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Recap: Graph representations
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Vertices labeled 
from 0 to n-1

From MIT 6.172
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Adjacency list

•Array of pointers (one per vertex)

•Each vertex has an unordered list of its edges

•Can substitute linked lists with arrays for better cache performance (at the 
cost of updatability)

From MIT 6.172

Recap: Graph representations



4From MIT 6.172

Compressed sparse row (CSR)

•Two arrays: Offsets and Edges

•Offsets[i] stores the offset of where vertex i’s edges start in Edges

Recap: Graph representations



Tradeoffs in graph representations

5From MIT 6.172

What is the space usage of the  
different representations?

(COO)

Let m = number of edges and n = number of vertices.



Tradeoffs in graph representations

6From MIT 6.172

What is the cost to add and delete edges in 
different representations?

(COO)

Let m = number of edges and n = number of vertices.



Tradeoffs in graph representations

7From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

What is the cost to find all neighbors  
of a given vertex in different representations?



Tradeoffs in graph representations

8From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

What is the cost to find if w is a neighbor of v  
in different representations?



Tradeoffs in graph representations

9From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.



Tradeoffs in graph representations

10From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

Tradeoff Tradeoff



Recall: Spatial and Temporal Locality
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Makes use of  
multiple elements 

transferred together

Makes use of efficient 
hierarchical 
accesses

Spatial locality: how many 
accesses an algorithm makes to 
nearby data over a short period of 
time [Denning72, Denning05].

Temporal locality: how many 
repeated accesses an algorithm 
makes to the same data over a 
short period of time [Denning72, 

Denning05].

Question: Which type should we be targeting in general for graph optimization?



Spatial Locality Determines  
Graph Query Performance
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 Input: graph G, source vertex src 
 let Q be a queue 
 label src as explored 
 Q.enqueue(src) 
 while Q is not empty: 
   v = Q.dequeue() 
   for all edges (v, w) in G.neighbors(v): 
     if w not explored: 
       label w as explored 
       Q.enqueue(w) 

Scan

Dynamic-graph data structures must support fast graph queries.


Vertex scans, or the processing of a vertex’s incident edges, are a crucial 
step in many graph queries [ShunBl13].

Breadth-first search

 Input: graph G 
 let triangle_count = 0 
 let E = G.edges() 
 for (u, v) in E:  
   intersect neighbors of u and v: 
     if u and v share a neighbor w: 
       triangle_count++; 

Scan

Triangle counting
Each neighbor list is scanned at 
most once (no temporal locality), 
so optimize for spatial locality



Tradeoff between Locality and Updatability
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Problem: Can we choose data structures to support efficient scans and updates?

Adjacency matrix

Graph Query

Performance

Update Performance

Static arrays  
(CSR)
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STINGER: High Performance Data Structure for 
Streaming Graphs  

(Ediger, McColl, Riedy, Bader - HPEC 12) 

http://www.stingergraph.com/



STINGER Data Structure Design

STINGER is based on linked lists of blocks - edges incident to a given 
vertex are stored in a linked list of edge blocks.
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3 5 6 7 11 20

1 5 8

10

2 5 12 70 89

0
1
2
3

Vertex IDs

Blocked linked lists improve locality compared to regular adjacency lists.



Batch Updates
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Modern dynamic data structure libraries (including those for graphs)  
implement parallel batch updates which insert/delete many elements at the 
same time [BarbuzziMiBiBo10, DhulipalaBlSh19, DhulipalaBlGuSu22, ErbKoSa14, FriasSi07, SunFeBl18, 

TsengDhBl19].

Batch updates

Parallel batch updates simplify update parallelism and reduce the overall 
work of each update by combining multiple updates into one operation on 
the data structure.



Batch Updates in STINGER
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3 5 6 7 11 20

1 5 8

10

2 5 12 70 89

Graph:Batch:

(0, 1) (2, 3) (3, 8) 0
1
2
3

Vertex IDs

3 5 6 7 11 20

1 5 8

10

2 5 12 70 89

0
1
2
3

Vertex IDs

Graph:
1

3

8

Parallelize 
over vertices
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Batch size of 100k edge updates

Update Performance in STINGER



Update Performance in STINGER

19



Low-Latency Graph Streaming using Compressed 
Purely-Functional Trees 

(Dhulipala, Blelloch, Shun - PLDI 19)

20



C-tree Structure

Compressed purely-functional search trees


At a high level, C-trees apply a chunking scheme that takes the ordered set 
of elements to be stored, “promotes” some as heads randomly with some 
probability b, and stores the heads in a tree.
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Preserve previous versions of themselves 

Question: What is the expected height of a C-tree in terms of n, the 
number of elements, and b, the promotion probability?



Updates in C-trees

Why are there C-trees when we already have B-trees?


The problem with B-trees in a purely-functional setting is that the C-tree 
does path copying during functional updates.


• Path copying in B-trees requires copying B pointers per level, while C-
trees only need to copy one binary node per level.

22



Batch Updates in C-trees

23

Batch updates in a C-tree are based on tree union.


Input: Two C-trees,  and 


Output: A C-tree  containing the elements in the union of  and 

C1 C2

C C1 C2

U



Batch Updates in C-trees
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Step 1 - First call Expose on the tree of one of the two C-trees ( ) 


Expose input: A C-tree 


Expose output: returns the left subtree, element and prefix at the root of the 
tree, and the right subtree.

C2



Batch Updates in C-trees
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Step 2 - Using the root of , split the other tree  


Split input: A C-tree  and element 


Split output: Two C-trees  and , where  (resp. ) are a C-tree 
containing all elements less than (resp. greater than) 

C2 C1

B k

B1 B2 B1 B2
k



Batch Updates in C-trees
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Issue: Some elements in ’s tail (elements between  and the next head) in 
 may come after some heads in  (“right” tree of split of )

• Similarly, some elements in ’s prefix may come after some heads of  

(“right” tree in split of ).

To handle these, split  (tail of ) by the leftmost element of  and split 

’s prefix by the leftmost element of .

k2 k2
C2 B2 C1

B2 R2
C2

v2 k2 B2
B2 R2

“Smallest” returns the smallest head in a tree



Batch Updates in C-trees
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To proceed, recursively call Union on the left and right halves.

• The left recursive call takes as input  (“left” half of ) and 

• The right recursive call takes the trees  and .


The output of Union is a C-tree formed by joining the left and right trees from 
the recursive calls, , and the tail  formed by unioning  and , with the 
prefix from 

B1 C1 (L2, P2)
(B2 . tree, PR) (R2, vR)

k2 v′ 2 vL PL
CL



Aspen: Representing Graphs with C-trees
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Aspen Batch Update Performance

Batch updates in Aspen use union in C-trees on every edge tree.



Aspen Algorithm Performance

30

Breadth-first 
search

Betweenness 
centrality



31from “PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections.” Dhulipala, Blelloch, Gu, and Sun. PLDI 22.

PaC-trees build on Aspen by removing randomization.

PaC-trees: An Update on Blocked Trees
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CPMA: An efficient batch-parallel set without 
pointers 

(Wheatman, Burns, Buluc, Xu - PPoPP 24)



Update-Query Tradeoff in Batch-Parallel Sets
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PaC-trees  
[DhulipalaBlGuSu22]

Traditional Packed Memory Array  
[IKR81, BDFC00]

Range query 
performance

Batch update performance

Existing batch-parallel data structures are built on pointer-based structures 
(e.g. trees, skip lists) [BarbuzziMiBiBo10, DhulipalaBlSh19, DhulipalaBlGuSu22, ErbKoSa14, FriasSi07, 
SunFeBl18, TsengDhBl19].


Pointer-based structures are fast to update but slower to scan compared to 
PMAs because they are not contiguous.
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PMA with batch updates  
[WheatmanBuBuXu24]

Although PMAs are asymptotically worse than trees for updates, their cache-
friendliness enables them to achieve faster updates in practice.

Overcoming the Tradeoff with Cache-Optimized 
Data Structures

PaC-trees  
[DhulipalaBlGuSu22]

Traditional Packed Memory Array  
[IKR81, BDFC00]

Range query 
performance

Batch update performance



Recall: Packed Memory Array

The Packed Memory Array (PMA) [ItaiKaRo81, BenderDeFa00] is a cache-oblivious 
ordered dictionary data structure that stores elements in a contiguous array 
with (a constant factor of) spaces for updatability.


That is, the PMA stores  elements in m =  cells.N Θ(N)

35

One 
contiguous 

memory 
allocation

Implicitly split into chunks 
of size , called 

PMA leaves
Θ(log N)



Recall: PMA Structure
The PMA maintains empty spaces according to density bounds, where the 
density is the ratio of filled cells to total cells per contiguous region.

36

Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N)

Density range

gets stricter 


(smaller allowed range)

as you go up

Implicit binary tree 
on PMA chunks

Each node includes 
all cells of all 
descendants

“PMA 
leaves”



Recall: Searching in a PMA

Searching a PMA involves a binary search on the first element of each PMA 
leaf.


Once you reach the correct leaf, perform a linear pass through the chunk to 
look for the element. 


The search costs  cache 
misses.

O(log(N/log(N)) + log(N)/B) = O(log(N)

37



PMA Insert Example
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22- 15 19 897 13 -

89- 15 19 -7 13 -

(1) Search (22):

(2) Place (22):

8915 19 22 -7 13 -

(4) Redistribute:

After placing, count 
the elements in the 
leaf to check the 

density.

If the place violated the 
density, redistribute by 
counting neighboring 

leaves and shifting 
elements around.

The PMA maintains density bounds during updates by redistributing 
elements after each update.

Density bound = 0.9

(3) Count: 0.5 1.0

0.75 0.75



PMA Parallel Batch Inserts - Overview

Batch merge


Merge elements into the PMA


Counting nodes


Determine which regions of the PMA need to be rebalanced


Redistribute nodes


Rebalance the required regions

39



40

1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

PMA Batch Inserts - Batch Merge
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1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Search for the location 
of the midpoint of the batch 

in the PMA

PMA Batch Inserts - Batch Merge
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1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Find the beginning of 
the leaf in the batch

PMA Batch Inserts - Batch Merge



PMA Batch Inserts - Batch Merge
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1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Find the beginning of 
the leaf in the batch

6 9 7 8
Merge into leaf 
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1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Find the beginning of 
the leaf in the batch

1 5 - -

6 9 7 8

10 14 - - 15 17 - -

Merge into leaf 

2 3 4 11 12 13 16

Then recurse on the two “halves”:

PMA Batch Inserts - Batch Merge



• Sometimes we need to merge more elements than a leaf can fit 

• Since the other leaves are happening in parallel, we cannot merge into 
neighboring leaves


• Idea: temporarily store the elements out of place with a pointer and count

45

PMA Batch Inserts - Handling Overflow

1 5 - - 2 3 4

PMA Batch

Not enough 
empty spaces

- 5 -

PMA

1 2 3 4 5
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Before merge:

After merge:

Batch: 15 22 89

PMA: -- 13 19 -7 - -

PMA: - - 5 -7 - -

19 8913 15 22
After redistribute:

PMA: 8915 19 22 -7 13 -

PMA batch updates save work by performing only one search per PMA 
leaf that elements are destined for (instead of performing one per element 
for point inserts).

Batch Updates Save Redundant Searches

 Merging in 
elements may 

overflow the leaf

Redistributes must 
now account for 

overflows

Density bound = 0.75
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PMA Updates May Share Counting Work
The PMA implicit density tree determines which nodes need to be 
counted before a redistribute.


Multiple updated leaves may share an ancestor in the density tree.
Max elements  

per node

10

6

20

40 Shared ancestor 
to be counted

       ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙  ∙ ∙   ∙ ∙ ∙       ∙ ∙ ∙ ∙ ∙ ∙ ∙     ∙ ∙ ∙ ∙ ∙    ∙ ∙ ∙ ∙   ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

Updated leaf
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Even Serial Batch Updates Can  
Save Redundant Counting

An efficient serial algorithm for performing multiple updates avoids 
redundant work by caching results from counting up elements in the PMA.

Cache (1, 0) 
and 

descendants

Max elements  
per node

10

6

20

40

Cache (2, 1) 
and 

descendants

Serial order of processing

       ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙  ∙ ∙   ∙ ∙ ∙       ∙ ∙ ∙ ∙ ∙ ∙ ∙     ∙ ∙ ∙ ∙ ∙    ∙ ∙ ∙ ∙   ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

(0, 7) is already 
cached when we 

reach it
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Max elements  
per node

10

6

20

40

Depending on the 
scheduler, results may not 

have been cached yet

Naively Counting in Parallel Batch Updates  
Takes Excess Work

A naive parallel algorithm over the updates is not work-efficient because  
may repeatedly count the same cells.

May proceed in parallel

       ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙  ∙ ∙   ∙ ∙ ∙       ∙ ∙ ∙ ∙ ∙ ∙ ∙     ∙ ∙ ∙ ∙ ∙    ∙ ∙ ∙ ∙   ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)
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Max elements  
per node

10

6

20

40

(1, 0) = (0, 0) + (0, 1) 
(1, 2) = (0, 4) + (0, 5)

Set to count

(2, 1) = (1, 2) + (1, 3) 
         = (1, 2) + (0, 6) + (0, 7)

       ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙  ∙ ∙   ∙ ∙ ∙       ∙ ∙ ∙ ∙ ∙ ∙ ∙     ∙ ∙ ∙ ∙ ∙    ∙ ∙ ∙ ∙   ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

Work-Efficient PMA Batch Updates via Caching
This paper introduces a work-efficient counting algorithm for PMA batch 
updates that counts every necessary cell exactly once.

Process levels 
serially, but nodes at 
each level in parallel

Cache 
intermediate 

results to count 
only once

At each level, at least 
one child is guaranteed 

to be cached



PMA Batch Insert Scaling
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47x speedup 
over serial point

2.5x serial 
speedup

Only 20x speedup 
on 128 threads

Inserts/s



Compression Improves Scalability

Compression can improve scalability by optimizing for memory bandwidth.
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Compression Improves Throutput
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2x speedup

1.3x speedup



Batch-Parallel PMA Results
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Storing a Graph in One CPMA

55

A graph can be represented as a sorted list of 64-bit edges where the 
upper 32 bits is the source and the lower 32 bits is the destination.


F-Graph stores this sorted list of edges in a single CPMA.

(U, V)

(U, W)

U V

32 bits each

V W-V

(U, X)

X-W

U W U X

Delta compression almost 
always elides out the source

U

Compression



Graph Results
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F-Graph: Overcoming Traditional Update/Scan 
Tradeoffs With Algorithmic Optimizations

57

Despite the theoretical prediction, CPMAs can empirically overcome 
traditional update/scan tradeoffs between PMAs and cache-optimized 
trees (PaC-trees) due to the PMA’s locality.


F-Graph, a dynamic graph-processing system built on the CPMA, is 1.2x 
faster on graph algorithms and on average 2x faster for graph updates 
compared to C-PaC, a graph-processing system built on compressed 
trees.

Just like the (musical) key of F, 
F-Graph has one flat (array).



Summary

• Dynamic-graph data structures (containers) need to support efficient 
algorithms and updates to the graph.


• Update and scan performance exhibit tension due to locality concerns.


• Outside of just performance, graph data structures may have other 
important features (e.g., versioning, crash safety, etc.)


• In addition to the ones mentioned today, there have been 20+ years of 
papers on graph data structures of all kinds (transactional, concurrent, 
distributed, GPU, etc).
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BACKUP
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Graph Sizes

60



Terrace: A hierarchical graph container  
for skewed dynamic graphs 

(Pandey, Wheatman, Xu, Buluc - SIGMOD 21)

61



Existing Graph Data Structures Trade Off  
Query and Update Performance
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Aspen  
(dynamic [DhulipalaBlSh19])

Ligra  
(static [ShunBl13])

Query

Performance

Update Performance

The commonly-held belief about graph data structures says that query 
performance trades off with update performance [EdigerMcRiBa12, KyrolaBlGu12, 
ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data 
representation choices.

To achieve good 
performance, all of the 
systems are parallel.



Terrace: Overcoming the Query-Update Tradeoff 
with Locality-Optimized Data Structure Design

Terrace achieves good query and update performance by using data 
structures that enhance spatial locality.

63

Terrace  
(dynamic [PandeyWhXuBu21] )

Query

Performance

Update Performance

Aspen  
(dynamic [DhulipalaBlSh19])

Ligra  
(static [ShunBl13])

To achieve good 
performance, all of the 
systems are parallel.



Understanding Opportunities for Locality in 
Separate Per-Vertex Data Structure Design

64

Existing dynamic graph systems optimize for parallelism first with separate 
per-vertex data structures e.g., trees [DhulipalaBlSh19], adjacency lists 
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts locality.

Simplified parallelization 
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges x

x

Scan



Enhancing Spatial Locality by  
Collocating Neighbor Data Structures

65

Cache misses between 
vertices while reading all edges 

in any order (e.g. PageRank)

Idea: Collocate previously separate per-vertex data structures in the same data 
structure, which avoids cache misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]: 
collocating data with 

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21. 

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

Scan



Collocating Neighbor Data Structures Exploits 
Naturally-Occurring Skewness in Graphs 

Collocating neighbor lists improves performance because real-world dynamic 
graphs, e.g., social network graphs, often follow a skewed (e.g., power-law) 
distribution with a few high-degree vertices and many low-degree vertices 
[BarabasiAl99].
Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter [BeamerAsPa15] 64.6 99.5

Number of Twitter followers

Frequency

These graphs exhibit 
high degree variance: 

for example, the 
maximum degree in 
the Twitter graph is 

about 3 million 
[BeamerAsPa15]
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Next step: refine the solution with a hierarchical design that takes 
advantage of skewness while maintaining locality as much as possible.

67

Problem: High-degree 
vertices slow down updates 
for all vertices in the shared 

data structure Store high-degree 
vertices alone for 

updatability

Collocate low-
degree vertices for  

spatial locality

Insight: Further Optimizing for Locality with a 
Hierarchical Skew-Aware Design
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Shared Packed Memory Array 
[ItaiKoRo81, BenderDeFa00]

Trades locality for 
updatability

Terrace implements the skew-aware hierarchical design with cache-friendly 
data structures that store vertex neighbors depending on vertex degree.

Vertex  
degree

Implementing the Hierarchical Skew-Aware Design 
with Cache-Optimized Data Structures

Contiguous for 
spatial locality

Standalone B-tree 
[BayerMc72]



In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays 
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].


Given a cache block size  and input size , B-trees and PMAs take  
block transfers to scan.


B-tree inserts take  transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs

69

Problem: Neither data 
structure clearly wins for 
dynamic graphs because 

graphs require fast 
updates and scans 

Solution: use both, 
depending on degree

The theory does not 
capture sequential vs 

random access



Query Speed in Dynamic-Graph Data Structures
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Both systems support

parallelization.


Both systems run the 

same algorithms 

by implementing

the Ligra [ShunBl13] 
abstraction.


Surprisingly, in some cases, 
Terrace achieves speedup 
on queries over Ligra 
[ShunBl13], a system for static 
graphs.

Breadth-first Search PageRank Betweenness 
Centrality

Connected 
Components

Terrace, a dynamic-graph data structure, uses a hierarchical design that takes 
advantage of graph structure.

Normalized Speedup 
of Terrace Over Aspen  
[DhulipalaShBl19]



Updatability in Dynamic-Graph Data Structures

Terrace

Aspen 
[DhulipalaShBl19]

71

Insertion Throughput 
(in millions of edges 
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]


and added in batches

using the provided API.

Terrace achieves the best of both worlds in terms of query and update 
performance by taking advantage of locality.



Exploiting Skewness Improves Cache-Friendliness

72

The locality-first design in Terrace reduces cache misses during graph 
queries.

Query Ligra 
[ShunBl13]

Aspen 
[DhulipalaShBl19]

Terrace 
[PandeyWhXuBu21]

Breadth-first 
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the 
LiveJournal 

graph

Cache-friendliness translates into 
graph query performance 

Additional optimization: store 
some edges in-place for 

extra spatial locality


