue: seed vertices, green: sampled, gray: not sampled

d1=3

k=2

d2=4 2

2

31

4

6

5

7

3

r4=0.3

r6=0.6

r7=0.9

r3=0.7

r5=0.4
2

4

d1=3

k=2

d2=4 2

2

31

4

6

5

7

3

r4=0.55

r6=0.65

r7=0.6

r3=0.6

r5=0.3
2

4

d1=3

k=2

d2=4 2

2

31

6

4

5

7

3

r4=0.8

r6=0.7

r7=0.3

r3=0.5

r5=0.2
2

4

Middle minibatch is an interpolated between 2 independent
minibatches.

36

Experimental Results - Dependent Minibatching

The validation F1-score for LABOR-0 varying 𝜅.

Cache miss rates varying 𝜅. 37

Cooperative Minibatching Runtime Results

PEs, 𝜸
𝜶, 𝜷, |𝑺0 |

Dataset
& Model Sampler I/C Samp. Feature Copy F/B Total- Cache Cache, 𝜿

4 A100
𝛾 = 2TB/s

𝛼 = 600GB/s
𝛽 = 64GB/s
|𝑆0 | = 212

papers100M
GCN

LABOR-0 Indep 21.7 18.4 16.8 11.2 8.9 41.8
Coop 17.7 14.0 10.1 5.8 13.0 36.5

NS Indep 16.1 26.5 22.1 - 10.1 48.3
Coop 11.9 21.3 12.9 - 15.0 39.8

mag240M
R-GCN

LABOR-0 Indep 26.0 57.9 56.0 41.0 199.9 266.9
Coop 20.0 51.1 36.9 23.4 183.3 226.7

NS Indep 14.4 78.0 71.2 - 223.0 308.6
Coop 12.3 73.9 47.5 - 215.6 275.4

8 A100
𝛾 = 2TB/s

𝛼 = 600GB/s
𝛽 = 64GB/s
|𝑆0 | = 213

papers100M
GCN

LABOR-0 Indep 21.3 21.1 18.7 12.0 9.3 42.6
Coop 16.5 12.4 7.1 4.0 13.5 34.0

NS Indep 15.8 31.0 24.5 - 10.3 50.6
Coop 12.5 19.4 9.0 - 15.6 37.1

mag240M
R-GCN

LABOR-0 Indep 30.6 70.1 66.2 46.8 202.1 279.5
Coop 21.6 50.6 29.0 19.3 172.2 213.1

NS Indep 15.0 94.9 80.9 - 224.8 320.7
Coop 14.9 71.6 39.6 - 209.0 263.5

16 V100
𝛾 = 0.9TB/s
𝛼 = 300GB/s
𝛽 = 32GB/s
|𝑆0 | = 213

papers100M
GCN

LABOR-0 Indep 39.1 44.5 40.2 29.4 15.1 83.6
Coop 26.9 22.7 10.4 4.9 19.1 50.9

NS Indep 18.0 61.3 52.0 - 16.2 86.2
Coop 19.2 34.9 13.0 - 21.3 53.5

mag240M
R-GCN

LABOR-0 Indep 50.8 128.8 121.3 96.2 156.1 303.1
Coop 29.2 78.1 42.8 23.5 133.3 186.0

NS Indep 19.3 167.3 152.6 - 170.9 342.8
Coop 19.3 116.1 53.1 - 160.4 232.8 38

Speedup with changing # PEs

Improvements of cooperative batching over independent batching for
4, 8 and 16 PEs compiled from the Total column.

Dataset & Model Sampler Speedup - 4 Speedup - 8 Speedup - 16

papers100M
GCN

LABOR-0 14.5% 25.3% 64.2%
NS 21.4% 36.4% 61.1%

mag240M
R-GCN

LABOR-0 17.7% 31.2% 63.0%
NS 12.1% 21.7% 47.3%

4 cooperating PEs were used, 𝜅 is varied (1, 4, . . .). 39

Cooperative Minibatching Summary

⊚ Work reduction with Cooperative Minibatching
⊚ Communication negligible in expensive GNN models
⊚ PEs need fast all-to-all communication
⊚ Less work = faster runtimes as expected.

40

dgl.graphbolt

Efficient Cooperative GNN Framework

⊚ Graph sampling (Graph caching on the accelerator)
⊚ Feature loading (Feature caching on accelerator and system

memory)
⊚ Forward-backward on the accelerator

42

Proposed Asynchronous Algorithm to Hide Latencies

Algorithm Optimized Cooperative Minibatching

1: Input: seed vertices 𝑆0
𝑝 for each PE 𝑝 ∈ 𝑃, # layers 𝐿

2: for all 𝑙 ∈ {0, . . . , 𝐿 − 1} do {Sampling}
3: for all 𝑝 ∈ 𝑃 do in parallel
4: Query GPU graph cache and fetch vertex neighborhoods
5: co_await Load missing vertex neighborhoods from Storage
6: Sample next layer vertices �̃�𝑙+1

𝑝 and edges 𝐸𝑙
𝑝 for 𝑆𝑙

𝑝

7: co_await all-to-all to redistribute vertex ids for �̃�𝑙+1
𝑝 to get 𝑆𝑙+1

𝑝

8: for all 𝑝 ∈ 𝑃 do in parallel {Feature Loading}
9: Query GPU feature cache and fetch existing input features

10: co_await Load missing features 𝐻𝐿
𝑝 from Storage for vertices 𝑆𝐿

𝑝

11: co_await all-to-all to redistribute 𝐻𝐿
𝑝 to get �̃�𝐿

𝑝

43

dgl.graphbolt - Constructing a dataloader

1 # We use torch datapipes below , i t desc r ibes what the
operat ions are , does not run the operat ions .

2

3 def c rea te_da ta loader (graph , fea tures , i temset ,
batch_s ize , fanout , device) :

4 datapipe = gb . ItemSampler (
5 i temset , ba t ch_s ize=batch_s ize , s h u f f l e =True
6)
7 datapipe = datapipe . copy_to (device=device ,

e x t r a _ a t t r s =[" seed_nodes "])
8 datapipe = datapipe . sample_layer_neighbor (graph ,

fanout)
9 datapipe = datapipe . f e t c h _ f e a t u r e (fea tures ,

node_feature_keys =[" f e a t "])
10 re turn gb . DataLoader (datapipe)

44

Pipeline

45

Feature Fetching

⊚ ‘features‘ is a huge tensor stored on CPU.

⊚ Compute: ‘features[index].to(device)‘
⊚ First, ‘features[index]‘ is executed on CPU, then

‘.to(device)‘ is performed.
⊚ This requires multiple touches to the same data, can we do

better?

46

Feature Fetching

⊚ ‘features‘ is a huge tensor stored on CPU.
⊚ Compute: ‘features[index].to(device)‘

⊚ First, ‘features[index]‘ is executed on CPU, then
‘.to(device)‘ is performed.

⊚ This requires multiple touches to the same data, can we do
better?

46

Feature Fetching

⊚ ‘features‘ is a huge tensor stored on CPU.
⊚ Compute: ‘features[index].to(device)‘
⊚ First, ‘features[index]‘ is executed on CPU, then

‘.to(device)‘ is performed.

⊚ This requires multiple touches to the same data, can we do
better?

46

Feature Fetching

⊚ ‘features‘ is a huge tensor stored on CPU.
⊚ Compute: ‘features[index].to(device)‘
⊚ First, ‘features[index]‘ is executed on CPU, then

‘.to(device)‘ is performed.
⊚ This requires multiple touches to the same data, can we do

better?

46

GPU Architecture, streams

⊚ GPUs are made of SMs (Streaming Multiprocessors),
similar to cores in CPUs.

⊚ CUDAStreams are queues to schedule work to the GPU.
⊚ If the work launched in a stream does not occupy all the

SMs, the work from another stream can run concurrently.

47

GPU Architecture, streams

⊚ GPUs are made of SMs (Streaming Multiprocessors),
similar to cores in CPUs.

⊚ CUDAStreams are queues to schedule work to the GPU.

⊚ If the work launched in a stream does not occupy all the
SMs, the work from another stream can run concurrently.

47

GPU Architecture, streams

⊚ GPUs are made of SMs (Streaming Multiprocessors),
similar to cores in CPUs.

⊚ CUDAStreams are queues to schedule work to the GPU.
⊚ If the work launched in a stream does not occupy all the

SMs, the work from another stream can run concurrently.

47

Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘

⊚ Pinned (page-locked) memory pages can directly be
accessed by the GPU.

⊚ Pin the memory of features.
⊚ GPU can directly perform features[index].to(device) in a

single fused kernel.
⊚ 6144 threads are enough to saturate the PCI-e bandwidth.
⊚ Separate CUDAStream→ overlap PCI-e copy and

computation.

48

Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘
⊚ Pinned (page-locked) memory pages can directly be

accessed by the GPU.

⊚ Pin the memory of features.
⊚ GPU can directly perform features[index].to(device) in a

single fused kernel.
⊚ 6144 threads are enough to saturate the PCI-e bandwidth.
⊚ Separate CUDAStream→ overlap PCI-e copy and

computation.

48

Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘
⊚ Pinned (page-locked) memory pages can directly be

accessed by the GPU.
⊚ Pin the memory of features.

⊚ GPU can directly perform features[index].to(device) in a
single fused kernel.

⊚ 6144 threads are enough to saturate the PCI-e bandwidth.
⊚ Separate CUDAStream→ overlap PCI-e copy and

computation.

48

Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘
⊚ Pinned (page-locked) memory pages can directly be

accessed by the GPU.
⊚ Pin the memory of features.
⊚ GPU can directly perform features[index].to(device) in a

single fused kernel.

⊚ 6144 threads are enough to saturate the PCI-e bandwidth.
⊚ Separate CUDAStream→ overlap PCI-e copy and

computation.

48

Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘
⊚ Pinned (page-locked) memory pages can directly be

accessed by the GPU.
⊚ Pin the memory of features.
⊚ GPU can directly perform features[index].to(device) in a

single fused kernel.
⊚ 6144 threads are enough to saturate the PCI-e bandwidth.

⊚ Separate CUDAStream→ overlap PCI-e copy and
computation.

48

Pinned memory (Page locked memory)

⊚ Compute: ‘features[index].to(device)‘
⊚ Pinned (page-locked) memory pages can directly be

accessed by the GPU.
⊚ Pin the memory of features.
⊚ GPU can directly perform features[index].to(device) in a

single fused kernel.
⊚ 6144 threads are enough to saturate the PCI-e bandwidth.
⊚ Separate CUDAStream→ overlap PCI-e copy and

computation.

48

Pipelining optimizations in gb.DataLoader - Feature Fetch

1 torch . ops . graphbolt . set_max_uva_threads (max_uva_threads)
2 f e a t u r e _ f e t c h e r s = dp_ut i l s . f ind_dps (
3 datapipe_graph ,
4 FeatureFetcher ,
5)
6 fo r f e a t u r e _ f e t c h e r in f e a t u r e _ f e t c h e r s :
7 f e a t u r e _ f e t c h e r . stream = _get_uva_stream ()
8 datapipe_graph = dp_ut i l s . replace_dp (
9 datapipe_graph ,

10 f e a tu re_ f e t che r ,
11 f e a t u r e _ f e t c h e r . bu f fe r (1) . wait () ,
12)

49

Transformed Pipeline

50

Pipelining optimizations in gb.DataLoader - Graph Fetch

1 torch . ops . graphbolt . set_max_uva_threads (max_uva_threads)
2 samplers = dp_ut i l s . f ind_dps (
3 datapipe_graph ,
4 SamplePerLayer ,
5)
6 executor = ThreadPoolExecutor (max_workers=1)
7 fo r sampler in samplers :
8 datapipe_graph = dp_ut i l s . replace_dp (
9 datapipe_graph ,

10 sampler ,
11 sampler . fetch_and_sample (_get_uva_stream () ,

executor , 1) ,
12)

51

Pipelining optimizations in gb.DataLoader - Graph Fetch

1 @funct ional_datapipe (" fetch_and_sample ")
2 c l a s s FetcherAndSampler (MiniBatchTransformer) :
3 " " " Overlapped graph sampling operat ion replacement .

" " "
4

5 def _ _ i n i t _ _ (s e l f , sampler , stream , executor ,
b u f f e r _ s i z e) :

6 datapipe = sampler . datapipe .
fetch_insubgraph_data (

7 sampler , stream , executor
8)
9 datapipe = datapipe . bu f fe r (b u f f e r _ s i z e) .

wai t_ future () . wait ()
10 datapipe = datapipe .

sample_per_layer_from_fetched_subgraph (sampler)
11 super () . _ _ i n i t _ _ (datapipe)

52

Transformed Pipeline

53

DGL 2.1 Node Classification Speedups on ogbn-products

54

DGL 2.1 Link Prediction Speedups on ogbl-citation2

55

Multi-GPU Speedups on ogbn-papers100M

56

Single-GPU Speedups with PyG on ogbn-products

57

Cooperative Minibatching

⊚ Given a chain of datapipes, we want to enable Cooperative
Minibatching seamlessly.

⊚ Insert all-to-all operations in-between, similar to the graph
and feature fetch optimizations.

⊚ Overlap communication
⊚ Simple online graph partitioning can reduce the amount of

needed communication between GPUs.

58

Cooperative Minibatching

⊚ Given a chain of datapipes, we want to enable Cooperative
Minibatching seamlessly.

⊚ Insert all-to-all operations in-between, similar to the graph
and feature fetch optimizations.

⊚ Overlap communication
⊚ Simple online graph partitioning can reduce the amount of

needed communication between GPUs.

58

Cooperative Minibatching

⊚ Given a chain of datapipes, we want to enable Cooperative
Minibatching seamlessly.

⊚ Insert all-to-all operations in-between, similar to the graph
and feature fetch optimizations.

⊚ Overlap communication

⊚ Simple online graph partitioning can reduce the amount of
needed communication between GPUs.

58

Cooperative Minibatching

⊚ Given a chain of datapipes, we want to enable Cooperative
Minibatching seamlessly.

⊚ Insert all-to-all operations in-between, similar to the graph
and feature fetch optimizations.

⊚ Overlap communication
⊚ Simple online graph partitioning can reduce the amount of

needed communication between GPUs.

58

Thanks!

⊚ For more information
◦ Email: balin@gatech.edu
◦ Visit: mfbal.in
◦ Visit: tda.gatech.edu

⊚ Acknowledgement of Support:

59

mailto:balin@gatech.edu
http://mfbal.in
http://tda.gatech.edu

THANK YOU

Variance formula derivation

𝐻′𝑠 =
1
𝑑𝑠

∑
𝑡→𝑠

𝑀𝑡

𝜋𝑡
1[𝑟𝑡 ≤ 𝜋𝑡]

Var(𝐻′𝑠) = Var
(1
𝑑𝑠

∑
𝑡→𝑠

𝑀𝑡

𝜋𝑡
1[𝑟𝑡 ≤ 𝜋𝑡]

)
=

1
𝑑2
𝑠

∑
𝑡→𝑠

Var(𝑀𝑡)
𝜋2
𝑡

Var(1[𝑟𝑡 ≤ 𝜋𝑡])

=
1
𝑑2
𝑠

∑
𝑡→𝑠

Var(𝑀𝑡)
𝜋2
𝑡

𝜋𝑡(1 − 𝜋𝑡)

=
1
𝑑2
𝑠

∑
𝑡→𝑠

Var(𝑀𝑡)
𝜋𝑡

(1 − 𝜋𝑡) =
1
𝑑2
𝑠

∑
𝑡→𝑠

1
𝜋𝑡
(1 − 𝜋𝑡)

=
1
𝑑2
𝑠

∑
𝑡→𝑠

(1
𝜋𝑡
− 1) = 1

𝑑2
𝑠

∑
𝑡→𝑠

1
𝜋𝑡
− 1

𝑑𝑠

(1)

61

Smoothed Dependent Minibatching (cont.)

⊚ 𝑟𝑡 = 𝑃𝑅𝑁𝐺(𝑧, 𝑡), where 𝑧 is the random seed, 𝑡 is the
vertex id.

⊚ 𝑟𝑡(𝑐) = 𝑃𝑅𝑁𝐺(𝑧1 , 𝑧2 , 𝑐, 𝑡),∀𝑐 ∈ [0, 1],
𝑃𝑅𝑁𝐺(𝑧1 , 𝑧2 , 0, 𝑡) = 𝑃𝑅𝑁𝐺(𝑧1 , 𝑡),
𝑃𝑅𝑁𝐺(𝑧1 , 𝑧2 , 1, 𝑡) = 𝑃𝑅𝑁𝐺(𝑧2 , 𝑡).

⊚ 𝑛𝑡(𝑐) = cos(𝑐𝜋2)𝑛1
𝑡 (𝑧1) + sin(𝑐𝜋2)𝑛2

𝑡 (𝑧2)
⊚ 𝑟𝑡(𝑐) = Φ(𝑛𝑡(𝑐)) ∼ 𝑈(0, 1)
⊚ For 𝑖th minibatch, 𝑐 = 𝑖

𝜅 . When 𝑖 = 𝜅, we set 𝑧1 ← 𝑧2, 𝑧2

becomes a new random seed.

62

References I

Muhammed Fatih Balın and Ümit V. Çatalyürek,
Layer-neighbor sampling — defusing neighborhood explosion in
GNNs, Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Wei Lin Chiang, Yang Li, Xuanqing Liu, Samy Bengio, Si Si,
and Cho Jui Hsieh, Cluster-GCN: An efficient algorithm for
training deep and large graph convolutional networks,
Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Association for
Computing Machinery, jul 2019, pp. 257–266.

Jie Chen, Tengfei Ma, and Cao Xiao, FastGCN: Fast Learning
with Graph Convolutional Networks via Importance Sampling.

63

References II

Yifan Chen, Tianning Xu, Dilek Hakkani-Tur, Di Jin, Yun
Yang, and Ruoqing Zhu, Calibrate and Debias Layer-wise
Sampling for Graph Convolutional Networks.

Jianfei Chen, Jun Zhu, and Le Song, Stochastic training of
graph convolutional networks with variance reduction, 35th
International Conference on Machine Learning, ICML 2018
3 (2018), 1503–1532.

Zhenkun Cai, Qihui Zhou, Xiao Yan, Da Zheng, Xiang
Song, Chenguang Zheng, James Cheng, and George
Karypis, Dsp: Efficient gnn training with multiple gpus,
Proceedings of the 28th ACM SIGPLAN Annual

64

References III

Symposium on Principles and Practice of Parallel
Programming, PPoPP ’23, 2023, p. 392–404.

Jialin Dong, Da Zheng, Lin F. Yang, and George Karypis,
Global Neighbor Sampling for Mixed CPU-GPU Training on
Giant Graphs, Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (2021), 289–299.

Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure
Leskovec, Gnnautoscale: Scalable and expressive graph neural
networks via historical embeddings, Proceedings of the 38th
International Conference on Machine Learning (Marina

65

References IV

Meila and Tong Zhang, eds.), Proceedings of Machine
Learning Research, vol. 139, PMLR, Jul 2021, pp. 3294–3304.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun,
Heterogeneous Graph Transformer, The Web Conference 2020 -
Proceedings of the World Wide Web Conference, WWW
2020 (2020), 2704–2710.

Will Hamilton, Zhitao Ying, and Jure Leskovec, Inductive
representation learning on large graphs, Advances in Neural
Information Processing Systems (I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

66

References V

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou
Huang, Adaptive sampling towards fast graph representation
learning, Advances in Neural Information Processing
Systems 2018-Decem (2018), no. Nips, 4558–4567.

Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and
Yinlong Xu, Pagraph: Scaling gnn training on large graphs via
computation-aware caching, Proceedings of the 11th ACM
Symposium on Cloud Computing, SoCC ’20, 2020,
p. 401–415.

67

References VI

Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou,
Shuang Yang, Le Song, and Yuan Qi, Bandit samplers for
training graph neural networks, Advances in Neural
Information Processing Systems 2020-Decem (2020).

Yeonhong Park, Sunhong Min, and Jae W. Lee, Ginex:
Ssd-enabled billion-scale graph neural network training on a
single machine via provably optimal in-memory caching, Proc.
VLDB Endow. 15 (2022), no. 11, 2626–2639.

Jeongmin Brian Park, Vikram Sharma Mailthody, Zaid
Qureshi, and Wen mei Hwu, Accelerating sampling and
aggregation operations in gnn frameworks with gpu initiated
direct storage accesses, 2023.

68

References VII

Zhihao Shi, Xize Liang, and Jie Wang, LMC: Fast training of
GNNs via subgraph sampling with provable convergence, The
Eleventh International Conference on Learning
Representations, 2023.

Jie Sun, Mo Sun, Zheng Zhang, Jun Xie, Zuocheng Shi,
Zihan Yang, Jie Zhang, Fei Wu, and Zeke Wang, Helios: An
efficient out-of-core gnn training system on terabyte-scale graphs
with in-memory performance, 2023.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and
Shivaram Venkataraman, Mariusgnn: Resource-efficient
out-of-core training of graph neural networks, 2022.

69

References VIII

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang
Yin, Rong Chen, Wenyuan Yu, and Jingren Zhou, Gnnlab: A
factored system for sample-based gnn training over gpus,
Proceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, 2022, p. 417–434.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou
Sun, and Quanquan Gu, Layer-dependent importance sampling
for training deep and large graph convolutional networks,
Advances in Neural Information Processing Systems 32
(2019), no. NeurIPS.

70

References IX

Qingru Zhang, David Wipf, Quan Gan, and Le Song, A
Biased Graph Neural Network Sampler with Near-Optimal
Regret, no. NeurIPS, 1–25.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava,
Rajgopal Kannan, and Viktor Prasanna, GraphSAINT: Graph
sampling based inductive learning method, International
Conference on Learning Representations, 2020.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh
Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor
Prasanna, Long Jin, and Ren Chen, Decoupling the depth and
scope of graph neural networks, Advances in Neural

71

References X

Information Processing Systems (A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, eds.), 2021.

72

	Motivation
	Background
	Layer-Neighbor Sampling (LABOR)
	Cooperative Minibatching
	dgl.graphbolt

