
CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

+

Lecture 16: Graph Optimization

mailto:hxu615@gatech.edu

What is a graph?

Vertices model objects, edges model relationship between objects

2From MIT 6.172

Edges can be directed

• Relationship can go one way or both ways

3

What is a graph?

From MIT 6.172

Edges can be weighted

• Denotes “strength”, distance, etc.

4

What is a graph?

From MIT 6.172

5

What is a graph?

Vertices and edges can have types and metadata

From MIT 6.172

Properties of Real-World Graphs

6From MIT 6.172

They can be big (but not too big)

Sparse (number of edges is much less than)

Degrees can be highly skewed

n2

Graph Applications

7

Social network queries

Examples:

•Finding all your friends who went to the same high school as you

•Finding common friends with someone

•Social networks recommending people whom you might know

•Product recommendation

8From MIT 6.172

Finding good clusters

Finding groups of vertices that are “well-connected” internally and “poorly-

connected” externally

9From MIT 6.172

Some applications

•Finding people with similar interests

•Detecting fraudulent websites

•Document clustering

•Unsupervised learning

Graph Representations
(short, we will have a full lecture on this later)

10

CSR is the default representation for static graphs

The algorithms we will discuss today are best implemented with compressed
sparse row (CSR) format

•Sparse graphs

•Static algorithms-no updates to graph

•Need to scan over neighbors of a given set of vertices

11From MIT 6.172

Implementing a Graph Algorithm:
Breadth-First Search

12

Breadth-First Search (BFS)

13From MIT 6.172

Serial BFS Algorithm Initialization

14From MIT 6.172 https://en.wikipedia.org/wiki/Breadth-first_search

Output

Suppose that we will compute the parents array (BFS tree)

Nodes to visit next

Init queue with source

Serial BFS Algorithm

15

Assume the graph is in CSR: offsets and edges array

We have n vertices and m edges

What is the most expensive part of the code?
From MIT 6.172

Remember:
random access
costs more than

sequential access

Analyzing the program

16From MIT 6.172

How can
we reduce

cache
misses?

Analyzing the program

17From MIT 6.172

BFS with bitvector

18From MIT 6.172

Parallelizing Breadth-First Search

19

Parallel BFS Algorithm

20From MIT 6.172

Parallel BFS Code - Initialization

21

BFS(Offsets, Edges, source) {
parent, frontier, frontierNext, and degrees are arrays
parallel_for(int i=0; i<n; i++) parent[i] = -1;
frontier[0] = source, frontierSize = 1, parent[source] = source;

…

From MIT 6.172

Instead of a queue, we
have arrays for frontier,
frontierNext, degrees

Parallel BFS: Overview

While the frontier is not empty:

In parallel, for all vertices v in the frontier:

Copy all neighbors of v into frontierNext (for the next iteration) - only if
they have not yet been visited

Set v as the parent of all ngh(v) in the parents array - if ngh(v) does
not yet have a parent in the parents array

Set frontierNext to frontier

22

Problem: How do we know
where to copy into?

Problem: What if multiple
vertices in the frontier have the

same neighbor?

Parallel BFS: Overview

While the frontier is not empty:

In parallel, for all vertices v in the frontier:

Copy all neighbors of v into frontierNext (for the next iteration) - only if
they have not yet been visited

Set v as the parent of all ngh(v) in the parents array - if ngh(v) does
not yet have a parent in the parents array

Set frontierNext to frontier

23

Otherwise, do not add
to frontierNext

Parallel BFS Code - Degree Setup

24

…

while(frontierSize > 0) {
parallel_for(int i=0; i<frontierSize; i++)
degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];

perform prefix sum on degrees array

…
}

From MIT 6.172

For all vertices in frontier,
get their degrees

Degrees:

Problem: How do we know where to copy the neighbors for each vertex in
the frontier to?

Answer: Prefix sum on the degrees

2 4 3 1 3 0 2 6 9 10
Exclusive scan

Example:

Exclusive scan to get starting
point for each vertex

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
filter out “-1” from frontierNext, store in frontier, and update
frontierSize to be the size of frontier (all done using prefix sum)

}

Parallel BFS Code

25From MIT 6.172

Iterate over
vertices in frontier

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
filter out “-1” from frontierNext, store in frontier, and update
frontierSize to be the size of frontier (all done using prefix sum)

}

Parallel BFS Code

26From MIT 6.172

Iterate over
vertices in frontier

Copy in using
starting points

computed
previously

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
filter out “-1” from frontierNext, store in frontier, and update
frontierSize to be the size of frontier (all done using prefix sum)

}

Parallel BFS Code

27From MIT 6.172

Iterate over
vertices in frontier

Copy in using
starting points

computed
previouslyIf this

neighbor
hasn’t
been

explored
yet

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
filter out “-1” from frontierNext, store in frontier, and update
frontierSize to be the size of frontier (all done using prefix sum)

}

Parallel BFS Code

28From MIT 6.172

Iterate over
vertices in frontier

Copy in using
starting points

computed
previouslyIf this

neighbor
hasn’t
been

explored
yet

Other
vertices in
the frontier
may also

have ngh as
their

neighbor.
Only one

should add it.

Parallel BFS Code

29

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
filter out “-1” from frontierNext, store in frontier, and update
frontierSize to be the size of frontier (all done using prefix sum)

}

From MIT 6.172

Iterate over
vertices in frontier

Copy in using
starting points

computed
previouslyIf this

neighbor
hasn’t
been

explored
yet

Other
vertices in
the frontier
may also

have ngh as
their

neighbor.
Only one

should add it.

Otherwise, do not add
to frontierNext

Parallel BFS Code

30

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
filter out “-1” from frontierNext, store in frontier, and update
frontierSize to be the size of frontier (all done using prefix sum)

}

From MIT 6.172

Iterate over
vertices in frontier

Copy in using
starting points

computed
previouslyIf this

neighbor
hasn’t
been

explored
yet

Other
vertices in
the frontier
may also

have ngh as
their

neighbor.
Only one

should add it.

Otherwise, do not add
to frontierNext

Question: How would you do this?

Filter: Filling in next frontier with prefix sum
Problem: We have frontierNext, which has some -1 (empty) and some valid
vertices (>=0). How do we pack them to the front of frontierNext?

Answer: Parallel filter with prefix sum

31

-1 4 8 -1 -1 2 1 -1 9 -1frontierNext:

Example:

flags: 0 1 1 0 0 1 1 0 1 0

exclusive_scan(flags): 0 0 1 1 1 2 3 3 4 4

Pink values are
dest locations
of vertices in

frontier

parallel_for i from 0 to len(frontierNext):
if flags[i] == 1:
frontier[result_of_flag_scan[i]] = frontierNext[i]

Compare and swap

Compare-and-swap (CAS) is an atomic instruction that compares the
contents of a memory location with a given (old) value and, only if they are
the same, modifies the contents of the location to a new given value.

CAS is used to implemented mutexes, as well as lock-free and wait-free
algorithms.

32

function cas(p: pointer to int, old: int, new: int)
 if *p ≠ old
 return false

 *p ← new

 return true

BFS Span Analysis

Number of iterations <= diameter D of graph

Each iteration takes span for parallel for loops, prefix sum, and
filter (assuming inner loop is parallelized)

Θ(log(m))

33

Span = Θ(D log(m))

Longest path in graph

From MIT 6.172

BFS Work Analysis

Sum of frontier sizes = n

Each edge traversed once -> m total visits

Work of prefix sum on each iteration is proportional to frontier size ->
total

Work of filter on each iteration is proportional to number of edges traversed
-> total

Θ(n)

Θ(m)

34

Work = Θ(m + n)

From MIT 6.172

Performance of Parallel BFS

35From MIT 6.172

Dealing with nondeterminism

36

…

while(frontierSize > 0) {
// SETUP DEGREES AS ON PREVIOUS SLIDE

parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
frontierNext[index+j] = ngh;

} else { frontierNext[index+j] = -1; }
}

}
…

}

Nondeterministic

Nondeterministic parallel programs are hard to debug. Can we substitute a
deterministic alternative?

From MIT 6.172

Deterministic Parallel BFS

37From MIT 6.172

parallel(int i=0; i<frontierSize; i++) { //phase 1
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
writeMin(&parent[ngh], v); }

}
parallel_for(int i=0; i<frontierSize; i++) { //phase 2
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == v) {
parent[ngh] = -v; //to avoid revisiting
frontierNext[index+j] = ngh; }

else { frontierNext[index+j] = -1; }}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize

}}

Smallest value gets written

Check if v “won”

writeMin(addr, newval):
oldval = *addr
while(newval < oldval):
if(CAS(addr, oldval, newval)) return
else: oldval = addr*

Deterministic Parallel BFS

38From MIT 6.172

parallel(int i=0; i<frontierSize; i++) { //phase 1
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
writeMin(&parent[ngh], v); }

}
parallel_for(int i=0; i<frontierSize; i++) { //phase 2
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel
ngh = Edges[Offsets[v]+j];
if(parent[ngh] == v) {
parent[ngh] = -v; //to avoid revisiting
frontierNext[index+j] = ngh; }

else { frontierNext[index+j] = -1; }}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize

}}

Smallest value gets written

Check if v “won”

writeMin(addr, newval):
oldval = *addr
while(newval < oldval):
if(CAS(addr, oldval, newval)) return
else: oldval = addr*

On 32 cores, (an optimized version
of) deterministic BFS is 5-20%

slower than nondeterministic BFS

Direction-Optimizing Breadth-First Search

39

Growth of Frontiers

40From MIT 6.172

Top-Down BFS

Loop through frontier vertices and explore unvisited neighbors

Efficient for small frontiers

Updates to parent array is atomic

41

Most of the work is
checking if the endpoint

has been visited.

If the frontier is large, there are many
wasted attempts because only one can

update the parents array

From MIT 6.172

Bottom-Up BFS

Efficient for large frontiers

Update to parent array need not be atomic

42

for all vertices v in parallel:
if parent[v] == -1:
for all neighbors ngh of v:
if ngh on frontier:
parent[v] = ngh;
place v on frontierNext;
break;

Iterate over all vertices

If vertex has not
been visited If ngh is on the

frontier, set it as v’s
parent and put v on

the next frontier

From MIT 6.172

Two ways to do BFS

Which variant (top-down or bottom-up) to use?

43“Direction-optimizing Breadth-First Search,” Beamer, Asanovic, and Patterson. Supercomputing 2012.

Sample search on kron27 (Kronecker 128M vertices with 2B undirected edges) on a 16-core system.

Top-down is better when
frontier is small

Bottom-up is better
when frontier is large

and many vertices have
been visited

From MIT 6.172

Direction-optimizing BFS

Idea: Choose based on frontier size (Beamer, Asanovic, and Patterson in
SC 2012)

44“Direction-optimizing Breadth-First Search,” Beamer, Asanovic, and Patterson. Supercomputing 2012.

Frontier size

If small If large

Top-down Bottom-up

Threshold of frontier size > n/20 works well in practice

•Can also consider sum of out-degrees

From MIT 6.172

Representing the frontier

45From MIT 6.172

Sparse integer array

•For example, [1, 4, 7]

Dense byte array

•For example, [0, 1, 0, 0, 1, 0, 0, 1] (n = 8)

•Can further compress this by using 1 bit per vertex and using bit-level
operations to access it

Need to convert between representations when switching methods

Used for top-down

Used for bottom-up

Direction-Optimizing BFS Performance

46From MIT 6.172

Ligra Graph Framework

More general than BFS!

Ligra framework generalizes direction optimization to many other problems

• e.g., betweenness centrality, connected components, sparse PageRank,

shortest paths, eccentricity estimation, graph clustering, k-core
decomposition, set cover, etc.

47Julian Shun and Guy Blelloch. “Ligra : A Lightweight Graph Processing Framework for Shared Memory,” PPoPP 2013

From MIT 6.172

procedure EDGEMAP(G, frontier, Update, Cond):
if(size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP_DENSE(G, frontier, Update, Cond);

else:
return EDGEMAP_SPARSE(G, frontier, Update, Cond);

Condition to add to
next frontier

Update function for vertex

Ligra Example - BFS

48Julian Shun and Guy Blelloch. “Ligra : A Lightweight Graph Processing Framework for Shared Memory,” PPoPP 2013

procedure EDGEMAP(G, frontier, Update, Cond):
if(size(frontier) + sum of out-degrees > threshold) then:
return EDGEMAP_DENSE(G, frontier, Update, Cond);

else:
return EDGEMAP_SPARSE(G, frontier, Update, Cond);

Condition to add to
next frontier

Update function for vertex

bool Update(int s, int d) {
if(parents[d] == -1) {
parents[d] = s; return 1;

}
else return 0;

}

bool cond(int d) {
return (parents[d] == -1);

}

https://github.com/jshun/ligra/blob/master/apps/BFS.C

unvisitedif unvisited,
set parents

otherwise, just
return false

Graph Compression and Reordering

49

Graph Compression on CSR

50From MIT 6.172

Variable-length codes

51From MIT 6.172

Encoding optimization

52

From MIT 6.172

Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015

Decoding on-the-fly

53From MIT 6.172

Parallel decoding

54

From MIT 6.172

Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015

Good compression for most graphs

55

From MIT 6.172

Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015

56

From MIT 6.172

Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing of Compressed Graphs with Ligra +, DCC 2015

What is the cost of decoding on-th-fly?
Parallel speedup on 40 cores

57

Graph Reordering

From MIT 6.172

Reassign IDs to vertices to improve locality

•Goal: Make vertex IDs close to their neighbors’ IDs and neighbors’ IDs
close to each other

•Can improve compression rate due to smaller “differences”

•Can improve performance due to higher cache hit rate

•Various methods: BFS, DFS, METIS, by degree, etc.

Summary
Real-world graphs are large and sparse

Many graphs algorithms are irregular and involve many memory accesses

Improve performance with algorithmic optimizations and by creating/
exploiting locality

Optimizations may work for some graphs, but not others

58From MIT 6.172

BACKUP

59

Graph representations

60

Vertices labeled
from 0 to n-1

What is the space requirement for each in terms of number of edges (m) and

number of vertices (n)?

From MIT 6.172

Graph representations

61

Adjacency list

•Array of pointers (one per vertex)

•Each vertex has an unordered list of its edges

•Can substitute linked lists with arrays for better cache performance (at the
cost of updatability)

From MIT 6.172

What is the space requirement?

