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It is a Sparse Universe we live in

Stars Shoot Jets in Cosmic
Playground

https://www.flickr.com/photos
/nasablueshift/9027742916



With Sparse Interactions

Round-Trip Time Internet
Measurements from CAIDA's
Macroscopic Internet Topology
Monitor

https://www.caida.org/catalog/
software/walrus/rtt/



Sparsity enables Scalability

« Curse of dimensionality: As the dimensions get larger so does the
sparsity (if defined as “the ratio of potential interactions to non-negligible
interactions”)

— Higher-dimensional networks and tensor are even sparser by that definition
» Scalability of models:

— Not every cell can directly interact with every other cell in a meaningfully
impactful way.

— Sparsity is a precondition for compressed sensing in signal processing

— Power grid models, traffic models, molecule models, are all sparse by
construction

— Most machine learning models (CNNs, GNNSs) are sparse

« Scalability of solutions: one can’t solve any system with O(N¥) for k = 2
for really large N

— Many of the “algorithms of the century” are based on sparsity assumptions
(e.g., FMM)

— Fast numerical optimization methods aggressively exploit sparsity



Sparse matrix-matrix multiplication

C(-M) ©=A"D.K B’

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present
C: output matrix

SPGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present

SpMM: A sparse, B and C dense (tall skinny), often no mask (M)

SDDMM: A, B are dense, M present, C sparse

SpMV: degenerate case of SpMM with B and C having 1 column

SpMSpV: degenerate case of Sp GEMM with B, C, (possibly M) having 1 column



Pattern 1: Sparse matrix times

sparse vector (SpMSpV)

Single-source traversal:
BFS, connected components, matching, ordering, etc.

GrB_mxv(y, p, <semiring>, A, x, <desc>)

A: sparse adjacency matrix
X: sparse input vector (previous frontier)
p: mask (already discovered vertices)

parents (p):

)



Pattern 2: Sparse matrix times

sparse matrix (SpGEMM)

Multi-source traversal:
Ex: multi-source BFS, betweenness centrality, triangle counting™, Markov clustering”

GrB_mxm(Y, P, <semiring>, A, X, <desc>)
A: sparse adjacency matrix

X: sparse input matrix (previous frontier), n-by-b where b is the #sources
P: mask (already discovered vertices), multi-vector version of p from previous slide




Pattern 2: Sparse matrix times

sparse matrix (SpGEMM)

Triangle counting is also multi-source(in fact, all sources) traversal:
It just stops after one traversal iteration only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

B, C

A=L+U (hi->lo + lo->hi) @
LXU=8B (wedge, low hinge)
ANB=C (closed wedge)
sum(C)/2 = 4 triangles

A . L u C
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Protein Family Identification

QEKLFI...

HPICEV...
S o oo ) Dlstrlbuted Protein > DlSt"'bUted —> &
DGAE&;&NJ Slmllanty Search Clustermg
s s

bs| OZ}%“O SLESFL...
. . . . Protein families
Protein sequences PASTIS Proteln Slmllarlty HIpMCL

network (graph)

$ 3. Z
* Problem: Given a large collection of proteins, / Function(s) known . 'f:‘ p
? Function(s) unknown ge: /Y. .,

identify groups of proteins that are homologous
(i.e. descended from a common ancestor).

* Homologous proteins often have the same m* N
function "
e Often, only sequences (and not structure) of the

proteins are available, so we infer homology via *
sequence similarity



Novel Protein Families in

Microbial Dark Matter

Unraveling the functional dark matter through global

Microbial dark matter: novel .
metagenomics

proteins after removing
Georgios A. Pavlopoulos &3, Fotis A. Baltoumas, Sirui Liu, Oguz Selvitopi, Antonio Pedro Camargo,

m atCheS tO d d ata base Of Stephen Nayfach, Ariful Azad, Simon Roux, Lee Call, Natalia N. lvanova, |. Min Chen, David Paez-Espino,

over 100,000 genomes o . . . .
Konstantinidis, James M. Tiedje, Jennifer Pett-Ridge, David Baker, Axel Visel, Christos A. Quzounis,
(including Archaeal, Bacteria,  sergeyovchinnikoy, Aydin Bulug & Nikos C. Kyrpides &

Vi ra | a nd E u ka ryotic) Nature 622, 594-602 (2023) | Cite this article

Evangelos Karatzas, Novel Metagenome Protein Families Consortium, loannis lliopoulos, Konstantinos
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Protein clusters

HipMCL é @
8,364‘61_1.943 1,171497_4,849 N w p2 N
proteins proteins
Removing hits to >70% identity p3 @ @

isolates and Pfam >80% length 5,196,499,560 pn
edges
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edges S 7
Similarity matrix

570,198,677
proteins p1
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Metagenomes
Metatranscriptomes
26,931

P N Protein clusters
Similarity matrix



Diversity of Novel Protein Families

Distribution of protein structures
e 4,361 unique structures were predicted
using AlphaFold
3,808 structures has hits in SCOPe.

Novel protein clusters are
distributed across 8 ecosystem

tgnes L 345 has hits in Protein Data Bank
(PDB).
e After further filtering, 162 structures
—_edS are considered novel folds
Novel Folds R —
b pConﬂdo:co

.very low (<50)

Network representation of protein @ @% e neneEy
clusters (gray peripheral) and their @ @f
associated ecosystems (colored central) % 3%



Finding candidate sequence pairs

A matrix AT matrix Sequence-by-sequence overlap matrix: AAT
. o >
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sequences T
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Use any fast SpGEMM (sparse matrix times sparse matrix multiplication) algorithm and
implementation, needs to run on arbitrary semirings for position tracking



Distributed-memory many-to-many

orotein alighnment

BLOSUM 62 scoring matrix

* For proteins we need to relax the
exact match restriction of AAT

* For homology detection, need to
catch weaker signal (~30% ANI)

« K-mers with substitutes may be
more valuable than exact matches!

(positive values are shaded)
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SpGEMM for many-to-many

protein alighment

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed
many-to-many protein sequence similarity search using sparse matrices

Introduce new sparse matrix S

T 2 2 £
Contains substitution information " < < o >
- . \
Each entry has substitution cost T / I
Exact k-mers - C=AAT
YYY

Substitute k-mers > C=ASAT . 22 x 24"

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydin Bulug.
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.



https://github.com/PASSIONLab/PASTIS

PASTIS as 2022 Gordon Bell Finalist

Finalist for the 2022 ACM Gordon Bell Prize
https://en.wikipedia.org/wiki/Gordon Bell Prize

Extreme-scale many-against-many protein similarity
search

Oguz Selvitopi*, Saliya Ekanayake®, Giulia Guidi*, Muaaz G. Awan®, Georgios A. Pavlopoulos¥, Ariful Azadl,
Nikos Kyrpides**, Leonid Oliker*, Katherine Yelick**, Aydin Bulug*?

*Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, USA
TMicrosoft Corporation, USA
iUniversiz‘y of California, Berkeley, USA
§NERSC, Lawrence Berkeley National Laboratory, USA
Yinstitute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 34 Fleming Street, 16672, Vari, Greece
I ndiana University, USA
**Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
roselvitopi @1bl.gov

Abstract-- ... We unleash the power of over 20,000 GPUs on the Summit system to perform all-vs-
all protein similarity search on one of the largest publicly available datasets with 405 million
proteins, in less than 3.5 hours, cutting the time-to-solution for many use cases from weeks. The
variability of protein sequence lengths, as well as the sparsity of the space of pairwise
comparisons, make this a challenging problem in distributed memory ...



https://en.wikipedia.org/wiki/Gordon_Bell_Prize

Extreme-scale many-against-many protein

similarity search

10000 :-6- e ; J I
Advances: memory-consumption optimizations, new 8000 “\ *o; ndexbased (ideal) '
. . . rlangularity-pase
parallel algorithms taking advantage of the symmetry in the 6000 Mg == triangularity-based (ideal)
sequence similarity matrix, GPU acceleration, the ability to T o N
address load imbalance issues S ;
3 AN’
Result: many-against-many protein search on 405 million 2 000 ~B g
proteins with PASTIS on 3364 compute nodes of ORNL - » \9
Summit in 3.4 hours, sustaining a rate of 691 million N
alignments/sec and attaining ~176 TCUPs (Tera Cell ‘
Updates/sec). 36 64 128 256 512
number of nodes
The output protein sequence similarity graph is 27 TB.
k-mers sequences sequences v sequencgs
S P |eia| | e '
[ I S Y ) e
: : : : ;:) - alignment output % — -
overlap s = @ similarity
Blocked 2D Sparse SUMMA matrix 5 ¥ ) 4 XL :f_f// ¥ ) 4 matrix
by AR RN 4
pre-filter < post-filter
k-mer count nucleotide identity

overlap score batch alignments coverage



Similarity search at scale: Advancements

1.0

o
o

efficiency
o
o

o
»

0.2

Discovered candidates: 96T
Performed alignments: 8.6T
Similar pairs: 1.1T

Runtime: 3.44 hours

weak scaling efficiency

T
Fal
—— total \
-~ align \G\
1 —A— SpGEMM
& sparse (all) \
- 10
=== ideal
20 32 64 128 256 512 800

number of nodes

problem size

alignment rate (node)
alignment rate (overall)

. Alignment rate (overall) .

PASTIS

- 575.5x%
DIAMOND

10° 106 107 108 10°
alignments per second

_Alignment rate (per node) _

PASTIS

89.1x
DIAMOND

10? 10° 104 10° 106
alignments per second

Search space size

PASTIS

DIAMOND

10:16

1015 1018
search space
PASTIS improvements
sensitivityJ—.
10° 10! 102 103

order of magnitude



The Markov Cluster Algorithm (MCL)

Widely popular and successful algorithm for
discovering clusters (e.g. protein families) in
protein interaction and protein sequence
similarity networks

The number of edges or higher-length paths between two arbitrary
nodes in a cluster is greater than the number of paths between
nodes from different clusters

. 4

Random walks on the graph will frequently remains within a cluster

¥
The algorithm computes the probability of random walks through
the graph and removes lower probability terms to form clusters,




The Markov Cluster Algorithm (MCL)

.At each iteration:
i Step 1 (Expansion): Squaring the matrix while
pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (Sp GEMM),
i followed by column-wise top-K selection and column-wise pruning

i Step 2 (Inflation) : taking powers entry-wise



A combined expansion and pruning step

b b
—
DEDEEEEDED
.. s . °
e | |e Prune |

- 1 x P~ = )

. 8 ® s 0 o

i I R L

A J C = Prune(A?)

Ab

a b: number of columns in the output constructed at once

— Smaller b: less parallelism, memory efficient (b=1 is equivalent
to sparse matrix-sparse vector multiplication used in MCL)

— Larger b: more parallelism, memory intensive



HipMCL: High-performance MCL

 MCL process is both computationally expensive and memory

hungry, limiting the sizes of networks that can be clustered
 HipMCL overcomes such limitation via sparse parallel algorithms.
* Up to 1000X times faster than original MCL with same accuracy.

Process row

Process column

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

| A.Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Bulug; HipMCL: a high-performance parallel
. implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018 |



HipMCL on large networks

HipMCL

Proteins Edges #Clusters .
time

platform

Isolate-1 47M 7B 1.6M 1 hr 1024 nodes
Edison
Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison
Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes
Cori KNL
MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes
Cori KNL

MCL can not cluster these networks




HipMCL on Supercomputers with accelerators

}

Recent top supercomputers are

. g | \ <z T
all accelerated (e.g. with GPUs)  m=<2+ | e <ol
.. . <> POWER9 <¢‘g>' | <> POWER9 <¢'§>f;|
This is what a ORNL Summit mes  CPU e mmmems  CPU 2o

node looks like

XBus{—)
;F::l;i;reer:GOS such nodes in Eﬁﬁﬁ g g T\L.%%“@ 6463/{7—/ g g M%_%n@

Challenges: (1) Utilizing all GPUs, | cpu i ‘élrf{? ] VA Ry [ ‘9.5’3 ] VA9

(2) hiding the communication &M m_ﬁé éﬁﬁ &

v (OB v DENN v WEN v WEN v

Pipelined Sparse SUMMA

cru [INEINN N AN A Joint CPU-GPU distributed memory

GPU M, M, M; M,
expansion of MCL algorithm



HipMCL on Supercomputers with accelerators

Broadcasts
Time spent in various stages of HipMCL ( ;
)y s =1 Local spgemm ] . Probabilistic memory
180 Lo o [ Memory estimation |] Symbolic SpGEMM usage estimation
[ SUMMA Broadcast
_ L R =0 Merging g For each phase
m .
@O 1401 PR, B Pruning
5 S Other Broadcasts
g 1200 .
Sl o1 ] Numeric SpGEMM Pipelined
b 2 Sparse SUMMA
Q 8O- e ‘Q [ .
£ o Partial result
S B Tl § accumulation \
‘A \
A0 |- e o :
& L Multizway merge Offload to GPU
0] S O 124
. g Pruning
HipMCL Optimized HipMCL Optimized HipMCL -
(with overlap) Inflation

Other changes to HipMCL for the CPU-GPU workflow:

* Randomized memory estimation algorithm avoids symbolic phase
* New eager binary merging reduces memory footprint

* Integration of a much faster hash-based CPU SpGEMM algorithm

O. Selvitopi, M.T. Hussain, A. Azad, and A. Bulug. Optimizing high performance Markov clustering for pre-
' exascale architectures. IPDPS, 2020

___________________________________________________________________________________________________________________________



Fast Exact Leverage Score Sampling from

Khatri-Rao Products

The Khatri-Rao product (KRP, denoted () is the column-wise Kronecker product of

aw bx

_ [a b woox1 _ |ew  dx

two matrices: [C d]@[y Zl— ay bz
lcy dz]

We want to efficiently solve an overdetermined linear least-squares problem

mXinIIAX — Bllr where A = U; © -+ © Uy with U; € R,

U1 UL R
\ U1l UL R]

o, +...+ O,
U, 1 UL RI
—1
o
U1 Uz U3

We focus on large sparse tensors (mode sizes in the millions) and moderate
decomposition rank R = 10°. Assume I; = [ for all j and I > R.

This structured least-squares problem is
the computational bottleneck in

alternating least-squares Candecomp /
PARAFAC (CP) Decomposition.




Randomized Linear Least Squares

- Apply sketching operator S to A and B, solve reduced problem mXin||SA)? ~SB||,

« Want an (¢, §) guarantee on solution quality: with high probability (1 — §),
|aX = B|,, < (1 + &) min[lAX — Bl|

» Restrict S to be a sampling matrix: selects and reweights rows from A and B.

» Crux: sample Khatri-Rao product without forming the product

The grey rows are sampled: min|[|(D U] - U7 — mat(7, )"
Ui |l e ’ -
Uy | : =k LoHt ek
U, . U, mat (T, 2) Ug
&:. : . .
T, | © % - ©
2
U, t, U,
F

MTTKRP



Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution
on its rows. Leverage score £; of row i is €; = A[i,:]J(ATA)*A[i,:]T

Theorem (Leverage Score Sampling Guarantees)

Suppose S € R/*! s a leverage-score sampling matrix for A € R!*E, and
define

X := argmin g|[SAX — SB||F
If ] > Q(R max(log(R/6),1/(e6))), then with probability at least 1 — &,
|AX = B|, < (1 + &) min[|lAX — Bl|

ForI =107, N = 3, matrix 4 has 10%! rows. Far too expensive to compute all
leverage scores - can’t even index rows with 64-bit integers.

Instead: draw a row from each of Uy, ..., Uy, return their Hadamard product.



Conditional sampling and key primitive

Reduce to following problem: Given
U € R*R, design a data structure so for

I any query vector h € RX, you can
G, G, Gy G, G G - ’ )
efficiently draw a sample according to
51 probabilities
hly .
® - ' ® Gr We give a data structure based on a
binary-tree caching scheme with
0(IR?) construction time
Let $; be the random variable for the O(IR) storage space
index drawn from U;. Assume (34, ..., $y) O(R?log (I/R)) time per query

jointly follows the leverage score
distribution on A.

P8k = slS<k = s<i)
T T .
X <h<kh<kr Uk [Sk; ] Uk [Sk» ’]r ) qV [ g@ [ g® [ g | g® | g | g | ¢®




Contributions of this work

Method O Complexity per ALS Round
CP-ALS N(N + DIN-IR
CP-ARLS-LEV (2022) N(R + DRN/(e8)

TNS-CP (2022) N3IR3/(&6)

GTNE (2022) NZ2(N1SR35/e34+]R?)/e?
STS-CP (ours) N(NR3logI + IR?)/(&6)

* We build a data structure requiring runtime logarithmic in the height
of the Khatri-Rao product and quadratic in R to sample from the
leverage score distribution of A.

e STS-CP algorithm: lower asymptotic runtime for randomized CP
decomposition than SOTA methods. Practical for sparse tensors w/
billions of nonzeros.

Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor
Decomposition. V Bharadwaj, OA Malik, R Murray, L Grigori, A Bulug, ] Demmel. NeurIPS 2023




Accuracy Comparison for Fixed Sample Count

Uber (~3.3e6 nz) Enron* (~5.4e7 nz) NELL-2* (~7.7e7 nz)
% 0.20 é
0.24 X % # 0.08
é 0.15 f e
0.22 T 0.07 f
= U ®

0.06 $

Fit
— - o
Fit

0.10 *
0.20
0.05

9 0.05 @

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125
Target Rank Target Rank Target Rank
Amazon (~1.8e9 nz) Reddit* (~4.7e9 nz)
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STS-CP (ours)
Exact Solve

o e
*ooe

Fit
Fit

Rl I
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STS-CP Makes Faster Progress Towards Solutiop

0.100

0.095

t

= 0.090
0.085

0.080

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

0 1000 2000 3000 4000

5000 6000 7000

Cumulative ALS Update Time (s)

Fit vs. ALS Update Time, Reddit Tensor, R = 100.



Graph Neural Networks (GNNs)

_ Materials Discovery
Proteomics

GNNs are finding
success in many
challenging scientific
problems that involve
"/ Power Grid interconnected data.

Graph classification
Edge classification
Node classification

Particle Physics

GNNs are computationally intensive to train. Distributed training need to
scale to large GPU/node counts despite challenging sparsity.



Full-graph vs. mini-batch SGD

A »
RIS AR
‘l

Vertices

Full-graph training:

Train on entire training set
Slower convergence per epoch
Faster training per epoch
More memory hungry

samples

/

Vertices

Mini-batch SGD:

e Train on multiple samples from
training set

» Faster convergence per epoch

e Slower training per epoch
* Requires graph sampling, which

effects accuracy and performance



Full-graph vs. mini-batch SGD
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No dependencies

sample

Layered dependencies

* Vertices (unlike images) are dependent on each other

e L-layer GNN uses L-hop neighbors for vertices in batch

* Even for small L, must store ~whole graph for any minibatch for power-law graphs

* How to subsample from aggregated L-hop neighborhood and keep accuracy?

* This talk will cover both full-graph training and sampling-based training

 CAGNET (Communication-Avoiding Graph Neural nETworks):

https://github.com/PASSIONLab/CAGNET/



https://github.com/PASSIONLab/CAGNET/

Graph convolution illustrated

\\\

o8

\!
—n N D

.

c

N I< Ix IS I

lllustration of the information flow in a Graph Neural Network (GNN). On the left is the graph in
its natural form. The features (the shaded boxes) of vertices v and q are aggregated at vertex
1 through intermediate (green) vertices and edges. Features of other nodes are not shown but
are also propagated. During training, the error is backpropagated in the opposite direction in
the neural network, where each layer of the neural network propagates one hop of information.



Pattern 3: Sparse matrix times tall-skinny

dense matrix (SpMM)

Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

O(f) feature vector

3254 .. 1.3 00 [ 3254 . 13
v ' [
Ve 4 0 o0 27 1.6 .. 4.1
0 PY 0921 .. 3.8
Vv
2 () (] ()
AT H
V3
Vs
27 16 .. 41

09 2.1 .. 3.8




GCN Training

« Each node is initialized with a feature vector
— HY has initial feature vector per node (nx f)
Each node aggregates vectors of its neighbors, applies a weight

« Each layer computes gradients

for 1 =1 .. E AEnxn
for 1 =1 ..L
Zl = AT * Hi-1 *x |yl
M = o (7)) H'enx f!
for 1 =L1L-1 ..1 l l
Gl = A ¥ Gl+1 % (W1+1)T @01(21) G ETle
dH/dW = (H!1)T * A * @Gl
( ) Wl Efl—lel

A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)



The computation cube of

matrix-matrix multiplication

Matrix multiplication: V(@j) enxn  C(j) =2, A>(Lk)B(k))

The computation (discrete) cube:
et * A face for each (input/output) matrix
B + Agrid point for each multiplication

[How about sparse algorithms? 1

1D algorithms 2D algorithms 3D algorithms



Distributed SpMM algorithms

A is sparse, B and C are dense

i
B k — k—
J' —k— [ n

k n

| | ! C A ) I
C A B

e Stationary A, 1.5D algorithm e Stationary C, 2D algorithm

e Aissplit on a p/c-by-c grid e Memory optimal

* 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
* Right before reduction, sA-1.5D uses c times more dense-matrix memory



Distributed SpMM algorithms

cint C

lllustration of the 3D algorithm on a /p X /p X c grid



Communication analysis

CAGNET Cost Analyses (per process)
Algorithm Latency Bandwidth Memory
1D ]gP + 2P 27’Lf + f2 nnz(A])D—l—nfL
1.5D 24 1g & 2nf 4 2nfe mnz(A)tnfl 4 nfe
D 5\/ﬁ_|_ 31g P éi;%” + 2n’r\z/zéA) nnz(AI)D—l—nfL
3D 4p1/3 27;;%5/(?) + ;22% nnz(A]);rnfL + nfe

Symbols and Notations

Symbol Description
A Modified adjacency matrix of graph (nxn)
H' Embedding matrix in layer I (n x f)
Wi Weight matrix in layer [ (f x f)
Y! Matrix form of 8?/[5.1. (f X f)
ij
vA Input matrix to activation function (n X f)
G! Matrix form of 8E)Zli. (nx f)
ij

Activation function

Length of feature vector per vertex
Feature vector for vertex u

Total layers in GNN

Total number of processes

Latency

Reciprocal bandwidth

SIS




1.5D algorithm results for

full-graph GCN Training

I reduce [ dbcast B local
2.0- ™ 1.50 e
S - W b )
L, ; : g
1.5* 0 O
~ 1] =
3 0 = N 0 1.00-C 'y I
Q o~
“£10 ~ Y < 075 — )
n ! & i o
4 &
= 0.50-
— 0.5
0.25-
0.0 i 0.00 J
: 16 36 64 1000 36 64 100
amazon protein

= Scales with both P (GPUs — x axis) and c (replication layers in CA algorithms)

= Thisis 1 GPU/node on Summit (all GPUs per node results in paper)

= Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
= These results are from Summit at ORNL

Alok Tripathy, Katherine Yelick, Aydin Bulug. Reducing Communication in Graph Neural Network Training. SC’20




Sketching Sparse Data with SpMM

Large sparse data matrix A is reduced to a smaller matrix via sketching in order to
accelerate downstream computation, linear regression, low-rank approximation,
full-rank matrix decomposition, trace estimation, graph sparsification, and more.

Assume A is an m-by-n tall skinny sparse matrix representing the data with m >> n.
We want to apply a d-by-m sketching matrix S that is dense. The entries of S can be
random Gaussian, uniform over (-1,1), or simply 1.

Want: fast kernel for computing the dense-sparse matrix matrix product (SpMM):
A=SA

One can naively generate the dense matrix and use an optimized SpMM kernel for

this operation. In this case, S might not even fit in memory.

Central Challenge: How to use on-demand random number generation to
convert a portion of memory movement cost into computation cost?

Tianyu Liang, Riley Murray, Aydin Bulug, and James Demmel. Fast multiplication of random dense matrices with
fixed sparse matrices. In International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024.




Classes of GNN Samplers

Node-wise: Sample k neighbors per vertex in batch
» GraphSAGE, PinSAGE
» Distributed CPU and Single-node GPU implementations exist

Layer-wise: Sample k neighbors in aggregated neighborhood of batch
» FastGCN, LADIES
» Single-node GPU implementation exists

Graph-wise: Sample k vertices in graph, use induced subgraph as batch
» No current distributed CPU or GPU implementation exists

My talk from now on will focus on distributed GPU implementations of
node-wise and layer-wise sampling, by using communication-avoiding
sparse-matrix multiplication



Full sampling-based training pipeline

1=0

)
<
Q
M= > LosS
= o GCN HO Backprop
% . SGD
n

-

for batches 1i=0..k-1

b: number of vertices in each batch

s: number of vertices to be sampled per vertex (GraphSAGE) or layer (LADIES)
f: number of features

n: number of total vertices

k: number of batches to be sampled at once



Graph Sampling in GNN training

Layer-dependent
sampled bipartite
graph for the 2nd
layer of GCN.

Vertices in adj(S:)
are highlighted with
green halos around
them on the right
side of the bipartite
Black nodes are the mini-batch of source graph.
vertices chosen for that training step.

Procedure A, = SAMPLE(A, Q):

P+ QA — Compute probabilities via SpGEMM

Q « SAMPLE(P) <= Independent rejection sampling per row
A  rowsel(Q)A  ¢mmmmmm Row extraction

" A SpGEMM
Ag < A colsel(Q) ¢ Column extraction



GraphSAGE sampler

L J .
0. L] & .
& n L 4 .
0 - U .
4 - L4 .

Mini-Batch Graph G

« GraphSAGE samples s neighbors per vertex in batch u.a.r.
«  We compute each vertex’s probability distribution with SpGEMM

O wWir|©
oWlH N
N[m O W
N| =W =~

0 4 5
vi |0 00 —_ V!
vs | O 01XA—V5

SpGEMM with A (adjacency matrix of G)



LADIES sampler

Mini-Batch Graph G

 LADIES samples s neighbors in aggregated neighborhood of batch
We compute each batch’s probability distribution with SpMSpV
We compute distributions of k batches at once, via SpGEMM

012345 01

NORM

2 3 4
NORM 1 11 4
010001 |X A = 202220

Qt P

SpMSpV with A (adjacency matrix of G)



Full sampling-based training pipeline

(w/ parallelism)

[ —— 3
w, W A T
0 < SO
Heo 5 =
51 | O j— —
s W' O | Hs, g <(|
< 2 ) O
I <
- a5 - 2
P 5 L His, el
4 = -
H|+133 N Z
2 I
B He, wi el A It
S J J~ S3
All_Reduce

for each layer

b: number of vertices in each batch

s: number of vertices to be sampled per vertex (GraphSAGE) or per layer (LADIES)
f: number of features

n: number of total vertices

k: number of batches to be sampled at once



Implementation details

PyTorch 1.13 with NCCL 2.9 backend

» Kipf-Welling GCN model (2-layers, 16 hidden activations)

System:

» Perlmutter at NERSC/LBL
» 4 NVIDIAA100s per node

Sampling Baseline:

» Quiver (v0.1.1)?
» Single-node, multi-GPU GNN library on top of PyTorch Geometric?

» Supports GraphSAGE sampling

» Datasets:
S S T
Amazon 231M
Protein 8M 2B 128 256

Papers 111M 1.6B 128 172



Distributed GraphSAGE sampling with

1.5D SpGEMM

— N N —
ITITI M Tl

500 e Y B Probability
1750 A .

T i 2000 - N I Sampling
m UL 1500 =~ @ Extraction
£ 400 T _
= o 0 | T Computation
o < < = 1250 A o < 1500 ~ . .

e i I B Communication
g 300 [5Xs) [CINe)
= 1000 -
=2 1000 -
= 200 750 A
o
% 500
U 100 500 -
250
0- 0- 0 - | |
4 16 32 64 16 32 64 16 32 64
Amazon Protein Papers

- Batch size = 256, Sample number = 10, Minibatch Count = n / 256

- Speedup over Quiver for same GPU count (40X for Amazon, 3X for Protein)
» Quiver iterates over minibatches to sample
» We can sample a bulk set of minibatches with a larger Q matrix

- For appropriate replication factor, scales across process count



Distributed LADIES sampling with

1.5D SpGEMM

—— —
U I

q=1

G o G Il Probability
16000 - i
7000 - B Sampling
= 14000 6000 4 800007 @@ Extraction
£ 12000 ~ G 1 Computation
%) 5000 - 1o P
€ 10000 60000 ~ HEl Communication
= i
= 4000 - <Y o |l
o 8000 A no
£ i 40000
o 6000 T 3000 <
E [CX¢) ll, Il
T 4000 - s 2000 1
n 4l ® o 20000 1
2000 10 1000 A
0- 0- 0 -
4 16 32 64 16 32 64 16 32 64
Amazon Protein Papers

- Batch size = 256, Sample number = 10, Minibatch Count = n / 256

- Like GraphSAGE, we can sample a bulk set of minibatches with a larger
matrix

- For appropriate replication factor, scales linearly across process count

Alok Tripathy, Katherine Yelick, Aydin Bulug. Distributed Matrix-Based Sampling for Graph Neural Network
Training. MLSys 2024 (to appear)




What if we replicate the graph topology?

—e— Quiver B Sampling B Feature Fetching [ Propagation

5 Products 8?5:&4 Papers 30 rei Protein
= 718 |
U 251 |
g 61 | ol
82 44 15;
~ 311 10

2.

E1 _
= 1 >

0 0 =l o

4 8 16 4 8 16 32 64 128 4 8 16 32 64 128

- Performance of our graph replication-based algorithm.

- We show speedups over Quiver on large GPU counts on each dataset.

- Quiver's preprocessing step ran out of memory on Papers with 128 GPUs,
so we do not include a Quiver datapoint there.

Alok Tripathy, Katherine Yelick, Aydin Bulug. Distributed Matrix-Based Sampling for Graph Neural Network
Training. MLSys 2024 (to appear)




Pattern 4: Sampled dense-dense matrix

Multiplication (SDDMM)

h,

W, = _II_!I ® h1

Graph attention: making
edge weights learnable

GrB_mxm(W, A, H, H, ...);

Woy W Wey  We ® 00 @
— [ (@)
Sparse @ 0 o0
[ o
same structure ® o ®
with A ) ) )

W A



Sparsitute MMICCs center

o Sparsitute: A mathematical Institute for Sparse Computations in Science
and Engineering is a new Mathematical Multifaceted Integrated
Capability Center (MMICC) funded by the US Department of Energy.

» Sparsitute brings leading researchers across the nation working on
various aspects of sparsity together to accelerate progress and impact.

o Its research agenda aims to advance the state-of-the-art in sparse
computations both as a unified topic and within three broad pillars:
sparse and structured matrix computations, sparse tensor
computations, and sparse network computations, as well as their
interconnections.



http://sparsitute.lbl.gov/

Sparsity is a common problem in computational science and
machine learning and is of interest to many challenges in high-
energy physics, nuclear and plasma physics, power grid analysis,
biology, traffic modeling and quantum chemistry.

The overarching strategic goal of our research is to provide an
integrated treatment of sparsity across different applied math
research areas, to increase the profile of research in sparse
computations, and to make a long-lasting impact on science
applications

Extreme parallelism and extremes-scale data, and hence the need
for distributed memory parallelism is here to stay and will get
worse

Communication-avoiding algorithms, and novel data
structures for sparse matrices and tensors will be the key to
overcome these adverse technological trends
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