
Michael Pellauer, PhD

Senior Research Scientist

Architecture Research Group

mpellauer@nvidia.com

PROGRAMMABLE ACCELERATORS:
HISTORICAL BLIP OR
FUNDAMENTAL TENTPOLE?

2

COMPUTATIONAL EFFICIENCY IMPROVEMENTS
Modern world has come to rely on regular cadence

GK210, 2014 GV100, 2017 GA100, 202028 nm process,

7.1 billion

transistors

12 nm process,

21.1 billion

transistors

7 nm process,

54.2 billion

transistors

Enabling:

3

SLOWING TRANSISTOR SCALING
“Oil well” has had easy stuff extracted already

Source: O’Laughlin, [The Rising Tide of Semiconductor Cost],
data from International Business Strategies, Inc. and Marvell

Source: Shalf, [The Future of Computing Beyond
Moore’s Law], projecting from data points by

Olukotun, Hammond, Sutter, and Horowitz

4

HARDWARE SPECIALIZATION
Alternative “oil well” to increase efficiency

Source: Chung et al., [Single-Chip Heterogeneous
Computing: Does the Future Include Custom Logic,

FPGAs, and GPGPUs?] 2010

general
datapaths

branch
mis-predicts

cache
penalties

control
overheads

the real work

5

THE AGE OF ACCELERATORS
Offload work from Turing-Complete CPU “Jack-of-all-Trades”

Heterogeneous System-On-Chip
(mobile, automotive)

NVIDIA Jetson Xavier NX SoC

Discrete Cards
(desktop graphics)

Multi-Chip Package
(datacenter AI)

PCI

Desktop CPU + GeForce GPU NVIDIA Grace Hopper Superchip

6

TODAY’S QUESTION
If specialization increases efficiency, why are GPUs programmable?

Programmable accelerators: historical blip or fundamental tentpole?

CPUs
GPUs

time

%
 o

f
c
o
m

p
u
ta

ti
o
n
 c

y
c
le

s

Programmable CPU

Programmable GPU

Fixed-Function Accel. (i.e., Google TPU, chips from DL startups)

7

APPROACH: “A-HISTORICAL”

Sometimes it can be freeing to discard what evolved through history

• Re-examine using a lens of fundamental principles

• Avoid marketing or historical terminology to use unified vocabulary across parts

Goal: be “a-historical” but not “un-historical” or apocryphal

• Zoom in on the truly fundamental forces driving modern computer architecture

• Add history back at the end

Feel free to ask questions throughout (even those involving history!)

Put aside graphics/gaming for now

8

THOUGHT EXPERIMENT

Let’s call this theoretical accelerator “VVMul”

Good news! All computer graphics

and Deep Learning can now be

done just using a single workload:

Vector-Vector Multiplication!

Forget all that fancy linear algebra stuff!

Make me a product that just does this one

workload with highest performance possible!

MS Office Stock CEO Photo

2

4

6

8

10

…

100

1

3

5

7

9

…

99

2

12

30

56

90

…

990

for n in range(0, N):

 Z[n] = A[n] * B[n]

9

SIMPLE VVMUL
Off-chip memory provides 1 Word in OR out per cycle

Throughput: 1 FPMul

every 3 cycles

M

Addr

Gen

C

2

4

6

8

10

…

100

1

3

5

7

9

…

99

2

12

30

56

90

…

990

for n in range(0, N):

 Z[n] = A[n] * B[n]

Die size: tiny

R

Fixed-function

FSM

Memory

interface

2 registers

Fixed-function

FSMs

FP Multiplier

2

21

12

43

Area dominated by M Unit

and its pins, rest is trivial

10

SCALING MEMORY BANDWIDTH

Step 1: Maximize Bandwidth
density in given area

Simplified – you can spend your career studying just this problem

Step 2: Scale up die* area

* In practice, there are times where “large package with multiple chips” is equivalent to “large die” (out of scope for today)

Step 3: Etch compute
and SRAM transistors
into resulting area

Memory Bandwidth (ballpark)

6 HBM stacks, 1 line per cycle

64 words (32-bit) per line

= 384 words per cycle

NVIDIA GA100

Compute Bandwidth

~12000 SIMT FPMul datapaths

+ Tensor Cores, Ray Tracing,

Caches, etc.

11

VVMUL + A100 MEMORY BANDWIDTH
Off-chip memory provides N=384 Words in OR out per cycle

Throughput: N

FPMuls every 3 cycles

Die size: large but

empty

M

Addr

Gen

C

R
2 4 6 8 ... 1 3 5 7 ...

2 12 30 56 ...

Stride: Addr = Addr + N

Only need 384 FPMuls, compared to ~12000 for A100!

Note: Benefit for unused die area is very minor (i.e., yield)

What to do with all that extra area?

2

4

6

8

10

…

100

1

3

5

7

9

…

99

2

12

30

56

90

…

990

for n in range(0, N):

 Z[n] = A[n] * B[n]

Gives contiguous line

of N words

12

PROPOSAL: MORE OPERATORS

Turn multiplier into slightly larger ALU datapath (D)

• Add Control (C) block to indicate which operator to do currently

• Time-mux instructions from instruction memory (I) through ALU

• Add Register File (R) to move data from one operation to the next

Let’s call this abstract arrangement of units a CIDR (pronounced “cider”)

• To avoid confusing and ambiguous historical names (Core, Processor, SM, PE, etc.)

Make the Accelerator Flexible

R

D

In
st

s

D

Cop

D

C

13

CIDR PROS AND CONS

Pros:

• Run arbitrary programs (in case people do still care about more than VVMul)

• Enables changes in the field after chip design time

• Enables “black swans” to emerge from users instead of company that designed chip

• See [Joel Emer’s keynote to Young Architect’s Workshop (ASPLOS 2021)]

Cons:

• If D unit has latency >1, C must wait to issue dependent instructions

• See: operand bypassing [and a million other techniques for optimizing processors]

• Latency of round-trip memory Load instructions (ignore for now, will discuss later)

R
In

st
s

D

C

14

FIRST-CUT PROGRAMMABLE VVMUL
Wide, contiguous line = Single Instruction Multiple Data (SIMD*)

M

D

C

D D D D
Drive same opcode

to all datapaths

R

In
st

s

Die size: large but

mostly empty

Overhead of C and I Units amortized by a factor of N

N-wide M and R Units are also cheaper than N individual copies

But what performance did we achieve?

Drive same index to all

registers (i.e., wide SRAM)

2 4 6 8 ... 1 3 5 7 ...

2 12 30 56 ...

* Difference between SIMD and SIMT not relevant for today, see extra slides

15

loop:

SIMD_LD r3 := @r1 + offset_A

SIMD_LD r4 := @r1 + offset_B

SIMD_MUL r5 := r3, r4

SIMD_ST @r1 + offset_Z := r5

INCR r1

DECR r2

CBRANCH loop if r2 > 0

VVMUL IN PROGRAMMABLE MODE
Demonstrates overheads of general-purpose programmability

Throughput: N FPMuls

every 7 cycles

Note: minor energy tax also

(dominated by DRAM in practice)

How to achieve performance parity?

Die size: large but

empty

M

D

C

D D D D

R

Ignore memory latency for the

moment to focus on throughput

(discuss on future slide)

In
st

s 2 4 6 8 ... 1 3 5 7 ...

2 12 30 56 ...

LDLDMULSTINCDECCBR

16

APPROACH 1: INCREASE INSTS PER CYCLE

Two complementary techniques, often employed together

• Control (and value) speculation: bet that your instruction stream

is predictable

• Out-of-order execution: Dynamically de-serialize PC into true

dependency graph

Out-of-Order, Superscalar, Speculation (i.e., modern CPU)

C C

Spec

Branch

predictor

Branch target

buffer

Commit/

Rollback

C

C

Out

Of

Order

ReOrder

Buffer

Issue

Window

Register

Renaming

Throughput: N FPMuls

every 3 cycles

Why not faster? We call VVMul “memory bound”

Generally, means adding M Units makes it go faster

(since commensurate D units should fit in resulting area increase)

Die size: large but

mostly empty

17

APPROACH 2: DUPLICATE, PARTITION WORK
I.e., Multiple Instruction Multiple Data (MIMD)

M M M M MM M M M

Crossbar

D

C

D D D D

R

In
st

s

Not shown: logic for mapping

address to memory controller

Copy-and-paste until satisfied

Throughput: N FPMuls

every 3 cycles

Die size: large, full

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

Still memory-bound (more precisely, memory bandwidth-bound)

But what if we do a problem that has actual data reuse?

Split wide M into independent

banks transferring smaller lines

18

COMPUTATION:MEMORY BANDWIDTH RATIO
Peak utilization is a matter of relative bandwidths, not absolutes

M

Crossbar

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

Compute: SIMD5, MIMD4

Saturate memory bandwidth:

At least 1 LD/ST every 4 cycles

from each CIDR

Saturate FPMul compute bandwidth:

At most 1 LD/ST every 4 cycles

1 M Unit, 5-line word per cycle

19

COMPUTATIONAL THROUGHPUT
An unbalanced scenario

M M M M MM M M M

Crossbar

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

Saturate memory bandwidth:

Impossible, even if each CIDR

generates 1 LD / cycle

Saturate FPMul compute bandwidth:

At most 1 LD/ST every 4 cycles

Example 2:

Compute: SIMD5, MIMD4

9 M Units, 5-line word per cycle

20

COMPUTATIONAL THROUGHPUT
Needed: better rules of thumb for how these ratios scale

M MM

Crossbar

D

C

D D D D

R

In
st

s

Crossbar

D

C

D D D D

R

In
st

s

Crossbar

D

C

D D D D

R

In
st

s

C
ro

ss
b
a
r

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

D

C

D D D D

R

In
st

s

C
ro

ss
b
a
r

C
ro

ss
b
a
r

Example 3:

Compute: SIMD5, MIMD12

Saturate memory bandwidth:

At least 1 LD/ST every 4 cycles

from each CIDR

Saturate FPMul compute bandwidth:

At most 1 LD/ST every 4 cycles

21

INCREASING WORKLOAD DATA REUSE
Not as easy as one might think

for n in range(0, N):

 Z[n] = A[n] * B[n]

for n in range(0, N):

 for k in range(0, K):

 Z[n] = A[n,k] * B[k]

A: none, B: none, Z: none A: none, B: O(N) XOR Z: O(K)
see also: [tiling techniques]

22

ARITHMETIC INTENSITY

Rule of thumb: there are known techniques to amortize, hide, or bury “C”, both in
area (i.e., SIMD) and perf (i.e., loop unrolling) whereas “D” is the real on-chip limiter

• Hence “arithmetic intensity” (also called “computational intensity”)

Nota Bene: Some authors count Multiply+Add (i.e., MACC) as 2 ops, some as 1

• Best practice for Deep Learning: just count FPMultiplications [personal opinion]

Abstraction of potential data reuse (distinct from achieved)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑦𝑡𝑒𝑠 𝑓𝑟𝑜𝑚 𝑂𝑓𝑓𝑐ℎ𝑖𝑝
=

𝑂𝑝𝑠

𝐵𝑦𝑡𝑒

23

ARITHMETIC INTENSITY IN THE LIMIT
Two classes of workload: fixed or scaling data reuse

lim
𝐾,𝑁→∞

𝐾𝑁

𝐾𝑁 + 𝐾 + 𝑁
=

1

𝑤𝑜𝑟𝑑_𝑠𝑖𝑧𝑒
lim

𝐾,𝑀,𝑁→∞

𝐾𝑀𝑁

𝐾𝑀 + 𝐾𝑁 + 𝑀𝑁
= ∞lim

𝑀→∞

𝑀

3𝑀
=

1

3 ∗ 𝑤𝑜𝑟𝑑_𝑠𝑖𝑧𝑒

fixed fixed scaling

Elementwise: Matrix-Vector: Matrix-Matrix:

24

ROOFLINE ANALYSIS
Plots the ratio between compute bandwidth and memory bandwidth

Job of the computer architect: balance hardware provisioning to

achieve best result for all anticipated workloads

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 128.00

Th
ro

u
gh

p
u

t
(

G
ig

a
FP

M
u

ls
/

se
c

)

Intensity (FPMuls / Byte from offchip)

Architecture “Balance Point”

• Need arithmetic intensity of ~32

non-loads per 4-byte load to

DRAM in order to have a chance

to fully saturate all FP32 ALUs

Compute BoundMemory Bound

Add ALUs to increase perf

at same memory bandwidth
Add memory bandwidth to

increase perf at same ALUs

Williams et al., [Roofline: An Insightful Visual Performance Model
for Floating-Point Programs and Multicore Architectures]

25

BALANCING AN ACCELERATOR
Insight: not all axes require equal investment

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 128.00

Th
ro

u
gh

p
u

t
(

G
ig

a
FP

M
u

ls
/

se
c

)

Intensity (FPMuls / Byte from offchip)

Original balance point

Option 1:

• Increase compute roof for

same memory bandwidth

• Low barrier, easy change

(i.e., more MIMD)

Option 2:

• Increase memory bandwidth for

same compute roof

• high barrier, difficult change

(i.e., usually requires larger die)

Option 3:

• Increase memory bandwidth and

compute roof

• low barrier, easy change - provided

you already did Option 2 (i.e., use

the extra die area for compute, too)

Note: even then your balance point

may have shifted – phenomenon needs

more study

26

THE DATAPATH TRAP

1. Specialized
Datapaths take
less area

2. Copy-and-paste D
Unit can go farther
before filling die

It is possible (easy?) on modern dies to over-provision compute roof

3. Compute roof could end
up “un-saturatable” given
memory bandwidth

Side note: this is part of

the reason GPUs have high

memory bandwidth

C

D

C

D D D D

R

In
st

s

versus

...

...

Intensity

T
h
ro

u
g
h
p
u
t

32 ops / byte 3200 ops / byte

27

SCALING REUSE AND ASPECT RATIOS

Useful to use flexibility to refer to set of ways a platform can parallelize/schedule a given workload

• In contrast to programmability, which is the total number of workloads it can run

• See Kao et al. [A Formalism for DNN Accelerator Flexibility], SIGMETRICS

• Note: in general, programmable architectures are also flexible

Beware static decisions to parallelize/tile across certain dimensions
Architect decided K dimension could

not be split across CIDRs to avoid cross-

CIDR spatial reduction Architect decided to split N dimension

temporally for reuse (i.e., tile) to

achieve balance point

Architect decided to split M in space

(i.e., parallelize), but will always be

under-utilized if aspect is wrong

28

COROLLARY: AVAILABLE DIE AREA

Key Research Hypothesis:

• For the highest-value workloads known today (i.e., ML, real-time graphics, HPC,
genomics), reaching the balanced compute:memory bandwidth spot leaves plenty of
die area free after provisioning sufficient datapaths

Question: What about SRAM buffers?

If you shouldn’t over-invest in compute roof, then what?

29

ONCHIP SRAM BUFFERS: NOT A PANACEA
Caches exploit the same phenomenon as MIMD (i.e, reuse)

Once temporal reuse buffers reach sufficient capacity to allow saturation

of compute roof, returns for more entries diminish significantly

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

Changes the balance point

towards more intensity

Increases achieved intensity

from available data reuse for

high-intensity workloads

30

CIDR AND MEMORY LATENCY
Loads are round-trip “pulls” instead of “pushes”

M M M

Crossbar

R

In
st

s

D

C

SRAM Buffer

(i.e., cache)

Can never have more

outstanding loads than

entries in R

Can never have more

outstanding misses than

entries in Miss Address File

Saturated only if can get

enough outstanding

requests from all CIDRs to

cover offchip latency

M

Addr

Gen

C

R

How do you see enough requests to saturate memory bandwidth?

See: Pellauer et al., [Buffets] 2017

Decoupled Data Orchestration:

Flow-forward

pipeline

31

APPROACH: DIFFERENT INST. STREAMS

Simultaneous multi-threading (SMT): increase RAMs by N contexts (not logic)

Multiple “warps” : each context is running a different copy of same program

No branch predictor needed, also actually hides latency of D, can still be super-
scalar if you want

D

C
R

In
st

s

D

CSMT
R

In
st

s
In

st
s

R

D

Cmulti-

warp
R

In
st

s

D

C
R

In
st

s

R

In
st

s
In

st
s

R

R

R

R

32

SIMT-STYLE PROGRAMMING MODEL

SIMD Load

LD R0 := ADDR + THR.ID * SZ

SIMD Conditional

MASK[THR.ID] = TEST R0

ADD R0 R1 R2 if MASK[THR.ID]

SIMT Load

LD R0 := ADDR(@R1)

SIMT Conditional

R1 := Test R0

CBranch R1 @After

ADD R0 R1 2

@After...

In general, SIMT “feels” like individual threads on separate cores

I$

PC

Decode

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

ALU

RF

src1,
src2

op

branch if

r5 == 0
LD

ADDR(@R1)

33

HANDLING CONTROL DIVERGENCE

On a conditional branch:

• Push the current mask onto the stack

• Push the mask and PC for the non-taken path

• Set the mask for the taken path

At the end of the taken path:

• Pop mask and PC for the non-taken path and execute

At the end of the non-taken path:

• Pop the original mask before the branch instruction

If a mask is all zeros or all ones, skip the block

• No performance penalty if all threads make the same decision!

Add per-warp stack to store PCs and masks of non-taken paths

34

EXAMPLE: CONTROL DIVERGENCE
Push mask 1111

Push mask 0011

Set mask 1100

Push mask 1100

Push mask 0100

Set mask 1000

Pop mask 0100

Pop mask 0011

Pop mask 1111

if (m[i] != 0) {

 if (a[i] > b[i]) {

 y[i] = a[i] - b[i];

 } else {

 y[i] = b[i] - a[i];

 }

} else {

 y[i] = 0;

}

3

1

2

4

5

3

1

2

4

5

Assume 4 threads/warp,

initial mask 1111

Also: Explicit sync instructions to force

convergence when it matters

35

HANDLING MEMORY ACCESS DIVERGENCE

Each thread in a warp may load or store a completely different memory address
(gather/scatter)

Address coalescing unit detects sequential and strided patterns, coalesces memory
requests, but complex patterns can result in multiple lower bandwidth requests
(memory divergence)

Writing efficient GPU code requires most accesses to not conflict, even though
programming model allows arbitrary patterns!

36

PROS AND CONS OF SIMT

Pros:

• Allows programmers to view architecture as N x CIDR instead of CIDDDDD…DR

• While getting amortization benefits

Cons:

• Marginal area and engineering cost to support

• C unit is more complex, but still less so than out-of-order/speculative

• Non-experts can be surprised by performance drop-offs from divergence

37

SCALING PROGRAMS ACROSS CIDR UNITS

Flat Pool Approach:

Bunch of processes, each process many have N
threads

No notion of which CIDR runs what [until you
need it]

Explicit Hierarchy Approach:

Warp -> Block -> Grid -> Stream

Can use special features of that level

E.g., inter-warp needs less sync., can use
“Shared Memory” scratchpad within Block, etc.

Proc 1

Proc 2

thread thread

thread

thread thread thread

Warp

thread thread thread

thread thread thread

thread thread thread

thread thread thread

thread thread thread

B
lo

c
k

Scheduler

Grid

38

PUTTING IT ALL TOGETHER

To provision a complete chip you need (at least):

• Physical constraints: package size/die(s) size/memory bandwidth/TDP

• Datapath strategy: Fixed-function or programmable

• Control + Instruction Mem + Datapath + RegFile (CIDR) organization (superscalar, SIMD, etc)

• Strategy for exposing enough memory requests to saturate bandwidth

• Time-multiplexing strategy for sharing CIDR units

• MIMD organization across CIDR units, and strategy for filling them with work

• Peak possible performance: total FP Datapath resources across all of chip

• Target balance point between bandwidth and reuse that allows practical saturation

39

CPU PROVISIONING

Control Unit Speculative + Out-of-Order, complex branch predictors

Datapath Unit O(8) Super-scalar w/ supplemental SIMD

Register File Small architectural, larger renamed Phys Reg File

CIDR Time-

multiplexing

O(2-4) simultaneous multi-threading, called “hyper-

threading”

CIDR:Cache ratio More area provisioned for cache

MIMD per die O(32), process/thread pool

Peak D perf per die O(32 * 8) = O(256) multiplies per cycle [NOTE: this

excludes SIMD, which can be hard to power

simultaneously across multiple cores in practice]

Real-world CIDR name “Core”

40

CPU CORE VISUALIZED USING CIDR

C

Spec

Out

Of

Order

Branch

predictor

Branch target

buffer

Commit/

Rollback

ReOrder

Buffer

Issue

Window

Register

Renaming

D1 D2 D3 D8

In
st

s
In

st
s

R

arch

R

arch

R

Phys

… D
D

D
D

D

SIMD
Datapaths

Hyper-
Threading

SRAM Buffer (i.e., L1 cache)

41

CPU-STYLE PROS AND CONS

Pros:

• Programs with low parallelism can achieve full utilization

• Doesn't need much memory bandwidth

• Can focus instead on minimizing latency (e.g., low clock cycle times, fast $ hit times)

• Backwards compatible with historical programs, and can even sometimes provide
speedups without rewriting/recompiling

Cons:

• Peak performance is low for high-intensity, high-parallel workloads

• Insight: this is an extremely valuable market (Graphics, Deep Learning, HPC, etc.)

42

GPU PROVISIONING

Control Unit In-Order, no branch predictors or speculation

Datapath Unit O(2) Super-scalar w/ SIMT 32

Register File Large

CIDR Time-

multiplexing

O(32-64) multiple warps (depending on how many

registers per warp)

CIDR:Cache ratio More area provisioned for CIDR, small caches

MIMD per die O(100), warp/block*/grid/stream** organization

* Block is more for latency hiding than peak datapaths

** Stream is for dependencies between kernels

Peak D perf per die O(100 x (32x2)) = O(6400) multiplies per cycle

[SIMT only: Excludes Tensor Cores]

Real-world CIDR name “SM” or “Streaming Multi-processor”

43

GPU SM VISUALIZED AS CIDR

D D D D

In
st

s

R

R

R

R

D

D D D D D

Cmulti-warp

Divergence

Stack

Memory

Coalescer

…

…

M
u
ltip

le
 W

a
rp

s

Register File driven to/from 1 corresponding D lane

SRAM Buffer (i.e., L1 cache)

Warp

Scheduler

44

GPU-STYLE PROS AND CONS

Pros:

• High peak performance since so many D units

• Doesn't need to minimize latencies, can focus on maximizing throughput (esp.
memory bandwidth)

Cons:

• Doesn't work with historical programs

• Low-intensity, low-parallel workloads will result in under-utilization

• Not just because of warp size or number of SMs, but also because minimum # of warps per
SM needed to hide memory and datapath latency

45

BRINGING HISTORY BACK IN

Notion of a Turing-Complete C unit was fundamental for CPUs from the beginning

• GPUs started more fixed function but moved programmable because of strong desire for field
programmability (graphics is a fast-moving field)

Costs of C unit were amortized down successfully in GPUs

• Value of programmability outweighed area/engineering overheads in the market (real cost was giant
investment in compilation and debugging infrastructure, called “CUDA everywhere”)

Unlike Vector-Vector multiplication, real Graphics and Deep Learning workloads have high intensity
and parallelism

• Large MIMD x SIMT provisioning of datapaths optimized for peak performance, balanced against given
memory bandwidth

• Note: ray-tracing is a bit different, in an interesting way…

Sadly, “CIDR” is not a historical term

46

BRINGING HISTORY BACK IN (PART 2)

Programmers will rewrite workloads that are valuable enough if benefit is large enough

• Fixed function -> Programmable: Rare event or fundamental force?

Pivotal moment: Emergence of Deep Learning black swan enabled by GPUs

• Another high-parallel + high-intensity valuable workload

• Economics played a role: widely available substrate with appropriate provisioning

[Personal opinion] Much of the time, you will find that running high-intensity, high-
parallel workloads that have "wasted" operations will be faster in practice than
focusing on optimizing instruction stream latency, as your optimizations often lower
arithmetic intensity

See also: Myer and Sutherland’s “Wheel of Reincarnation”

[On the Design of Display Processors, 1968]

47

REVISITING AVAILABLE DIE AREA
What is the realistic compute:memory bandwidth ratio in practice?

Key Research Hypothesis:

• For the highest-value workloads known today (i.e., ML, real-time graphics, HPC,
genomics), reaching the balanced compute:memory bandwidth spot leaves plenty of
die area free after provisioning sufficient datapaths and properly amortized control
and sufficient onchip SRAM and mechanisms for exposing enough memory requests

Question: What to fill remaining die area with?

• A) Programmability features

• B) Stay fixed function, but get more datapaths

48

TPU V3 MATRIX UNIT PROVISIONING

Control Unit ? [Not many public details on this]

Datapath Unit 128*128=16K Fixed multipliers per cluster

Register File 1 register per multiplier for weight, 1 for passing sum

CIDR Time-

multiplexing

None (weight-stationary dataflow inside each GEMM)

CIDR:Cache ratio Extremely high [Public materials focus on on-package

memory instead of on-chip]

MIMD per die O(2) clusters

Peak D perf per die O(256K) [Note: High AI needed relative to memory

bandwidth to maintain peak?]

Real-world CIDR name Matrix Unit (MXU)

49

TPU MATRIX UNIT VISUALIZED AS CIDR

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

M

Addr

Gen

… C

…

…

…

…

R

(accumulator)

One operand kept stationary

per multiplier

(almost like reconfiguration)

Second operand streamed

through

Accumulation happens

along other dimension

…

50

TENSOR PROCESSOR PROS AND CONS

Pros:

• Theoretical peak datapaths per chip is very high [intensity balance point is too!]

Cons:

• Removes programmability/black swans in extremely fast-moving field

• Trying to further amortize areas GPU has already amortized (i.e., C, I, R)

• Nota Bene: Difference between 1/32 and 1/16000 is smaller in absolute terms than the
difference between 1/1 and 1/32

• Doesn’t do much to help with offchip DRAM

• One change in the field using programmability that reduces DRAM traffic could immediately
outweigh all benefits achieved through design-time specialization

51

CONTRAST: SPECIALIZATION IN GPUS
Supplement programmable CIDR for key workloads

RTCore
D D D D

In
st

s

R

R

R

R

D

D D D D D

Cmulti-warp

Divergence

Stack

Memory

Coalescer

…

…

SRAM Buffer (i.e., L1 cache)

Warp

Scheduler

Texture Unit (graphics),

Tensor Memory Access (compute)

RTCore (ray tracing)

Tensor Core

(deep learning)

…

…

…

Performs math and

bookkeeping on LD/ST

req/rsps

Acts as separate D

unit pipeline

More like asynchronous

co-processor per SM

52

EMERGING SPECIALIZATION ORGANIZATION
General principle: Disperse specialized blocks in programmable host

Insight: dispersion amortizes cost while avoiding diminishing returns

from over-amortization

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

CIDR

SRAM

Disjoint: Dispersed:

Benefits:

• Lower offload latency

• Share memory hierarchy

• Programming model?

53

“BURYING” PROGRAMMABILITY OVERHEAD
What do we need to achieve performance parity in the expected case?

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 128.00

Th
ro

u
gh

p
u

t
(

G
ig

a
FP

M
u

ls
/

se
c

)

Intensity (FPMuls / Byte)

Memory-bound:
Buried for free since computation resources are idle by

definition

Compute-bound:
Buried if FPMul datapaths
are fully utilized in steady

state

Could be achieved by

techniques such as

superscalar, VLIW, or

dispersed specialization

54

PROGRAMMABILITY VALUE PROPOSITION

𝑉𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐶𝑜𝑠𝑡 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦

Memory-Bound Case:

• No area cost

• Minor on-chip energy

penalty (DRAM dominated)

• No performance cost (free

D unit cycles)

Compute-Bound Case:

• Minor area cost (available

because of M units)

• On-chip energy penalty

(quantification needed)

• No performance penalty

(overheads buried by well-

known techniques)

Potential Outcomes:

• Post field-deployment

adaptability if workload changes

• Black swans from users

• More available optimizations (may

even offset energy on-chip energy

penalty if reduce off-chip traffic)

My take: From a pure computer architecture point-of-view there is no compelling

hardware overhead to programmable accelerators (just design effort)

55

TENTPOLE QUESTION REVISITED

Blip World Tentpole World

Market finds benefits of programmability

worth overhead cost software toolchain?

Real cost: software toolchain design, verification, and maintenance

needed to effectively program the hardware

56

KEY TAKEAWAYS

Because of the need to choose a balanced memory:computation bandwidth, we often
end up with more available die area than is intuitive

• Filling up with SRAM actually exploits same reuse principle as more datapaths

• There is no notable area or energy barrier to programmability features

• Real costs of programmability are non-architectural (i.e., programming toolchain)

Specialization is not dead, but needs to evolve to be dispersed throughout
programmable CIDRs, instead of disjoint heterogeneous blocks

• Dispersion helps bury programmability performance overheads in compute-bound
case, just like classical Instruction-Per-Cycle techniques (i.e., superscalar, VLIW)

Benefits of programmability are massive, but difficult to quantify

mpellauer@nvidia.com

	Slide 1: Programmable Accelerators: Historical Blip or Fundamental Tentpole?
	Slide 2: Computational Efficiency improvements
	Slide 3: Slowing Transistor Scaling
	Slide 4: Hardware Specialization
	Slide 5: The Age of Accelerators
	Slide 6: Today’s Question
	Slide 7: Approach: “A-Historical”
	Slide 8: Thought Experiment
	Slide 9: Simple VVMul
	Slide 10: scaling Memory Bandwidth
	Slide 11: VVMul + A100 Memory Bandwidth
	Slide 12: Proposal: More Operators
	Slide 13: CIDR Pros and Cons
	Slide 14: First-Cut programmable VVMul
	Slide 15: VVMul in Programmable Mode
	Slide 16: Approach 1: Increase Insts per cycle
	Slide 17: Approach 2: Duplicate, Partition work
	Slide 18: Computation:Memory BANDWIDTH RATIO
	Slide 19: Computational Throughput
	Slide 20: Computational Throughput
	Slide 21: Increasing Workload Data Reuse
	Slide 22: Arithmetic Intensity
	Slide 23: Arithmetic intensity in the limit
	Slide 24: Roofline Analysis
	Slide 25: Balancing an accelerator
	Slide 26: The Datapath Trap
	Slide 27: Scaling Reuse and ASPECT RATIOS
	Slide 28: Corollary: Available DIE Area
	Slide 29: ONCHIP SRAM BUFFERs: not a PANACEA
	Slide 30: CIDR and MEMORY LATENCY
	Slide 31: Approach: Different Inst. Streams
	Slide 32: SIMT-Style Programming Model
	Slide 33: Handling Control Divergence
	Slide 34: Example: Control Divergence
	Slide 35: Handling Memory Access Divergence
	Slide 36: Pros and Cons of SIMT
	Slide 37: Scaling PROGRAMS ACROSS CIDR UNITs
	Slide 38: Putting it all together
	Slide 39: CPU Provisioning
	Slide 40: CPU CORE Visualized USING CIDR
	Slide 41: CPU-Style Pros and Cons
	Slide 42: GPU Provisioning
	Slide 43: GPU SM Visualized AS CIDR
	Slide 44: GPU-Style Pros and Cons
	Slide 45: Bringing history back In
	Slide 46: Bringing history back IN (Part 2)
	Slide 47: Revisiting Available DIE Area
	Slide 48: TPU v3 Matrix Unit Provisioning
	Slide 49: TPU Matrix Unit Visualized as CIDR
	Slide 50: Tensor Processor Pros and Cons
	Slide 51: Contrast: Specialization IN GPUs
	Slide 52: Emerging specialization Organization
	Slide 53: “Burying” Programmability overhead
	Slide 54: Programmability Value Proposition
	Slide 55: Tentpole Question Revisited
	Slide 56: Key Takeaways
	Slide 57

