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COMPUTATIONAL EFFICIENCY IMPROVEMENTS
Modern world has come to rely on regular cadence

GK210, 2014 GV100, 2017 GA100, 202028 nm process, 

7.1 billion 

transistors

12 nm process, 

21.1 billion 

transistors

7 nm process, 

54.2 billion 

transistors

Enabling:
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SLOWING TRANSISTOR SCALING
“Oil well” has had easy stuff extracted already

Source: O’Laughlin, [The Rising Tide of Semiconductor Cost], 
data from International Business Strategies, Inc. and Marvell

Source: Shalf, [The Future of Computing Beyond 
Moore’s Law], projecting from data points by 

Olukotun, Hammond, Sutter, and Horowitz
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HARDWARE SPECIALIZATION
Alternative “oil well” to increase efficiency

Source: Chung et al., [Single-Chip Heterogeneous 
Computing: Does the Future Include Custom Logic, 

FPGAs, and GPGPUs?] 2010

general 
datapaths

branch
mis-predicts

cache
penalties

control
overheads

the real work
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THE AGE OF ACCELERATORS
Offload work from Turing-Complete CPU “Jack-of-all-Trades”

Heterogeneous System-On-Chip
(mobile, automotive)

NVIDIA Jetson Xavier NX SoC

Discrete Cards
(desktop graphics)

Multi-Chip Package
(datacenter AI)

PCI

Desktop CPU + GeForce GPU NVIDIA Grace Hopper Superchip
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TODAY’S QUESTION
If specialization increases efficiency, why are GPUs programmable?

Programmable accelerators: historical blip or fundamental tentpole?

CPUs
GPUs

time

%
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n
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s

Programmable CPU

Programmable GPU

Fixed-Function Accel. (i.e., Google TPU, chips from DL startups)



7

APPROACH: “A-HISTORICAL”

Sometimes it can be freeing to discard what evolved through history

• Re-examine using a lens of fundamental principles

• Avoid marketing or historical terminology to use unified vocabulary across parts

Goal: be “a-historical” but not “un-historical” or apocryphal 

• Zoom in on the truly fundamental forces driving modern computer architecture

• Add history back at the end

Feel free to ask questions throughout (even those involving history!)

Put aside graphics/gaming for now
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THOUGHT EXPERIMENT

Let’s call this theoretical accelerator “VVMul”

Good news! All computer graphics 

and Deep Learning can now be 

done just using a single workload:

Vector-Vector Multiplication!

Forget all that fancy linear algebra stuff!

Make me a product that just does this one 

workload with highest performance possible!

MS Office Stock CEO Photo

2

4

6

8

10

…

100

1

3

5

7

9

…

99

2

12

30

56

90

…

990

for n in range(0, N):

  Z[n] = A[n] * B[n]
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SIMPLE VVMUL
Off-chip memory provides 1 Word in OR out per cycle

Throughput: 1 FPMul 

every 3 cycles

M

Addr

Gen

C
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for n in range(0, N):

  Z[n] = A[n] * B[n]

Die size: tiny

R

Fixed-function 

FSM

Memory 

interface

2 registers

Fixed-function 

FSMs

FP Multiplier

2

21

12

43

Area dominated by M Unit 

and its pins, rest is trivial
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SCALING MEMORY BANDWIDTH

Step 1: Maximize Bandwidth 
density in given area

Simplified – you can spend your career studying just this problem

Step 2: Scale up die* area

* In practice, there are times where “large package with multiple chips” is equivalent to “large die” (out of scope for today)

Step 3: Etch compute 
and SRAM transistors 
into resulting area

Memory Bandwidth (ballpark)

6 HBM stacks, 1 line per cycle

64 words (32-bit) per line

= 384 words per cycle

NVIDIA GA100

Compute Bandwidth

~12000 SIMT FPMul datapaths

+ Tensor Cores, Ray Tracing, 

Caches, etc.
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VVMUL + A100 MEMORY BANDWIDTH
Off-chip memory provides N=384 Words in OR out per cycle

Throughput: N 

FPMuls every 3 cycles

Die size: large but 

empty

M

Addr

Gen

C

R
2 4 6 8 ... 1 3 5 7 ...

2 12 30 56 ...

Stride: Addr = Addr + N

Only need 384 FPMuls, compared to ~12000 for A100!

Note: Benefit for unused die area is very minor (i.e., yield)

What to do with all that extra area?
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for n in range(0, N):

  Z[n] = A[n] * B[n]

Gives contiguous line 

of N words



12

PROPOSAL: MORE OPERATORS

Turn multiplier into slightly larger ALU datapath (D) 

• Add Control (C) block to indicate which operator to do currently

• Time-mux instructions from instruction memory (I) through ALU

• Add Register File (R) to move data from one operation to the next

Let’s call this abstract arrangement of units a CIDR (pronounced “cider”)

• To avoid confusing and ambiguous historical names (Core, Processor, SM, PE, etc.)

Make the Accelerator Flexible

R

D

In
st

s

D

Cop

D

C
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CIDR PROS AND CONS

Pros: 

• Run arbitrary programs (in case people do still care about more than VVMul)

• Enables changes in the field after chip design time

• Enables “black swans” to emerge from users instead of company that designed chip

• See [Joel Emer’s keynote to Young Architect’s Workshop (ASPLOS 2021)]

Cons: 

• If D unit has latency >1, C must wait to issue dependent instructions

• See: operand bypassing [and a million other techniques for optimizing processors]

• Latency of round-trip memory Load instructions (ignore for now, will discuss later)

R
In

st
s

D

C
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FIRST-CUT PROGRAMMABLE VVMUL
Wide, contiguous line = Single Instruction Multiple Data (SIMD*)

M

D

C

D D D D
Drive same opcode 

to all datapaths

R

In
st

s

Die size: large but 

mostly empty

Overhead of C and I Units amortized by a factor of N

N-wide M and R Units are also cheaper than N individual copies 

But what performance did we achieve?

Drive same index to all 

registers (i.e., wide SRAM)

2 4 6 8 ... 1 3 5 7 ...

2 12 30 56 ...

* Difference between SIMD and SIMT not relevant for today, see extra slides
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loop:

SIMD_LD r3 := @r1 + offset_A

SIMD_LD r4 := @r1 + offset_B

SIMD_MUL r5 := r3, r4

SIMD_ST @r1 + offset_Z := r5

INCR r1

DECR r2

CBRANCH loop if r2 > 0

VVMUL IN PROGRAMMABLE MODE
Demonstrates overheads of general-purpose programmability

Throughput: N FPMuls 

every 7 cycles

Note: minor energy tax also

(dominated by DRAM in practice)

How to achieve performance parity?

Die size: large but 

empty

M

D

C

D D D D

R

Ignore memory latency for the 

moment to focus on throughput

(discuss on future slide)

In
st

s 2 4 6 8 ... 1 3 5 7 ...

2 12 30 56 ...

LDLDMULSTINCDECCBR
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APPROACH 1: INCREASE INSTS PER CYCLE

Two complementary techniques, often employed together

• Control (and value) speculation: bet that your instruction stream 

is predictable

• Out-of-order execution: Dynamically de-serialize PC into true 

dependency graph

Out-of-Order, Superscalar, Speculation (i.e., modern CPU)

C C

Spec

Branch 

predictor

Branch target 

buffer

Commit/

Rollback

C

C

Out

Of

Order

ReOrder 

Buffer

Issue 

Window

Register 

Renaming

Throughput: N FPMuls 

every 3 cycles

Why not faster? We call VVMul “memory bound”

Generally, means adding M Units makes it go faster 

(since commensurate D units should fit in resulting area increase)

Die size: large but 

mostly empty
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APPROACH 2: DUPLICATE, PARTITION WORK
I.e., Multiple Instruction Multiple Data (MIMD)

M M M M MM M M M

Crossbar

D

C

D D D D

R

In
st

s

Not shown: logic for mapping 

address to memory controller

Copy-and-paste until satisfied

Throughput: N FPMuls 

every 3 cycles

Die size: large, full

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

Still memory-bound (more precisely, memory bandwidth-bound)

But what if we do a problem that has actual data reuse?

Split wide M into independent 

banks transferring smaller lines
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COMPUTATION:MEMORY BANDWIDTH RATIO
Peak utilization is a matter of relative bandwidths, not absolutes

M
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Compute: SIMD5, MIMD4

Saturate memory bandwidth: 

At least 1 LD/ST every 4 cycles 

from each CIDR

Saturate FPMul compute bandwidth: 

At most 1 LD/ST every 4 cycles

1 M Unit, 5-line word per cycle
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COMPUTATIONAL THROUGHPUT
An unbalanced scenario

M M M M MM M M M

Crossbar
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D D D D

R
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R
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D

C

D D D D

R
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s

Saturate memory bandwidth: 

Impossible, even if each CIDR 

generates 1 LD / cycle

Saturate FPMul compute bandwidth: 

At most 1 LD/ST every 4 cycles

Example 2:

Compute: SIMD5, MIMD4

9 M Units, 5-line word per cycle
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COMPUTATIONAL THROUGHPUT
Needed: better rules of thumb for how these ratios scale
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Example 3:

Compute: SIMD5, MIMD12

Saturate memory bandwidth: 

At least 1 LD/ST every 4 cycles 

from each CIDR

Saturate FPMul compute bandwidth: 

At most 1 LD/ST every 4 cycles
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INCREASING WORKLOAD DATA REUSE
Not as easy as one might think

for n in range(0, N):

  Z[n] = A[n] * B[n]

for n in range(0, N):

  for k in range(0, K):

    Z[n] = A[n,k] * B[k]

A: none, B: none, Z: none A: none, B: O(N) XOR Z: O(K)
see also: [tiling techniques] 
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ARITHMETIC INTENSITY

Rule of thumb: there are known techniques to amortize, hide, or bury “C”, both in 
area (i.e., SIMD) and perf (i.e., loop unrolling) whereas “D” is the real on-chip limiter

• Hence “arithmetic intensity” (also called “computational intensity”)

Nota Bene: Some authors count Multiply+Add (i.e., MACC) as 2 ops, some as 1

• Best practice for Deep Learning: just count FPMultiplications [personal opinion]

Abstraction of potential data reuse (distinct from achieved)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑦𝑡𝑒𝑠 𝑓𝑟𝑜𝑚 𝑂𝑓𝑓𝑐ℎ𝑖𝑝
=

𝑂𝑝𝑠

𝐵𝑦𝑡𝑒
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ARITHMETIC INTENSITY IN THE LIMIT
Two classes of workload: fixed or scaling data reuse

lim
𝐾,𝑁→∞

𝐾𝑁

𝐾𝑁 + 𝐾 + 𝑁
=

1

𝑤𝑜𝑟𝑑_𝑠𝑖𝑧𝑒
lim

𝐾,𝑀,𝑁→∞

𝐾𝑀𝑁

𝐾𝑀 + 𝐾𝑁 + 𝑀𝑁
= ∞lim

𝑀→∞

𝑀

3𝑀
=

1

3 ∗ 𝑤𝑜𝑟𝑑_𝑠𝑖𝑧𝑒

fixed fixed scaling

Elementwise: Matrix-Vector: Matrix-Matrix:
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ROOFLINE ANALYSIS
Plots the ratio between compute bandwidth and memory bandwidth

Job of the computer architect: balance hardware provisioning to 

achieve best result for all anticipated workloads
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Architecture “Balance Point”

• Need arithmetic intensity of ~32 

non-loads per 4-byte load to 

DRAM in order to have a chance 

to fully saturate all FP32 ALUs

Compute BoundMemory Bound

Add ALUs to increase perf 

at same memory bandwidth
Add memory bandwidth to 

increase perf at same ALUs

Williams et al., [Roofline: An Insightful Visual Performance Model
for Floating-Point Programs and Multicore Architectures]
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BALANCING AN ACCELERATOR
Insight: not all axes require equal investment
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Original balance point

Option 1: 

• Increase compute roof for 

same memory bandwidth

• Low barrier, easy change 

(i.e., more MIMD)

Option 2: 

• Increase memory bandwidth for 

same compute roof

• high barrier, difficult change 

(i.e., usually requires larger die)

Option 3: 

• Increase memory bandwidth and 

compute roof

• low barrier, easy change - provided 

you already did Option 2 (i.e., use 

the extra die area for compute, too)

Note: even then your balance point 

may have shifted – phenomenon needs 

more study
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THE DATAPATH TRAP

1. Specialized 
Datapaths take 
less area

2. Copy-and-paste D 
Unit can go farther 
before filling die

It is possible (easy?) on modern dies to over-provision compute roof

3. Compute roof could end 
up “un-saturatable” given 
memory bandwidth

Side note: this is part of 

the reason GPUs have high 

memory bandwidth

C

D

C

D D D D

R
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s

versus

...

...

Intensity

T
h
ro

u
g
h
p
u
t

32 ops / byte 3200 ops / byte
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SCALING REUSE AND ASPECT RATIOS

Useful to use flexibility to refer to set of ways a platform can parallelize/schedule a given workload

• In contrast to programmability, which is the total number of workloads it can run

• See Kao et al. [A Formalism for DNN Accelerator Flexibility], SIGMETRICS

• Note: in general, programmable architectures are also flexible

Beware static decisions to parallelize/tile across certain dimensions
Architect decided K dimension could 

not be split across CIDRs to avoid cross-

CIDR spatial reduction Architect decided to split N dimension 

temporally for reuse (i.e., tile) to 

achieve balance point

Architect decided to split M in space 

(i.e., parallelize), but will always be 

under-utilized if aspect is wrong
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COROLLARY: AVAILABLE DIE AREA

Key Research Hypothesis: 

• For the highest-value workloads known today (i.e., ML, real-time graphics, HPC, 
genomics), reaching the balanced compute:memory bandwidth spot leaves plenty of 
die area free after provisioning sufficient datapaths

Question: What about SRAM buffers?

If you shouldn’t over-invest in compute roof, then what?
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ONCHIP SRAM BUFFERS: NOT A PANACEA
Caches exploit the same phenomenon as MIMD (i.e, reuse)

Once temporal reuse buffers reach sufficient capacity to allow saturation 

of compute roof, returns for more entries diminish significantly

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

Changes the balance point 

towards more intensity

Increases achieved intensity 

from available data reuse for 

high-intensity workloads
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CIDR AND MEMORY LATENCY
Loads are round-trip “pulls” instead of “pushes”

M M M

Crossbar

R

In
st

s

D

C

SRAM Buffer 

(i.e., cache)

Can never have more 

outstanding loads than 

entries in R

Can never have more 

outstanding misses than 

entries in Miss Address File

Saturated only if can get 

enough outstanding 

requests from all CIDRs to 

cover offchip latency

M

Addr

Gen

C

R

How do you see enough requests to saturate memory bandwidth?

See: Pellauer et al., [Buffets] 2017

Decoupled Data Orchestration:

Flow-forward 

pipeline
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APPROACH: DIFFERENT INST. STREAMS

Simultaneous multi-threading (SMT): increase RAMs by N contexts (not logic)

Multiple “warps” : each context is running a different copy of same program

No branch predictor needed, also actually hides latency of D, can still be super-
scalar if you want

D

C
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R
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Cmulti-
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R

In
st

s

D

C
R

In
st

s

R

In
st

s
In

st
s

R

R

R

R



32

SIMT-STYLE PROGRAMMING MODEL

SIMD Load

LD R0 := ADDR + THR.ID * SZ

SIMD Conditional

MASK[THR.ID] = TEST R0

ADD R0 R1 R2 if MASK[THR.ID]

SIMT Load

LD R0 := ADDR(@R1)

SIMT Conditional

R1 := Test R0

CBranch R1 @After

ADD R0 R1 2

@After...

In general, SIMT “feels” like individual threads on separate cores

I$

PC

Decode

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

src1,
src2

op

branch if 

r5 == 0
LD 

ADDR(@R1)
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HANDLING CONTROL DIVERGENCE

On a conditional branch:

• Push the current mask onto the stack

• Push the mask and PC for the non-taken path

• Set the mask for the taken path

At the end of the taken path:

• Pop mask and PC for the non-taken path and execute

At the end of the non-taken path:

• Pop the original mask before the branch instruction

If a mask is all zeros or all ones, skip the block

• No performance penalty if all threads make the same decision!

Add per-warp stack to store PCs and masks of non-taken paths
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EXAMPLE: CONTROL DIVERGENCE
Push mask 1111

Push mask 0011

Set mask   1100

Push mask 1100

Push mask 0100

Set mask   1000

Pop mask   0100

Pop mask   0011

Pop mask   1111

if (m[i] != 0) {

  if (a[i] > b[i]) {

    y[i] = a[i] - b[i];

  } else {

    y[i] = b[i] - a[i];

  }

} else {

  y[i] = 0;

}

3

1

2

4

5

3

1

2

4

5

Assume 4 threads/warp,

initial mask 1111

Also: Explicit sync instructions to force 

convergence when it matters



35

HANDLING MEMORY ACCESS DIVERGENCE

Each thread in a warp may load or store a completely different memory address 
(gather/scatter)

Address coalescing unit detects sequential and strided patterns, coalesces memory 
requests, but complex patterns can result in multiple lower bandwidth requests 
(memory divergence) 

Writing efficient GPU code requires most accesses to not conflict, even though 
programming model allows arbitrary patterns!
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PROS AND CONS OF SIMT

Pros:

• Allows programmers to view architecture as N x CIDR instead of CIDDDDD…DR

• While getting amortization benefits

Cons:

• Marginal area and engineering cost to support

• C unit is more complex, but still less so than out-of-order/speculative

• Non-experts can be surprised by performance drop-offs from divergence
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SCALING PROGRAMS ACROSS CIDR UNITS

Flat Pool Approach: 

Bunch of processes, each process many have N 
threads

No notion of which CIDR runs what [until you 
need it]

Explicit Hierarchy Approach:

Warp -> Block -> Grid -> Stream

Can use special features of that level

E.g., inter-warp needs less sync., can use 
“Shared Memory” scratchpad within Block, etc.

Proc 1

Proc 2

thread thread

thread

thread thread thread

Warp

thread thread thread

thread thread thread

thread thread thread

thread thread thread

thread thread thread

B
lo

c
k

Scheduler

Grid
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PUTTING IT ALL TOGETHER

To provision a complete chip you need (at least):

• Physical constraints: package size/die(s) size/memory bandwidth/TDP

• Datapath strategy: Fixed-function or programmable

• Control + Instruction Mem + Datapath + RegFile (CIDR) organization (superscalar, SIMD, etc)

• Strategy for exposing enough memory requests to saturate bandwidth

• Time-multiplexing strategy for sharing CIDR units

• MIMD organization across CIDR units, and strategy for filling them with work

• Peak possible performance: total FP Datapath resources across all of chip

• Target balance point between bandwidth and reuse that allows practical saturation
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CPU PROVISIONING

Control Unit Speculative + Out-of-Order, complex branch predictors

Datapath Unit O(8) Super-scalar w/ supplemental SIMD

Register File Small architectural, larger renamed Phys Reg File

CIDR Time-

multiplexing

O(2-4) simultaneous multi-threading, called “hyper-

threading”

CIDR:Cache ratio More area provisioned for cache

MIMD per die O(32), process/thread pool

Peak D perf per die O(32 * 8) = O(256) multiplies per cycle [NOTE: this 

excludes SIMD, which can be hard to power 

simultaneously across multiple cores in practice]

Real-world CIDR name “Core”
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CPU CORE VISUALIZED USING CIDR

C

Spec

Out

Of

Order

Branch 

predictor

Branch target 

buffer

Commit/

Rollback

ReOrder 

Buffer

Issue 

Window

Register 

Renaming

D1 D2 D3 D8

In
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s
In
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s

R

arch

R

arch

R

Phys

… D
D

D
D

D

SIMD
Datapaths

Hyper-
Threading

SRAM Buffer (i.e., L1 cache)
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CPU-STYLE PROS AND CONS

Pros: 

• Programs with low parallelism can achieve full utilization

• Doesn't need much memory bandwidth

• Can focus instead on minimizing latency (e.g., low clock cycle times, fast $ hit times)

• Backwards compatible with historical programs, and can even sometimes provide 
speedups without rewriting/recompiling

Cons: 

• Peak performance is low for high-intensity, high-parallel workloads

• Insight: this is an extremely valuable market (Graphics, Deep Learning, HPC, etc.)
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GPU PROVISIONING

Control Unit In-Order, no branch predictors or speculation

Datapath Unit O(2) Super-scalar w/ SIMT 32

Register File Large

CIDR Time-

multiplexing

O(32-64) multiple warps (depending on how many 

registers per warp)

CIDR:Cache ratio More area provisioned for CIDR, small caches

MIMD per die O(100), warp/block*/grid/stream** organization

* Block is more for latency hiding than peak datapaths

** Stream is for dependencies between kernels

Peak D perf per die O(100 x (32x2)) = O(6400) multiplies per cycle

[SIMT only: Excludes Tensor Cores]

Real-world CIDR name “SM” or “Streaming Multi-processor”
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GPU SM VISUALIZED AS CIDR

D D D D
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D D D D D

Cmulti-warp

Divergence

Stack

Memory

Coalescer
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…

M
u
ltip
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Register File driven to/from 1 corresponding D lane

SRAM Buffer (i.e., L1 cache)

Warp 

Scheduler
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GPU-STYLE PROS AND CONS

Pros: 

• High peak performance since so many D units

• Doesn't need to minimize latencies, can focus on maximizing throughput (esp. 
memory bandwidth)

Cons:

• Doesn't work with historical programs

• Low-intensity, low-parallel workloads will result in under-utilization

• Not just because of warp size or number of SMs, but also because minimum # of warps per 
SM needed to hide memory and datapath latency
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BRINGING HISTORY BACK IN

Notion of a Turing-Complete C unit was fundamental for CPUs from the beginning

• GPUs started more fixed function but moved programmable because of strong desire for field 
programmability (graphics is a fast-moving field)

Costs of C unit were amortized down successfully in GPUs

• Value of programmability outweighed area/engineering overheads in the market (real cost was giant 
investment in compilation and debugging infrastructure, called “CUDA everywhere”)

Unlike Vector-Vector multiplication, real Graphics and Deep Learning workloads have high intensity 
and parallelism

• Large MIMD x SIMT provisioning of datapaths optimized for peak performance, balanced against given 
memory bandwidth

• Note: ray-tracing is a bit different, in an interesting way…

Sadly, “CIDR” is not a historical term
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BRINGING HISTORY BACK IN (PART 2)

Programmers will rewrite workloads that are valuable enough if benefit is large enough

• Fixed function -> Programmable: Rare event or fundamental force?

Pivotal moment: Emergence of Deep Learning black swan enabled by GPUs

• Another high-parallel + high-intensity valuable workload

• Economics played a role: widely available substrate with appropriate provisioning

[Personal opinion] Much of the time, you will find that running high-intensity, high-
parallel workloads that have "wasted" operations will be faster in practice than 
focusing on optimizing instruction stream latency, as your optimizations often lower 
arithmetic intensity

See also: Myer and Sutherland’s “Wheel of Reincarnation” 

[On the Design of Display Processors, 1968]
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REVISITING AVAILABLE DIE AREA
What is the realistic compute:memory bandwidth ratio in practice?

Key Research Hypothesis: 

• For the highest-value workloads known today (i.e., ML, real-time graphics, HPC, 
genomics), reaching the balanced compute:memory bandwidth spot leaves plenty of 
die area free after provisioning sufficient datapaths and properly amortized control 
and sufficient onchip SRAM and mechanisms for exposing enough memory requests

Question: What to fill remaining die area with?

• A) Programmability features

• B) Stay fixed function, but get more datapaths
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TPU V3 MATRIX UNIT PROVISIONING

Control Unit ? [Not many public details on this]

Datapath Unit 128*128=16K Fixed multipliers per cluster

Register File 1 register per multiplier for weight, 1 for passing sum

CIDR Time-

multiplexing

None (weight-stationary dataflow inside each GEMM)

CIDR:Cache ratio Extremely high [Public materials focus on on-package 

memory instead of on-chip]

MIMD per die O(2) clusters

Peak D perf per die O(256K) [Note: High AI needed relative to memory 

bandwidth to maintain peak?]

Real-world CIDR name Matrix Unit (MXU)



49

TPU MATRIX UNIT VISUALIZED AS CIDR
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TENSOR PROCESSOR PROS AND CONS

Pros:

• Theoretical peak datapaths per chip is very high [intensity balance point is too!]

Cons:

• Removes programmability/black swans in extremely fast-moving field

• Trying to further amortize areas GPU has already amortized (i.e., C, I, R)

• Nota Bene: Difference between 1/32 and 1/16000 is smaller in absolute terms than the 
difference between 1/1 and 1/32

• Doesn’t do much to help with offchip DRAM

• One change in the field using programmability that reduces DRAM traffic could immediately 
outweigh all benefits achieved through design-time specialization
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CONTRAST: SPECIALIZATION IN GPUS
Supplement programmable CIDR for key workloads

RTCore
D D D D

In
st

s

R

R

R

R

D

D D D D D

Cmulti-warp

Divergence

Stack

Memory

Coalescer

…

…

SRAM Buffer (i.e., L1 cache)

Warp 

Scheduler

Texture Unit (graphics), 

Tensor Memory Access (compute)

RTCore (ray tracing)

Tensor Core

(deep learning)

…

…

…

Performs math and 

bookkeeping on LD/ST 

req/rsps

Acts as separate D 

unit pipeline

More like asynchronous 

co-processor per SM



52

EMERGING SPECIALIZATION ORGANIZATION
General principle: Disperse specialized blocks in programmable host

Insight: dispersion amortizes cost while avoiding diminishing returns 

from over-amortization
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“BURYING” PROGRAMMABILITY OVERHEAD
What do we need to achieve performance parity in the expected case?

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 128.00

Th
ro

u
gh

p
u

t 
( 

G
ig

a 
FP

M
u

ls
/ 

se
c 

)

Intensity ( FPMuls / Byte )

Memory-bound: 
Buried for free since computation resources are idle by 

definition

Compute-bound:
Buried if FPMul datapaths 
are fully utilized in steady 

state

Could be achieved by 

techniques such as 

superscalar, VLIW, or 

dispersed specialization



54

PROGRAMMABILITY VALUE PROPOSITION

𝑉𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐶𝑜𝑠𝑡 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦

Memory-Bound Case:

• No area cost

• Minor on-chip energy 

penalty (DRAM dominated)

• No performance cost (free 

D unit cycles)

Compute-Bound Case:

• Minor area cost (available 

because of M units)

• On-chip energy penalty 

(quantification needed)

• No performance penalty 

(overheads buried by well-

known techniques)

Potential Outcomes:

• Post field-deployment 

adaptability if workload changes

• Black swans from users

• More available optimizations (may 

even offset energy on-chip energy 

penalty if reduce off-chip traffic)

My take: From a pure computer architecture point-of-view there is no compelling 

hardware overhead to programmable accelerators (just design effort)
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TENTPOLE QUESTION REVISITED

Blip World Tentpole World

Market finds benefits of programmability 

worth overhead cost software toolchain?

Real cost: software toolchain design, verification, and maintenance 

needed to effectively program the hardware
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KEY TAKEAWAYS

Because of the need to choose a balanced memory:computation bandwidth, we often 
end up with more available die area than is intuitive

• Filling up with SRAM actually exploits same reuse principle as more datapaths

• There is no notable area or energy barrier to programmability features

• Real costs of programmability are non-architectural (i.e., programming toolchain)

Specialization is not dead, but needs to evolve to be dispersed throughout 
programmable CIDRs, instead of disjoint heterogeneous blocks

• Dispersion helps bury programmability performance overheads in compute-bound 
case, just like classical Instruction-Per-Cycle techniques (i.e., superscalar, VLIW)

Benefits of programmability are massive, but difficult to quantify



mpellauer@nvidia.com
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