CSE 6230:
HPC Tools and Applications

_ecture 16: Graph Optimization

Helen Xu

Georgia Tech College of Computing

School of Computational
Science and Engineering

mailto:hxu615@gatech.edu

What is a graph?

@ = @

Vertices model objects, edges model relationship between objects

Carol = David

N

Alice = Bob 1 Eve

N\

Fred - Greg

N/

Hannah

From MIT 6.172

What is a graph?

Edges can be directed
e Relationship can go one way or both ways

s .
Bill
4 v
~ S A I ™
Bob Joe Tim
_ 4 _ J \

From MIT 6.172

What is a graph?

Edges can be weighted
e Denotes “strength”, distance, etc.

Distance between cities Flight costs

Santa Barbara

Barstow

45

New York
Malibu

Palm Springs

25 75

Los Angeles

90

San Diego

From MIT 6.172

What is a graph?

Vertices and edges can have types and metadata

Google Knowledge Graph

7.

§ -
n | S

~ Mona Lisa

~ '<"

Date of birth: April 15, 1452
Date ot death: May 2, 1519
(age 67 years)

& -

Michelangelo

From MIT 6.172

Properties of Real-World Graphs
They can be big (but not too big

)

Common Crawl

YAaHOO!
Social network Web graph Web graph
41 million vertices 1.4 billion vertices 3.5 billion vertices
1.5 billion edges 6.6 billion edges 128 billion edges
(6.3 GB) (38 GB) (540 GB)

Sparse (hnumber of edges is much less than n2)

Degrees can be highly skewed

s | Studies have shown that
O -3 | Most people
= = 3| many real-world graphs have
o § o a power law degree
§ 5 2s distribution
< ¢ B
Degree ﬁ*ﬂ #vertices with deg. d = axd»

From MIT 6.172 (2 <p< 3)

Graph Applications

Social network queries

Examples:

e Finding all your friends who went to the same high school as you
e Finding common friends with someone

e Social networks recommending people whom you might know

* Product recommendation

iSO
WA
s)
RS

From MIT 6.172

Finding good clusters

Finding groups of vertices that are “"well-connected” internally and “poorly-
connected” externally

Some applications

e Finding people with similar interests
e Detecting fraudulent websites

e Document clustering

e Unsupervised learning

From MIT 6.172

Graph Representations
(short, we will have a full lecture on this later)

10

CSR is the default representation for static graphs

The algoritnms we will discuss today are best implemented with compressed
sparse row (CSR) format

e Sparse graphs

e Static algorithms-no updates to graph

e Need to scan over neighbors of a given set of vertices

Vertex IDs 0 1 2 3
Offsets 0 4 11
Edges 2 / 9 16 0] 6 9 12

From MIT 6.172

11

Implementing a Graph Algorithm:
Breadth-First Search

12

From MIT 6.172

Breadth-First Search (BFS)

* Given a source vertex s, visit the
vertices in order of distance from s

* Possible outputs:

» Vertices in the order they were visited
«D,B,C,E A
o The distance from each vertex to s

A B C D E
2 1 1 0 1

» A BFS tree, where each vertex has a
parent to a neighbor in the previous
level

|
L
A =l - =
ADDIICA
—, - ! oy @ . . o
- . - - - - - . - - .

Betweenness
centrality

Eccentricity
estimation

Maximum flow

Web crawlers

Network
broadcasting

Cycle detection

D s D

BFS tree

13

Serial BFS Algorithm Initialization

Suppose that we will compute the parents array (BFS tree)

OUtPUt int* parent =

(int*) malloc(sizeof(int)*n);

.. int* queue =
Nodes to visit next (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

. . queue[0] = source;
Init queue with source barent[source] = source;

int g front = 0, g back = 1;

Erom MIT 6.172 https://en.wikipedia.org/wiki/Breadth-first_search

14

Serial BFS Algorithm

Assume the graph is in CSR: offsets and edges array
We have n vertices and m edges

//while queue not empty
while(q front != g back) {
int current = queue[q front++]; //dequeue
int degree =
Offsets[current+l]-Offsets[current];
for(int 1=0;i<degree; i++) {
int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited

if(parent[ngh] == -1) { Remember:
parent[ngh] = current;
//enqueue neighbor random access
queue[q_back++] = ngh; costs more than
} } Total of m sequential access
\ random accesses

What is the most expensive part of the code?

From MIT 6.172 15

Analyzing the program

int* parent = //while queue not empty
(int*) malloc(sizeof(int)*n); while(q front != g back
int* queue = int current = queue[q front++]; //dequeue

intr) matloc(stzeof(ney™);
Offsets[current+l]1-Offsets[current]:

for(int i=0; i<n; i++) { for(int i=0;i<degree; i++) {

queue[0] = source; parent[ngh] = current;
parent[source] = source; enqueue neignbor

queue[q back++] = ngh;
int q front = 0; g back = 1; }

How can
we reduce

cache
misses?

From MIT 6.172

}

parent[i] = -1; int ngh = Edges[Offsets[current]+i];

check 1f neighbor has been visited
if (parent[ngh] == -1) {

}

(Approx.) analyze number of cache misses (cold cache;
cache size << n; 64 byte cache line size; 4 byte int)

» n/16 for initialization » n/16 for enqueueing

e n/16 for dequeueing
» n for accessing Offsets array Total < (51/16)n + (17/16)m

e <2n + m/16 for accessing Edges array
» m for accessing parent array

16

From MIT 6.172

Analyzing the program

int* parent = //while queue not empty
(int*) malloc(sizeof(int)*n); /while(q_front != g back) {
int* queue = int current = queue[q front++]; //dequeue
(int*) malloc(sizeof(int)*n); int degree =
Offsets[current+l]-Offsets[current];
for(int i=0; i<n; i++) { for(int i=0;i<degree; i++) {
parent[i] = -1; int ngh = Edges[Offsets[current]+i];
} //check if neighbor has been visited
if (parent[ngh] == -1) {
queue[0] = source; parent[ngh] = current;
parent[source] = source; //enqueue neighbor
queue[q back++] = ngh;
int g front = 0; back = 1; } . .
i 4) Check bitvector first before
} accessing parent array
n cache misses
instead of m

« What if we can fit a bitvector of size n in cache?
» Might reduce the number of cache misses
» More computation to do bit manipulation

17

BFS with bitvector

int* parent = //while queue not empty
(int*) malloc(sizeof(int)*n); |while(q_front != gq_back) {
int* queue = int current = queue[q front++]; //dequeue
(int*) malloc(sizeof(int)*n); int degree =
int nv = 1+n/32; Offsets[current+l]-Offsets[current];
int* visited = for(int 1=0;i<degree; 1i++) {
(int*) malloc(sizeof (int)*nv) int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
for(int i=0; i<n; i++) { if(!((1 << ngh%32) & visited[ngh/32])){
parent[i] = -1; visited[ngh/32] |= (1 << (ngh%32));
} parent[ngh] = current;
//enqueue neighbor
for(int i=0; i<nv; i++) { queue[q_back++] = ngh;
visited[i] = 0; }
} }
}
queue[0] = source;
parent[source] = source;

vislited[source/32]) . .
- Bitvector version is

int q front = 0; q back = 1; faster for large enough
- values of m

From MIT 6.172

Parallelizing Breadth-First Search

19

From MIT 6.172

Parallel BFS Algorithm

Frontier

e Can process each frontier in parallel

o Parallelize over both the vertices and their
outgoing edges

« Races, load balancing

20

Parallel BFS Code - Initialization

Instead of a queue, we

have arrays for frontier,
frontierNext, degrees

BFS(Offsets, Edges, source) {
parent, frontier, , and degrees are arrays
parallel for(int i=0; i<n; i++) parent[i] = -1;
frontier[@] = source, frontierSize = 1, parent[source] = source;

From MIT 6.172

21

Parallel BFS: Overview

, o Problem: How do we know
While the frontier is not empty:

where to copy into?

In parallel, for all vexa<€S v In the frontier:

Copy all neighbors of v into frontierNext (for the next iteration) - only if
they have not yet been visited

Set v as the parent of all ngh(v) in the parents array - if ngh(v) does
not yet have a parent in the parents array

Set frontierNext to frontier Problem: What if multiple

vertices In the frontier have the
same neighbor?

22

Parallel BFS: Overview

While the frontier is not empty:
In parallel, for all vertices v in the frontier:

Copy all neighbors of v into frontierNext (for the next iteration) - only if
they have not yet been visited

Set v as the parent™
not yet have a parent |

= ay - if ngh(v) does
Otherwise, do not add

to frontierNext
Set frontierNext to frontier

23

Parallel BFS Code - Degree Setup

Problem: How do we know where to copy the neighbors for each vertex in
the frontier to?

Answer: Prefix sum on the degrees

For all vertices In frontier,

while(frontiersize > 0) { get their degrees
parallel for(int i=0; i<frontierSize; i++)
degrees[1i] = Offsets[frontier[i1]+1] - Offsets[frontier[i]];

perform prefix sum on degrees array _ _
Exclusive scan to get starting

point for each vertex

.
Example: Degrees:

Exclusive scan
2143|133 » 101216910

From MIT 6.172

Parallel BFS Code

}

lterate over

while(frontierSize > 0) { vertices in frontier

// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets|[v+1]-Offsets|[v];
for(int j=0; j<d; j++) {
ngh = Edges[Offsets|[v]+]j];

if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
[index+j] = ngh;
} else { [index+j] = -1; }
}
}
filter out “-1” from , store 1n frontier, and update

frontierSize to be the size of frontier (all done using prefix sum)

From MIT 6.172

25

Parallel BFS Code

}

while(frontierSize > 0) { vertices in frontier

lterate over

// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel for(int i=0; i<frontierSize; i++
v = frontier[1], index = degrees[1], d = Offsets[v+1l]-Offsets|[v];
for(int j=0; j<d; j++) {
ngh = Edges[Offsets[v]+]];

if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
[index+j] = ngh;
} else { [index+j] = -1; }
}
}
filter out “-1” from , store 1n frontier, and update

frontierSize to be the size of frontier (all done using prefix sum)

Copy in using
starting points

computed
previously

From MIT 6.172

20

Parallel BFS Code

terat r Copy in using
rerate over starting points
while(frontierSize > 0) { vertices In frontier computed
_ // SETUP DEGREES AS ON PREVIOUS SLIDE _
If this previously

neighbor par‘allel_for‘(injc i=?; i<1cr‘ontier‘Siz.e; 1++
v = frontier[i], index = degrees[I], d = Offsets[v+1]-Offsets[v];

)
hasn't for(int j=0; j<d; j++) {
been ngh = Edges[Offsets[v]+]j];
explored if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
[index+j] = ngh;
yet } else { [index+j] = -1; }
}
}
filter out “-1” from , store 1n frontier, and update

frontierSize to be the size of frontier (all done using prefix sum)

}

From MIT 6.172 27

Parallel BFS Code

terat r Copy in using
_e a _e Ove . starting points
while(frontierSize > 9) { vertices In frontier computed
_ // SETUP DEGREES AS ON PREVIOUS SLIDE .
If this previously
neighbor parallel for(int 1=0; i<frontierSize; i++
h 't v = frontier[i], index = degrees[1], d = Offsets|[v+1]-Offsets|[v];
asn for(int j=0; j<d; j++) {
been ngh = Edges[Offsets[v]+j]; Other
explored if(parent[ngh] == -1 &&|compare-and-swap(&parent[ngh], -1, v)) vertices In
[index+j] = ngh; :
yet } else { [index+j] = -1; } the frontier
} may also
} have ngh as
filter out “-1” from , store in frontier, and update thei
frontierSize to be the size of frontier (all done using prefix sum) _ eir
} neighbor.

Only one
should add It.

From MIT 6.172 28

Parallel BFS Code

terat r Copy in using
_e a _e Ove . starting points
while(frontierSize > 9) { vertices In frontier computed
_ // SETUP DEGREES AS ON PREVIOUS SLIDE .
If this previously
neighbor parallel for(int 1=0; i<frontierSize; i++
h 't v = frontier[i], index = degrees[1], d = Offsets[v+1]-Offsets[v];
ash for(int j=0; j<d; j++) {
been ngh = Edges[Offsets[v]+j]; Other
explored if(parent[ngh] == -1 &&|compare-and-swap(&parent[ngh], -1, v)) vertices In
[index+j] = ngh; : :
yet } else { index+j] = -1;< Otherwise, do not add || the frontier
; to frontierNext may also
} have ngh as
filter out “-1” from , store in frontier, and update thei
frontierSize to be the size of frontier (all done using prefix sum) _ eir
} neighbor.

Only one
should add It.

From MIT 6.172 29

Parallel BFS Code

terat r Copy in using
_e a _e Ove . starting points
while(frontierSize > 9) { vertices In frontier computed
_ // SETUP DEGREES AS ON PREVIOUS SLIDE .
If this previously
neighbor parallel for(int 1=0; i<frontierSize; i++
h 't v = frontier[i], index = degrees[1], d = Offsets[v+1]-Offsets[v];
ash for(int j=0; j<d; j++) {
been ngh = Edges[Offsets[v]+j]; Other
explored if(parent[ngh] == -1 &&|compare-and-swap(&parent[ngh], -1, v)) vertices In
[index+j] = ngh; : :
yet } else { index+j] = -1;< Otherwise, do not add || the frontier
; to frontierNext may also
} have ngh as
filter out “-1” from , store in frontier, and update thei
frontierSize to be the size of frontier (all done using prefix sum) _ eir
} * neighbor.

Only one
should add It.

From MIT 6.172 30

Question: How would you do this?

Filter: Filling in next frontier with prefix sum

Problem: We have frontierNext, which has some -1 (empty) and some valid
vertices (>=0). How do we pack them to the front of frontierNext?

Answer: Parallel filter with prefix sum

Example: Pink values are
frontierNext: |-11 4 [8|-1|-1[2|1|-1| 9 | -1 dest locations
of vertices In
flags: oj1/1(0(0|1]|1|]0|1|0 frontier

exclusive_scan(flags):| 0| O [1|1 |12 3| 3| 4| 4

parallel for i from © to len(frontierNext):
if flags[i] == 1:
frontier[result of flag scan[i]] = frontierNext[i]

31

Compare and swap

Compare-and-swap (CAS) is an atomic instruction that compares the
contents of a memory location with a given (old) value and, only if they are
the same, modifies the contents of the location to a new given value.

CAS is used to implemented mutexes, as well as lock-free and wait-free
algorithms.

function cas(p: pointer to int, old: int, new: 1int)
1if *p # old
return false

*P < new

return true

BFS Span Analysis

Longest path in graph

Number of iterations <= diameter D of graph

Each iteration takes ®(log(m)) span for parallel for loops, prefix sum, and
filter (assuming inner loop is parallelized)

Span = O(D log(m))

From MIT 6.172

33

BFS Work Analysis

Sum of frontier sizes = n

Each edge traversed once -> m total visits

Work of prefix sum on each iteration is proportional to frontier size -> ®(n)
total

Work of filter on each iteration is proportional to number of edges traversed

-> O(m) total

From MIT 6.172

34

From MIT 6.172

Performance of Parallel BFS
« Random graph with n=107and m=108
» 10 edges per vertex
« 40-core machine with 2-way hyperthreading

o 40 - o 25 -
2 E30 - g 40
) -; L LL
% ge) % o« 15
— (O 20 S
o Y o ¢ 10
= - Q@
T 10 - T v ¢
() ()
o o
Ve 0 | | | | | I I W O
0 102030405060 7080 0 102030405060 7080
Number of threads Number of threads

« 31.8x speedup on 40 cores with hyperthreading

« Serial BFS is 54% faster than parallel BFS on 1
thread

35

Dealing with nondeterminism

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE o
Nondeterministic
parallel for(int i1=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets
for(int j=0; j<d; j++) {
ngh = Edges[Offsets[v]+]];

1]-Offsets|[v];

if(parent[ngh] == -1 &&|compare-and-swap(&parent[ngh], -1, v))‘{
[index+]j] = ngh;
} else { [index+j] = -1; }

¥
¥

Nondeterministic parallel programs are hard to debug. Can we substitute a
deterministic alternative?

From MIT 6.172

36

writeMin(addr, newval):
oldval = *addr
while(newval < oldval):

if(CAS(addr, oldval, newval)) return

else: oldval = addr*

Deterministic Parallel BFS

}

H

¥

parallel(int 1=0; i<frontierSize; i++) {
Vv

= frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) {

writeMin(&parent[ngh], v);

ngh = Edges[Offsets[v]+i]; -
Smallest value gets written

parallel for(int i=0; i<frontierSize; i++) {
Vv

= frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) {

ngh = Edges[Offsets|[v]+]j];

if(parent[ngh] == v) {
parent[ngh] = -v;
[index+j] =

Check if v “won”

ngh; }

else { [index+j] = -1; }}

filter out “-1” from

, store in frontier, and update frontierSize

From MIT 6.172

37

writeMin(addr, newval):
oldval = *addr

while(newval < oldval): Deterministic Parallel BFS

if(CAS(addr, oldval, newval)) return
else: oldval = addr*

parallel(int i=0; i<frontierSize; i++) {

for(int j=0; j<d; j++) {

}

parallel for(int i=0; i<frontierSize; i++) {

parent[ngh] = -v;
[index+j] = ngh; }
else { [index+j] = -1; }}
}

filter out “-1” from , store 1n

H

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];

ngh = Edges[Offsets[v]+j]; :
writeMin(&parent[ngh], v); Smallest value gets written
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];

for(int j=0; j<d; j++) {
ngh = Edges[Offsets[v]+]]; Check if v “won”
if(parent[ngh] == v) {

On 32 cores, (an optimized version
of) deterministic BFS is 5-20%

slower than nondeterministic BFS

From MIT 6.172

Direction-Optimizing Breadth-First Search

39

Growth of Frontiers

Random graph Power law graph
10000000 - 10000000 -

1000000 - 1000000 -
N 100000 - 100000 -
C 10000 - 10000 -
S 1000 - 1000 -
UE_ 100 - 100 -

10 - 10 -

1 . , 1 —

1 6 11 1 3 5 7 9 11 13 15 17 19
Iteration number Iteration number

« For many graphs, frontier grows rapidly and
then shrinks

 Most of the work done with frontier (and sum of
out-degrees) is large

From MIT 6.172

40

Most of the work Is
checking if the endpoint
has been visited.

Top-Down BFS

Loop through frontier vertices and explore unvisited neighbors

Efficient for small frontiers If the frontier is large, there are many
| _ wasted attempts because only one can
Updates to parent array is atomic update the parents array

Frontier

From MIT 6.172 41

Bottom-Up BFS

lterate over all vertices

If ngh Is on the
frontier, setitas v’s
parent and put v on
the next frontier

for all vertices v 1in parallel:
if parent[v] == -1:
for all neighbors ngh of v:
if ngh on frontier:
parent[v] = ngh;
place v on ;
break;

If vertex has not
been visited

Efficient for large frontiers

Update to parent array need not be atomic

From MIT 6.172 42

Two ways to do BFS

Top-down iIs better when
frontier is small

®—® Top-down

O—0 Bottom-up

Bottom-up Is better
when frontier is large

and many vertices have

o been visited
(p O T
1 2 3 4
Step

Sample search on kron27 (Kronecker 128M vertices with 2B undirected edges) on a 16-core system.

Which variant (top-down or bottom-up) to use?

From MIT 6.172 “Direction-optimizing Breadth-First Search,” Beamer, Asanovic, and Patterson. Supercomputing 2012.

43

Direction-optimizing BFS

ldea: Choose based on frontier size (Beamer, Asanovic, and Patterson in

SC 2012)

If smay \fl(arge

Threshold of frontier size > n/20 works well in practice
e Can also consider sum of out-degrees

From MIT 6.172 “Direction-optimizing Breadth-First Search,” Beamer, Asanovic, and Patterson. Supercomputing 2012.

44

Representing the frontier

Used for top-down

Sparse integer array
eFor example, [1, 4, 7]

Used for bottom-up
Dense byte array

eFor example, [0, 1,0,0,1,0,0, 1] (h = 8)
e Can further compress this by using 1 bit per vertex and using bit-level
operations to access it

Need to convert between representations when switching methods

From MIT 6.172

45

From MIT 6.172

Direction-Optimizing BFS Performance

BFS on 40 cores with hyperthreading

M Bottom-up

B Top-down

B Direction-optimizing
(bottom-up if frontier
size > n/20; otherwise
top-down)

Running time (seconds)

Random Power-law

« Benefits highly dependent on graph

* No benefits if frontier is always small (e.g., on
a grid graph or road network)

46

From MIT 6.172

Ligra Graph Framework

Update function for vertex Condition to add to
next frontier

procedure EDGEMAP(G, frontier, Update, Cond)™
if(size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP DENSE(G, frontier, Update, Cond);
else:
return EDGEMAP SPARSE(G, frontier, Update, Cond);

More general than BFS!

Ligra framework generalizes direction optimization to many other problems
® e.g., betweenness centrality, connected components, sparse PageRank,
shortest paths, eccentricity estimation, graph clustering, k-core
decomposition, set cover, etc.

Julian Shun and Guy Blelloch. “Ligra : A Lightweight Graph Processing Framework for Shared Memory,” PPoPP 2013 47

Ligra Example - BFS

Update function for vertex Condition to add to
next frontier

procedure EDGEMAP(G, frontier, Update, Cond)™
if(size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP DENSE(G, frontier, Update, Cond);
else:
return EDGEMAP SPARSE(G, frontier, Update, Cond);

If unvisited,

bool Update(int s, int d) { | set parents

lf(:fgsngg?]-=:°_:gtjrn 1; bool cond(int d) {
\ p = S5) return (parents[d] == -1);
else return 0; J

} otherwise, just

return false

https://github.com/jshun/ligra/blob/master/apps/BFS.C
Julian Shun and Guy Blelloch. “Ligra : A Lightweight Graph Processing Framework for Shared Memory,” PPoPP 2013 48

Graph Compression and Reordering

49

From MIT 6.172

Graph Compression on CSR

WP o S L Sort edges and encode
I I
ertex IDs | . - differences

Offsets 0 4 5 11

’\\ —
Edges '\E!b ‘\,,z _ .
2-0=2 7-2=5 1-2=-1
Compressed 5 ., 7 -1 -1 5 3 3
Edges

« For each vertex v:

* First edge: difference is Edges[Offsets[v]]-v
« i'th edge (i>1): difference is Edges[Offsets[v]+i]-
Edges[Offsets[v]+i-1]
« Want to use fewer than 32 or 64 bits to store
each value

50

Variable-length codes
« k-bit (variable-length) codes
» Encode value in chunks of k bits
o Use k-1 bits for data, and 1 bit as the “continue” bit

« Example: encode “401” using 8-bit (byte) codes

BRI 1 1 (0[0/1/0]0/0 /1

‘)—Nﬁs for data

‘continue” bit

 Decoding is just encoding “backwards”
« Read chunks until finding a chunk with a “0” continue bit
« Shift data values left accordingly and sum together

« Branch mispredictions from checking continue bit

From MIT 6.172

51

From MIT 6.172

Encoding optimization
- Another idea: get rid of “continue” bits

X1 X> X3 X4 X5 X6 X7 Xg | ===="-

Number of bytes
required to encode | 2 2 2 2 . ., v JRLIITE
each integer

Use run-length encoding

Header
oj1/oj1[1jojoj1} | | [
‘[Integers in group
\ encoded in byte chunks
Number of bytes Size of group
per integer (max 64)

* Increases space, but makes decoding cheaper (no

branch misprediction from checking “continue” bit)
Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015 52

From MIT 6.172

Decoding on-the-fly
 Need to decode during the algorithm

» |f we decoded everything at the beginning we would
not save any space!

Frontier

In parallel, all vertices
can decode their edges

19 1 4 2 5 3

« Each vertex decodes its edges sequentially
» What about high degree vertices?

53

From MIT 6.172

Parallel decoding

High-degree
vertex

-1 2 4 3 16 2 |1 5 8 19/ 4 1 |23 14|12 1 | 9 10||3 | 5

Chunks of size T

* % £
—1}2 4 3 16| 2 f27}5 8 19| 4 1 &87}14 121 1 9 |10

\ I / T=100 to 10,000

Encode first entry relative to source vertex .
works well in

All chunks can be practice
decoded in parallel!

Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015 54

From MIT 6.172

Good compression for most graphs

e Space to store graph, which dominates the actual
space usage for most graphs

Relative space compared to uncompressed graph g Uncompressed

]
0.8
0.6
0.4 -
0.2 -

B Compressed (Byte)

B Compressed (Byte-

RLE)
B Compressed (Nibble

(4-bit codes))

0O -
o /0)«’\6 OQ/V\ @&" <°/V\o&& @b‘g\é@@‘ & %(\00 Average space used
& TS F T relative to uncompressed
C S Byte: 53%
« Can further reduce space but Byte-RLE: 56%
need to ensure decoding is fast Nibble: 49%

Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015 55

From MIT 6.172

What is the cost of decoding on-th-fly?

Parallel speedup on 40 cores Normalized 40-core Running Time
m Uncompressed 2

40 1.5
30

20
10 _

@o_

W Compressed 1
(Byte)

B Compressed

(Byte-RLE) @O)

B Compressed
(Nibble)

* |In parallel, compressed can outperform uncompressed

= These graph algorithms are memory-bound and memory
subsystem is a bottleneck in parallel (contention for resources)

= Spends less time on memory operations, but has to decode
« Decoding has good speedup so overall speedup is higher

« All techniques integrated into Ligra framework
Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015 56

Graph Reordering

Reassign |IDs to vertices to improve locality
e Goal: Make vertex IDs close to their neighbors’ IDs and neighbors’ IDs
close to each other

OO0 OO
D0 O B B

Sum of differences = 21 Sum of differences = 19

e Can improve compression rate due to smaller “differences”

e Can improve performance due to higher cache hit rate
e\arious methods: BFS, DFS, METIS, by degree, etc.

From MIT 6.172

57

Summary

Real-world graphs are large and sparse
Many graphs algorithms are irregular and involve many memory accesses

Improve performance with algorithmic optimizations and by creating/
exploiting locality

Optimizations may work for some graphs, but not others

From MIT 6.172 ; =

58

BACKUP

59

Vertices labeled Graph representations

QOOQO®W 0,1)

from O to n-1

(0)[o1 0 (1,0)
@ 1 oo 1] 8 :z;

ololo|1]o0 (2.3)
% 0|1]1]0]0 (3,1)
@ O|1|0]0]|O EZ?;

Adjacency matrix

(“1"7 if edge exists, Edge list
“0” otherwise)

What is the space requirement for each in terms of number of edges (m) and

number of vertices (n)?
From MIT 6.172

Graph representations

Adjacency list

e Array of pointers (one per vertex)

e Each vertex has an unordered list of its edges

e Can substitute linked lists with arrays for better cache performance (at the
cost of updatability)

y 3——&:~——E:~—~EE—~ i[e—{e]
' _{'—’E:"—’E:]

‘ _{._.E.J_.{Ej

s _'|°—’E.3_.E:]

! _{°—'{EE—~EE—~EE—~ED

’ _{—-{E}—{EME:]

. _'I'_.{L:_’{O__l

' Iz {o[—{T]

What is the space requirement?

From MIT 6.172

61

