
CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

+

Lecture 18: Graph Representations

mailto:hxu615@gatech.edu

Recap: Graph representations

2

Vertices labeled
from 0 to n-1

From MIT 6.172

3

Adjacency list

•Array of pointers (one per vertex)

•Each vertex has an unordered list of its edges

•Can substitute linked lists with arrays for better cache performance (at the
cost of updatability)

From MIT 6.172

Recap: Graph representations

4From MIT 6.172

Compressed sparse row (CSR)

•Two arrays: Offsets and Edges

•Offsets[i] stores the offset of where vertex i’s edges start in Edges

Recap: Graph representations

Tradeoffs in graph representations

5From MIT 6.172

What is the space usage of the
different representations?

(COO)

Let m = number of edges and n = number of vertices.

Tradeoffs in graph representations

6From MIT 6.172

What is the cost to add and delete edges in
different representations?

(COO)

Let m = number of edges and n = number of vertices.

Tradeoffs in graph representations

7From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

What is the cost to find all neighbors
of a given vertex in different representations?

Tradeoffs in graph representations

8From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

What is the cost to find if w is a neighbor of v
in different representations?

Tradeoffs in graph representations

9From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

Tradeoffs in graph representations

10From MIT 6.172

(COO)

Let m = number of edges and n = number of vertices.

Tradeoff Tradeoff

Recall: Spatial and Temporal Locality

11

Makes use of
multiple elements

transferred together

Makes use of efficient
hierarchical
accesses

Spatial locality: how many
accesses an algorithm makes to
nearby data over a short period of
time [Denning72, Denning05].

Temporal locality: how many
repeated accesses an algorithm
makes to the same data over a
short period of time [Denning72,

Denning05].

Question: Which type should we be targeting in general for graph optimization?

Spatial Locality Determines
Graph Query Performance

12

 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
 v = Q.dequeue()
 for all edges (v, w) in G.neighbors(v):
 if w not explored:
 label w as explored
 Q.enqueue(w)

Scan

Dynamic-graph data structures must support fast graph queries.

Vertex scans, or the processing of a vertex’s incident edges, are a crucial
step in many graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E:
 intersect neighbors of u and v:
 if u and v share a neighbor w:
 triangle_count++;

Scan

Triangle counting
Each neighbor list is scanned at
most once (no temporal locality),
so optimize for spatial locality

Tradeoff between Locality and Updatability

13

Problem: Can we choose data structures to support efficient scans and updates?

Adjacency matrix

Graph Query

Performance

Update Performance

Static arrays
(CSR)

14

STINGER: High Performance Data Structure for
Streaming Graphs

(Ediger, McColl, Riedy, Bader - HPEC 12)

http://www.stingergraph.com/

STINGER Data Structure Design

STINGER is based on linked lists of blocks - edges incident to a given
vertex are stored in a linked list of edge blocks.

15

3 5 6 7 11 20

1 5 8

10

2 5 12 70 89

0
1
2
3

Vertex IDs

Blocked linked lists improve locality compared to regular adjacency lists.

Batch Updates

16

Modern dynamic data structure libraries (including those for graphs)
implement parallel batch updates which insert/delete many elements at the
same time [BarbuzziMiBiBo10, DhulipalaBlSh19, DhulipalaBlGuSu22, ErbKoSa14, FriasSi07, SunFeBl18,

TsengDhBl19].

Batch updates

Parallel batch updates simplify update parallelism and reduce the overall
work of each update by combining multiple updates into one operation on
the data structure.

Batch Updates in STINGER

17

3 5 6 7 11 20

1 5 8

10

2 5 12 70 89

Graph:Batch:

(0, 1) (2, 3) (3, 8) 0
1
2
3

Vertex IDs

3 5 6 7 11 20

1 5 8

10

2 5 12 70 89

0
1
2
3

Vertex IDs

Graph:
1

3

8

Parallelize
over vertices

18

Batch size of 100k edge updates

Update Performance in STINGER

Update Performance in STINGER

19

Low-Latency Graph Streaming using Compressed
Purely-Functional Trees

(Dhulipala, Blelloch, Shun - PLDI 19)

20

C-tree Structure

Compressed purely-functional search trees

At a high level, C-trees apply a chunking scheme that takes the ordered set
of elements to be stored, “promotes” some as heads randomly with some
probability b, and stores the heads in a tree.

21

Preserve previous versions of themselves

Question: What is the expected height of a C-tree in terms of n, the
number of elements, and b, the promotion probability?

Updates in C-trees

Why are there C-trees when we already have B-trees?

The problem with B-trees in a purely-functional setting is that the C-tree
does path copying during functional updates.

• Path copying in B-trees requires copying B pointers per level, while C-
trees only need to copy one binary node per level.

22

Batch Updates in C-trees

23

Batch updates in a C-tree are based on tree union.

Input: Two C-trees, and

Output: A C-tree containing the elements in the union of and

C1 C2

C C1 C2

U

Batch Updates in C-trees

24

Step 1 - First call Expose on the tree of one of the two C-trees ()

Expose input: A C-tree

Expose output: returns the left subtree, element and prefix at the root of the
tree, and the right subtree.

C2

Batch Updates in C-trees

25

Step 2 - Using the root of , split the other tree

Split input: A C-tree and element

Split output: Two C-trees and , where (resp.) are a C-tree
containing all elements less than (resp. greater than)

C2 C1

B k

B1 B2 B1 B2
k

Batch Updates in C-trees

26

Issue: Some elements in ’s tail (elements between and the next head) in
 may come after some heads in (“right” tree of split of)

• Similarly, some elements in ’s prefix may come after some heads of

(“right” tree in split of).

To handle these, split (tail of) by the leftmost element of and split

’s prefix by the leftmost element of .

k2 k2
C2 B2 C1

B2 R2
C2

v2 k2 B2
B2 R2

“Smallest” returns the smallest head in a tree

Batch Updates in C-trees

27

To proceed, recursively call Union on the left and right halves.

• The left recursive call takes as input (“left” half of) and

• The right recursive call takes the trees and .

The output of Union is a C-tree formed by joining the left and right trees from
the recursive calls, , and the tail formed by unioning and , with the
prefix from

B1 C1 (L2, P2)
(B2 . tree, PR) (R2, vR)

k2 v′ 2 vL PL
CL

Aspen: Representing Graphs with C-trees

28

29

Aspen Batch Update Performance

Batch updates in Aspen use union in C-trees on every edge tree.

Aspen Algorithm Performance

30

Breadth-first
search

Betweenness
centrality

31from “PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections.” Dhulipala, Blelloch, Gu, and Sun. PLDI 22.

PaC-trees build on Aspen by removing randomization.

PaC-trees: An Update on Blocked Trees

32

CPMA: An efficient batch-parallel set without
pointers

(Wheatman, Burns, Buluc, Xu - PPoPP 24)

Update-Query Tradeoff in Batch-Parallel Sets

33

PaC-trees
[DhulipalaBlGuSu22]

Traditional Packed Memory Array
[IKR81, BDFC00]

Range query
performance

Batch update performance

Existing batch-parallel data structures are built on pointer-based structures
(e.g. trees, skip lists) [BarbuzziMiBiBo10, DhulipalaBlSh19, DhulipalaBlGuSu22, ErbKoSa14, FriasSi07,
SunFeBl18, TsengDhBl19].

Pointer-based structures are fast to update but slower to scan compared to
PMAs because they are not contiguous.

34

PMA with batch updates
[WheatmanBuBuXu24]

Although PMAs are asymptotically worse than trees for updates, their cache-
friendliness enables them to achieve faster updates in practice.

Overcoming the Tradeoff with Cache-Optimized
Data Structures

PaC-trees
[DhulipalaBlGuSu22]

Traditional Packed Memory Array
[IKR81, BDFC00]

Range query
performance

Batch update performance

Recall: Packed Memory Array

The Packed Memory Array (PMA) [ItaiKaRo81, BenderDeFa00] is a cache-oblivious
ordered dictionary data structure that stores elements in a contiguous array
with (a constant factor of) spaces for updatability.

That is, the PMA stores elements in m = cells.N Θ(N)

35

One
contiguous

memory
allocation

Implicitly split into chunks
of size , called

PMA leaves
Θ(log N)

Recall: PMA Structure
The PMA maintains empty spaces according to density bounds, where the
density is the ratio of filled cells to total cells per contiguous region.

36

Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N) Θ(log N)

Density range

gets stricter

(smaller allowed range)

as you go up

Implicit binary tree
on PMA chunks

Each node includes
all cells of all
descendants

“PMA
leaves”

Recall: Searching in a PMA

Searching a PMA involves a binary search on the first element of each PMA
leaf.

Once you reach the correct leaf, perform a linear pass through the chunk to
look for the element.

The search costs cache
misses.

O(log(N/log(N)) + log(N)/B) = O(log(N)

37

PMA Insert Example

38

22- 15 19 897 13 -

89- 15 19 -7 13 -

(1) Search (22):

(2) Place (22):

8915 19 22 -7 13 -

(4) Redistribute:

After placing, count
the elements in the
leaf to check the

density.

If the place violated the
density, redistribute by
counting neighboring

leaves and shifting
elements around.

The PMA maintains density bounds during updates by redistributing
elements after each update.

Density bound = 0.9

(3) Count: 0.5 1.0

0.75 0.75

PMA Parallel Batch Inserts - Overview

Batch merge

Merge elements into the PMA

Counting nodes

Determine which regions of the PMA need to be rebalanced

Redistribute nodes

Rebalance the required regions

39

40

1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

PMA Batch Inserts - Batch Merge

41

1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Search for the location
of the midpoint of the batch

in the PMA

PMA Batch Inserts - Batch Merge

42

1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Find the beginning of
the leaf in the batch

PMA Batch Inserts - Batch Merge

PMA Batch Inserts - Batch Merge

43

1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Find the beginning of
the leaf in the batch

6 9 7 8
Merge into leaf

44

1 5 - - 6 9 - - 10 14 - - 15 17 - - 2 3 4 7 8 11 12 13 16

PMA Batch
Goal: Merge the elements in the batch into the correct positions in the PMA

Find the beginning of
the leaf in the batch

1 5 - -

6 9 7 8

10 14 - - 15 17 - -

Merge into leaf

2 3 4 11 12 13 16

Then recurse on the two “halves”:

PMA Batch Inserts - Batch Merge

• Sometimes we need to merge more elements than a leaf can fit

• Since the other leaves are happening in parallel, we cannot merge into
neighboring leaves

• Idea: temporarily store the elements out of place with a pointer and count

45

PMA Batch Inserts - Handling Overflow

1 5 - - 2 3 4

PMA Batch

Not enough
empty spaces

- 5 -

PMA

1 2 3 4 5

46

Before merge:

After merge:

Batch: 15 22 89

PMA: -- 13 19 -7 - -

PMA: - - 5 -7 - -

19 8913 15 22
After redistribute:

PMA: 8915 19 22 -7 13 -

PMA batch updates save work by performing only one search per PMA
leaf that elements are destined for (instead of performing one per element
for point inserts).

Batch Updates Save Redundant Searches

 Merging in
elements may

overflow the leaf

Redistributes must
now account for

overflows

Density bound = 0.75

47

PMA Updates May Share Counting Work
The PMA implicit density tree determines which nodes need to be
counted before a redistribute.

Multiple updated leaves may share an ancestor in the density tree.
Max elements

per node

10

6

20

40 Shared ancestor
to be counted

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

Updated leaf

48

Even Serial Batch Updates Can
Save Redundant Counting

An efficient serial algorithm for performing multiple updates avoids
redundant work by caching results from counting up elements in the PMA.

Cache (1, 0)
and

descendants

Max elements
per node

10

6

20

40

Cache (2, 1)
and

descendants

Serial order of processing

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

(0, 7) is already
cached when we

reach it

49

Max elements
per node

10

6

20

40

Depending on the
scheduler, results may not

have been cached yet

Naively Counting in Parallel Batch Updates
Takes Excess Work

A naive parallel algorithm over the updates is not work-efficient because
may repeatedly count the same cells.

May proceed in parallel

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

50

Max elements
per node

10

6

20

40

(1, 0) = (0, 0) + (0, 1)
(1, 2) = (0, 4) + (0, 5)

Set to count

(2, 1) = (1, 2) + (1, 3)
 = (1, 2) + (0, 6) + (0, 7)

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

82 7 5 34

10 12 7

19

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

Work-Efficient PMA Batch Updates via Caching
This paper introduces a work-efficient counting algorithm for PMA batch
updates that counts every necessary cell exactly once.

Process levels
serially, but nodes at
each level in parallel

Cache
intermediate

results to count
only once

At each level, at least
one child is guaranteed

to be cached

PMA Batch Insert Scaling

51

47x speedup
over serial point

2.5x serial
speedup

Only 20x speedup
on 128 threads

Inserts/s

Compression Improves Scalability

Compression can improve scalability by optimizing for memory bandwidth.

52

Compression Improves Throutput

53

2x speedup

1.3x speedup

Batch-Parallel PMA Results

54

Storing a Graph in One CPMA

55

A graph can be represented as a sorted list of 64-bit edges where the
upper 32 bits is the source and the lower 32 bits is the destination.

F-Graph stores this sorted list of edges in a single CPMA.

(U, V)

(U, W)

U V

32 bits each

V W-V

(U, X)

X-W

U W U X

Delta compression almost
always elides out the source

U

Compression

Graph Results

56

F-Graph: Overcoming Traditional Update/Scan
Tradeoffs With Algorithmic Optimizations

57

Despite the theoretical prediction, CPMAs can empirically overcome
traditional update/scan tradeoffs between PMAs and cache-optimized
trees (PaC-trees) due to the PMA’s locality.

F-Graph, a dynamic graph-processing system built on the CPMA, is 1.2x
faster on graph algorithms and on average 2x faster for graph updates
compared to C-PaC, a graph-processing system built on compressed
trees.

Just like the (musical) key of F,
F-Graph has one flat (array).

Summary

• Dynamic-graph data structures (containers) need to support efficient
algorithms and updates to the graph.

• Update and scan performance exhibit tension due to locality concerns.

• Outside of just performance, graph data structures may have other
important features (e.g., versioning, crash safety, etc.)

• In addition to the ones mentioned today, there have been 20+ years of
papers on graph data structures of all kinds (transactional, concurrent,
distributed, GPU, etc).

58

BACKUP

59

Graph Sizes

60

Terrace: A hierarchical graph container
for skewed dynamic graphs

(Pandey, Wheatman, Xu, Buluc - SIGMOD 21)

61

Existing Graph Data Structures Trade Off
Query and Update Performance

62

Aspen
(dynamic [DhulipalaBlSh19])

Ligra
(static [ShunBl13])

Query

Performance

Update Performance

The commonly-held belief about graph data structures says that query
performance trades off with update performance [EdigerMcRiBa12, KyrolaBlGu12,
ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data
representation choices.

To achieve good
performance, all of the
systems are parallel.

Terrace: Overcoming the Query-Update Tradeoff
with Locality-Optimized Data Structure Design

Terrace achieves good query and update performance by using data
structures that enhance spatial locality.

63

Terrace
(dynamic [PandeyWhXuBu21])

Query

Performance

Update Performance

Aspen
(dynamic [DhulipalaBlSh19])

Ligra
(static [ShunBl13])

To achieve good
performance, all of the
systems are parallel.

Understanding Opportunities for Locality in
Separate Per-Vertex Data Structure Design

64

Existing dynamic graph systems optimize for parallelism first with separate
per-vertex data structures e.g., trees [DhulipalaBlSh19], adjacency lists
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts locality.

Simplified parallelization
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges x

x

Scan

Enhancing Spatial Locality by
Collocating Neighbor Data Structures

65

Cache misses between
vertices while reading all edges

in any order (e.g. PageRank)

Idea: Collocate previously separate per-vertex data structures in the same data
structure, which avoids cache misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]:
collocating data with

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21.

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

Scan

Collocating Neighbor Data Structures Exploits
Naturally-Occurring Skewness in Graphs

Collocating neighbor lists improves performance because real-world dynamic
graphs, e.g., social network graphs, often follow a skewed (e.g., power-law)
distribution with a few high-degree vertices and many low-degree vertices
[BarabasiAl99].
Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter [BeamerAsPa15] 64.6 99.5

Number of Twitter followers

Frequency

These graphs exhibit
high degree variance:

for example, the
maximum degree in
the Twitter graph is

about 3 million
[BeamerAsPa15]

66

Next step: refine the solution with a hierarchical design that takes
advantage of skewness while maintaining locality as much as possible.

67

Problem: High-degree
vertices slow down updates
for all vertices in the shared

data structure Store high-degree
vertices alone for

updatability

Collocate low-
degree vertices for

spatial locality

Insight: Further Optimizing for Locality with a
Hierarchical Skew-Aware Design

68

Shared Packed Memory Array
[ItaiKoRo81, BenderDeFa00]

Trades locality for
updatability

Terrace implements the skew-aware hierarchical design with cache-friendly
data structures that store vertex neighbors depending on vertex degree.

Vertex
degree

Implementing the Hierarchical Skew-Aware Design
with Cache-Optimized Data Structures

Contiguous for
spatial locality

Standalone B-tree
[BayerMc72]

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].

Given a cache block size and input size , B-trees and PMAs take
block transfers to scan.

B-tree inserts take transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs

69

Problem: Neither data
structure clearly wins for
dynamic graphs because

graphs require fast
updates and scans

Solution: use both,
depending on degree

The theory does not
capture sequential vs

random access

Query Speed in Dynamic-Graph Data Structures

70

Both systems support

parallelization.

Both systems run the

same algorithms

by implementing

the Ligra [ShunBl13]
abstraction.

Surprisingly, in some cases,
Terrace achieves speedup
on queries over Ligra
[ShunBl13], a system for static
graphs.

Breadth-first Search PageRank Betweenness
Centrality

Connected
Components

Terrace, a dynamic-graph data structure, uses a hierarchical design that takes
advantage of graph structure.

Normalized Speedup
of Terrace Over Aspen
[DhulipalaShBl19]

Updatability in Dynamic-Graph Data Structures

Terrace

Aspen
[DhulipalaShBl19]

71

Insertion Throughput
(in millions of edges
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]

and added in batches

using the provided API.

Terrace achieves the best of both worlds in terms of query and update
performance by taking advantage of locality.

Exploiting Skewness Improves Cache-Friendliness

72

The locality-first design in Terrace reduces cache misses during graph
queries.

Query Ligra
[ShunBl13]

Aspen
[DhulipalaShBl19]

Terrace
[PandeyWhXuBu21]

Breadth-first
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the
LiveJournal

graph

Cache-friendliness translates into
graph query performance

Additional optimization: store
some edges in-place for

extra spatial locality

