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PASSION Lab Research Agenda

Sparse 
Matrices

and Tensors

Parallel Computing

Applications

• Parallel data structures
• Parallel programming
• Communication bounds

• New sparse data structures and algorithms 
• Identification of computational primitives

GraphBLAS: graphs in the 
language of linear algebra

http://graphblas.org

Communication-avoiding 
algorithms for sparse matrices
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• Genomics
• Graph analysis
• Proteomics
• Graph learning

http://passion.lbl.gov

http://graphblas.org/
http://passion.lbl.gov/


It is a Sparse Universe we live in

Stars Shoot Jets in Cosmic 
Playground

https://www.flickr.com/photos
/nasablueshift/9027742916



With Sparse Interactions

Round-Trip Time Internet 
Measurements from CAIDA's 
Macroscopic Internet Topology 
Monitor

https://www.caida.org/catalog/
software/walrus/rtt/



Sparsity enables Scalability

• Curse of dimensionality: As the dimensions get larger so does the 
sparsity (if defined as “the ratio of potential interactions to non-negligible 
interactions”) 
– Higher-dimensional networks and tensor are even sparser by that definition

• Scalability of models: 
– Not every cell can directly interact with every other cell in a meaningfully 

impactful way.  
– Sparsity is a precondition for compressed sensing in signal processing
– Power grid models, traffic models, molecule models, are all sparse by 

construction
– Most machine learning models (CNNs, GNNs) are sparse

• Scalability of solutions: one can’t solve any system with O(Nk) for k ≧ 2 
for really large N
– Many of the “algorithms of the century” are based on sparsity assumptions 

(e.g., FMM)
– Fast numerical optimization methods aggressively exploit sparsity



Sparse matrix-matrix multiplication

A

C(¬M) ⊕= AT⊕.⊗ BT

M B.*( )C

M: the output mask (also called a sampling matrix), always sparse if present
A, B: input matrices, at least one is sparse unless the mask is present 
C: output matrix

SpGEMM: A, B are sparse, C can be sparse or dense (depending on shape)
Masked-SpGEMM: Same as SpGEMM, with mask (M) present
SpMM: A sparse, B and C dense (tall skinny), often no mask (M)
SDDMM: A, B are dense, M present, C sparse
SpMV: degenerate case of SpMM with B and C having 1 column
SpMSpV: degenerate case of SpGEMM with B, C, (possibly M) having 1 column
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Single-source traversal: 
BFS, connected components, matching, ordering, etc. 

GrB_mxv(y, p, <semiring>, A, x, <desc>)
A: sparse adjacency matrix
x: sparse input vector (previous frontier)
p: mask (already discovered vertices)

Pattern 1: Sparse matrix times
sparse vector (SpMSpV)



Multi-source traversal:
Ex: multi-source BFS, betweenness centrality, triangle counting*, Markov clustering*

GrB_mxm(Y, P, <semiring>, A, X, <desc>)

A: sparse adjacency matrix
X: sparse input matrix (previous frontier), n-by-b where b is the #sources
P: mask (already discovered vertices), multi-vector version of p from previous slide

Pattern 2: Sparse matrix times
sparse matrix (SpGEMM)
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A = L + U      (hi->lo  +  lo->hi)
L × U = B       (wedge, low hinge)
A ∧ B = C       (closed wedge)
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Triangle counting is also multi-source(in fact, all sources) traversal:
It just stops after one traversal iteration only, discovering all wedges

GrB_mxm(C, A, <semiring>, L, U, <desc>)

Pattern 2: Sparse matrix times
sparse matrix (SpGEMM)



Protein Family Identification

Protein similarity 
network (graph)

PASTIS HipMCL

• Problem: Given a large collection of proteins, 
identify groups of proteins that are homologous 
(i.e. descended from a common ancestor). 

• Homologous proteins often have the same 
function 

• Often, only sequences (and not structure) of the 
proteins are available, so we infer homology via 
sequence similarity



Novel Protein Families in 
Microbial Dark Matter

Microbial dark matter: novel 
proteins after removing 
matches to a database of 
over 100,000 genomes 
(including Archaeal, Bacteria, 
Viral and Eukaryotic)



Diversity of Novel Protein Families

Novel protein clusters are 
distributed across 8 ecosystem 
types

Network representation of protein 
clusters (gray peripheral) and their 
associated ecosystems (colored central)

Distribution of protein structures
● 4,361 unique structures were predicted 

using AlphaFold
● 3,808 structures has hits in SCOPe.
● 345 has hits in Protein Data Bank 

(PDB).
● After further filtering, 162 structures 

are considered novel folds



Finding candidate sequence pairs

r1
r2

r3
r4

r5
r6

r1 r2 r3 r4 r5 r6

AAT(i,j) = # shared k-mers 
between sequences i and j, 
plus their positions in the 
sequences

Sequence-by-sequence overlap matrix: AAT

Use any fast SpGEMM (sparse matrix times sparse matrix multiplication) algorithm and 
implementation, needs to run on arbitrary semirings for position tracking



Distributed-memory many-to-many
protein alignment 

• For proteins we need to relax the 
exact match restriction of AAT

• For homology detection, need to 
catch weaker signal (~30% ANI)

• K-mers with substitutes may be 
more valuable than exact matches!

1 substitute 2 substitutes



SpGEMM for many-to-many
protein alignment 

Introduce new sparse matrix S
Contains substitution information
Each entry has substitution cost

Exact k-mers à C=AAT

Substitute k-mers à C=ASAT

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydın Buluç. 
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed 
many-to-many protein sequence similarity search using sparse matrices

https://github.com/PASSIONLab/PASTIS


PASTIS as 2022 Gordon Bell Finalist

Extreme-scale many-against-many protein similarity
search

Oguz Selvitopi⇤, Saliya Ekanayake†, Giulia Guidi‡, Muaaz G. Awan§, Georgios A. Pavlopoulos¶, Ariful Azadk,
Nikos Kyrpides⇤⇤, Leonid Oliker⇤, Katherine Yelick‡⇤, Aydın Buluç⇤‡

⇤Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, USA
†Microsoft Corporation, USA

‡University of California, Berkeley, USA
§NERSC, Lawrence Berkeley National Laboratory, USA

¶Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 34 Fleming Street, 16672, Vari, Greece
kIndiana University, USA
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Abstract—Similarity search is one of the most fundamental

computations that are regularly performed on ever-increasing

protein datasets. Scalability is of paramount importance for

uncovering novel phenomena that occurs at very large scales.

We unleash the power of over 12,000 GPUs to perform all-vs-all

protein similarity search on one of the largest publicly available

datasets with 313 million proteins, in less than 4 hours, cutting the

time-to-solution for many use cases from weeks. The variability

of protein sequence lengths, as well as the sparsity of the space

of pairwise comparisons, make this a challenging problem in

distributed memory. Due to the need to construct and maintain

a data structure holding indices to all other sequences, this

application has a huge memory footprint that makes it hard to

scale the problem sizes. We overcome this memory limitation by

innovative matrix-based blocking techniques, without introducing

additional load imbalance.

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

We unleash the power of over 12,000 GPUs to perform
many-against-many protein similarity search on one of the
largest publicly available datasets with 313 million proteins
in 3.9 hours with an unprecedented rate of 320 million
alignments per second, cutting the time-to-solution for many
use cases from weeks.

II. PERFORMANCE ATTRIBUTES

Performance Attribute Value

Category of achievement Time to solution, alignments per seconds,
cell updates per second (CUPs)

Type of method used N/A

Results reported on the
basis of

Whole application for time to solution
and alignments per second.
Kernel time for cell updates per second

Precision reported Integer

System scale 2025 nodes
(85,050 CPU cores and 12,150 GPUs)

Measurement mechanism Timers

III. OVERVIEW OF THE PROBLEM

Comparative genomics studies the evolutionary and biolog-
ical relationships between different organisms by exploiting
similarities over the genome sequences. A common task, for
example, is to find out the functional or taxonomic contents
of the samples collected from an environment often by query-
ing the collected sequences against an established reference
database. The importance of enabling and building of fast com-
putational infrastructure for comparative genomics becomes
more critical as more and more genomes are sequenced.

Our work addresses the computational challenges posed
by searching similarities between two sets of proteins in the
sequence domain. The use cases of this task in computa-
tional biology are numerous and include functional annota-
tion [1], gene localization and studying protein evolution [2].
In metagenomics the DNA sequences collected from the
environment enable the study of a diverse microbial genome
pool that is often missed by the cultivation-based methods.
Such samples contain millions of protein sequences [3] and
a major component of many biological workflows is to find
out the existing genes by aligning them against a reference
database. With the sequencing costs dropping and the tech-
nology becoming more available, the bottlenecks in metage-
nomics research are gradually shifting towards computation
and storage [4], [5].

We focus on the problem of aligning a set of sequences
against another set of sequences. This problem often occurs
within the context of identifying sequences in one set (set of
query sequences) by using another set of sequences whose
functions are already known (set of reference sequences).
Another context is to find the similar sequences in a given
set by clustering them. In this variant, a many-against-many
search is performed over a set of sequences to find the
similar sequences in the set (often followed by clustering of
sequences). This variant can also be seen as aligning the given
set against itself where the query and the reference set is the

Abstract-- … We unleash the power of over 20,000 GPUs on the Summit system to perform all-vs-
all protein similarity search on one of the largest publicly available datasets with 405 million 
proteins, in less than 3.5 hours, cutting the time-to-solution for many use cases from weeks. The 
variability of protein sequence lengths, as well as the sparsity of the space of pairwise 
comparisons, make this a challenging problem in distributed memory …

Finalist for the 2022 ACM Gordon Bell Prize 
https://en.wikipedia.org/wiki/Gordon_Bell_Prize

https://en.wikipedia.org/wiki/Gordon_Bell_Prize


Extreme-scale many-against-many protein 
similarity search 
Advances: memory-consumption optimizations, new 
parallel algorithms taking advantage of the symmetry in the 
sequence similarity matrix, GPU acceleration, the ability to 
address load imbalance issues

Result: many-against-many protein search on 405 million 
proteins with PASTIS on 3364 compute nodes of ORNL 
Summit in 3.4 hours, sustaining a rate of 691 million 
alignments/sec and attaining ~176 TCUPs (Tera Cell 
Updates/sec). 

The output protein sequence similarity graph is 27 TB. 



Similarity search at scale: Advancements

• Discovered candidates: 96T
• Performed alignments: 8.6T
• Similar pairs: 1.1T
• Runtime: 3.44 hours



The Markov Cluster Algorithm (MCL)

19

The number of edges or higher-length paths between two arbitrary 
nodes in a cluster is greater than the number of paths between 
nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of  random walks through 
the graph and removes lower probability terms to form clusters

Widely popular and successful algorithm for 
discovering clusters (e.g. protein families) in 
protein interaction and protein sequence 
similarity networks



The Markov Cluster Algorithm (MCL)

20

Iteration 1 Iteration 2 Iteration 3Initial network

At each iteration:
Step 1 (Expansion): Squaring the matrix while 

pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM), 
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise



A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– Smaller b: less parallelism, memory efficient (b=1 is equivalent 

to sparse matrix-sparse vector multiplication used in MCL)
– Larger b: more parallelism, memory intensive 



HipMCL: High-performance MCL

• MCL process is both computationally expensive and memory 
hungry, limiting the sizes of networks that can be clustered

• HipMCL overcomes such limitation via sparse parallel algorithms. 
• Up to 1000X times faster than original MCL with same accuracy. 

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel 
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018
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HipMCL on large networks

23

Data Proteins Edges #Clusters HipMCL
time platform

Isolate-1 47M 7 B 1.6M 1 hr 1024 nodes 
Edison

Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison

Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes 
Cori KNL

MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes 
Cori KNL

MCL can not cluster these networks



HipMCL on Supercomputers with accelerators 

24

• Recent top supercomputers are 
all accelerated (e.g. with GPUs)

• This is what a ORNL Summit 
node looks like

• There are 4608 such nodes in 
the system

• Challenges: (1) Utilizing all GPUs, 
(2) hiding the communication 

Pipelined Sparse SUMMA
Joint CPU-GPU distributed memory 
expansion of MCL algorithm



HipMCL on Supercomputers with accelerators 

25

Other changes to HipMCL for the CPU-GPU workflow:
• Randomized memory estimation algorithm avoids symbolic phase
• New eager binary merging reduces memory footprint
• Integration of a much faster hash-based CPU SpGEMM algorithm

Bi
na

ry
 m

er
ge

Broadcasts

Symbolic SpGEMM

Pipelined 
Sparse SUMMA

For each phase

Broadcasts

Numeric SpGEMM

Partial result 
accumulation

Multi-way merge

Pruning

Inflation

Probabilistic memory 
usage estimation

Offload to GPU

O. Selvitopi, M.T. Hussain, A. Azad, and A. Buluç. Optimizing high performance Markov clustering for pre-
exascale architectures. IPDPS, 2020



Fast Exact Leverage Score Sampling from 
Khatri-Rao Products

The Khatri-Rao product (KRP, denoted ⊙) is the column-wise Kronecker product of 

two matrices: 𝑎 𝑏
𝑐 𝑑 ⊙

𝑤 𝑥
𝑦 𝑧 =

𝑎𝑤 𝑏𝑥
𝑐𝑤 𝑑𝑥
𝑎𝑦 𝑏𝑧
𝑐𝑦 𝑑𝑧

This structured least-squares problem is 
the computational bottleneck in 
alternating least-squares Candecomp / 
PARAFAC (CP) Decomposition. 

We want to efficiently solve an overdetermined linear least-squares problem 

min
$

𝐴𝑋 − 𝐵 % where 𝐴 = 𝑈!⊙⋯⊙𝑈& with 𝑈' ∈ ℝ(!×*.

We focus on large sparse tensors (mode sizes in the millions) and moderate 
decomposition rank 𝑅 ≈ 10". Assume 𝐼' = 𝐼 for all 𝑗 and 𝐼 ≥ 𝑅.



Randomized Linear Least Squares

• Apply sketching operator 𝑆 to 𝐴 and 𝐵, solve reduced problem min
+$

𝑆𝐴 >𝑋 − 𝑆𝐵 %

• Want an (𝜀, 𝛿) guarantee on solution quality: with high probability (1 − 𝛿), 

𝐴 >𝑋 − 𝐵 % ≤ 1 + 𝜀 min
$

𝐴𝑋 − 𝐵 %

• Restrict 𝑆 to be a sampling matrix: selects and reweights rows from 𝐴 and B.

• Crux: sample Khatri-Rao product without forming the product

The grey rows are sampled:



Leverage Score Sampling

We will sample rows i.i.d. from 𝐴 according to the leverage score distribution
on its rows. Leverage score ℓ! of row 𝑖 is ℓ! = 𝐴 𝑖, ∶ 𝐴"𝐴 #𝐴 𝑖, : "

Theorem (Leverage Score Sampling Guarantees)

Suppose 𝑆 ∈ ℝ!×# is a leverage-score sampling matrix for 𝐴 ∈ ℝ#×$, and 
define 

&𝑋 ≔ argmin %& 𝑆𝐴 &𝑋 − 𝑆𝐵 '

If 𝐽 ≥ Ω 𝑅max log 𝑅/𝛿 , 1/(𝜀𝛿) , then with probability at least 1 − 𝛿,

𝐴 &𝑋 − 𝐵 ' ≤ 1 + 𝜀 min
&

𝐴𝑋 − 𝐵 '

For 𝐼 = 10$, 𝑁 = 3, matrix 𝐴 has 10%& rows. Far too expensive to compute all 
leverage scores – can’t even index rows with 64-bit integers.

Instead: draw a row from each of 𝑈&, … , 𝑈', return their Hadamard product.



Conditional sampling and key primitive

Theorem
𝑝 𝑠̂, = 𝑠, 𝑠̂-, = 𝑠-,)

∝ ℎ-,ℎ-,. , 𝑈, 𝑠, , ∶ .𝑈, 𝑠, , ∶ , 𝐺/,

Reduce to following problem: Given 
𝑈 ∈ ℝ(×*, design a data structure so for 
any query vector ℎ ∈ ℝ*, you can 
efficiently draw a sample according to 
probabilities

𝑞 = 𝑈 ⋅ ℎ "

We give a data structure based on a 
binary-tree caching scheme with

𝑂(𝐼𝑅") construction time
𝑂(𝐼𝑅) storage space
𝑂 𝑅" log 𝐼/𝑅 time per query

Let 𝑠̂' be the random variable for the 
index drawn from 𝑈'. Assume (𝑠̂!, … , 𝑠̂&)
jointly follows the leverage score 
distribution on 𝐴.



Contributions of this work

Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor 
Decomposition. V Bharadwaj, OA Malik, R Murray, L Grigori, A Buluç, J Demmel. NeurIPS 2023

• We build a data structure requiring runtime logarithmic in the height 
of the Khatri-Rao product and quadratic in 𝑅 to sample from the 
leverage score distribution of 𝐴.

• STS-CP algorithm: lower asymptotic runtime for randomized CP 
decomposition than SOTA methods. Practical for sparse tensors w/ 
billions of nonzeros. 

Method A𝑶 Complexity per ALS Round
CP-ALS 𝑁 𝑁 + 𝐼 𝐼()*𝑅
CP-ARLS-LEV (2022) 𝑁 𝑅 + 𝐼 𝑅(/(𝜀𝛿)
TNS-CP (2022) 𝑁+𝐼𝑅+/(𝜀𝛿)
GTNE (2022) 𝑁, 𝑁*..𝑅+../𝜀++𝐼𝑅, /𝜀,

STS-CP (ours) 𝑁(𝑁𝑅+ log 𝐼 + 𝐼𝑅,)/(𝜀𝛿)



Accuracy Comparison for Fixed Sample Count



STS-CP Makes Faster Progress Towards Solution



Graph Neural Networks (GNNs) 

Electric Grid

Transportation

Proteomics

Power Grid

Materials Discovery

Particle Physics

GNNs are finding 
success in many 

challenging scientific 
problems that involve 
interconnected data. 

GNNs are computationally intensive to train. Distributed training need to 
scale to large GPU/node counts despite challenging sparsity.

• Graph classification
• Edge classification
• Node classification



Full-graph vs. mini-batch SGD

Full-graph training: 
• Train on entire training set
• Slower convergence per epoch
• Faster training per epoch
• More memory hungry

0

1

2
3

Vertices Images

Mini-batch SGD:
• Train on multiple samples from 

training set
• Faster convergence per epoch
• Slower training per epoch
• Requires graph sampling, which 

effects accuracy and performance

0

1

2
3

Vertices Images

samples



Full-graph vs. mini-batch SGD

• Vertices (unlike images) are dependent on each other
• L-layer GNN uses L-hop neighbors for vertices in batch
• Even for small L, must store ~whole graph for any minibatch for power-law graphs
• How to subsample from aggregated L-hop neighborhood and keep accuracy?
• This talk will cover both full-graph training and sampling-based training
• CAGNET (Communication-Avoiding Graph Neural nETworks): 

https://github.com/PASSIONLab/CAGNET/

No dependencies Layered dependencies

sample

https://github.com/PASSIONLab/CAGNET/


Graph convolution illustrated
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Illustration of the information flow in a Graph Neural Network (GNN). On the left is the graph in 
its natural form. The features (the shaded boxes) of vertices v and q are aggregated at vertex 
1 through intermediate (green) vertices and edges. Features of other nodes are not shown but 
are also propagated. During training, the error is backpropagated in the opposite direction in 
the neural network, where each layer of the neural network propagates one hop of information. 



Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

Pattern 3: Sparse matrix times tall-skinny 
dense matrix (SpMM)

v1

v2

v5
v3

3.2  5.4  …   1.3

O(f) feature vector

v4v6

3.2  5.4  …   1.3
…

2.7  1.6  …   4.1
…

0.9  2.1  …   3.8
…

AT H

0.9  2.1  …   3.8
2.7  1.6  …   4.1



GCN Training

• Each node is initialized with a feature vector
– 𝐻/ has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻0 ∈ 𝑛 𝑥 𝑓0

𝐺0 ∈ 𝑛 𝑥 𝑓0

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊0 ∈ 𝑓0 1! 𝑥 𝑓0

• A is sparse and f << n, so the main workhorse is SpMM (sparse 
matrix times tall-skinny dense matrix)



The computation cube of
matrix-matrix multiplication

Matrix multiplication: "(i,j)	Î n	x	n,	 C(i,j)	=	Sk A(i,k)B(k,j),

A B
C

The computation (discrete) cube:

• A face for each (input/output) matrix 

• A grid point for each multiplication

1D algorithms 2D algorithms 3D algorithms

How about sparse algorithms?



Distributed SpMM algorithms

• 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
• Right before reduction, sA-1.5D uses c times more dense-matrix memory

• Stationary A, 1.5D algorithm
• A is split on a p/c-by-c grid 

• Stationary C, 2D algorithm
• Memory optimal

A is sparse, B and C are dense



Distributed SpMM algorithms
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Illustration of the 3D algorithm on a 𝑝 × 𝑝 × 𝑐 grid



Communication analysis

<latexit sha1_base64="bmoKfjmecBRP+zHuSOs+/gXF+iA="></latexit>

Symbols and Notations
Symbol Description
A Modified adjacency matrix of graph (n⇥n)
H

l Embedding matrix in layer l (n⇥ f)
W

l Weight matrix in layer l (f ⇥ f)
Y

l Matrix form of @L
@W l

ij
(f ⇥ f)

Z
l Input matrix to activation function (n⇥f)

G
l Matrix form of @L

@Zl
ij

(n⇥ f)

� Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
↵ Latency
� Reciprocal bandwidth

CAGNET Cost Analyses (per process)
Algorithm Latency Bandwidth Memory
1D lgP + 2P 2nf + f2 nnz(A)+nfL

P

1.5D 2 P
c2

lg P
c2

2nf
c + 2nfc

P
nnz(A)+nfL

P + nfc
P

2D 5
p
P + 3 lgP 8nfp

P
+ 2nnz(A)p

P

nnz(A)+nfL
P

3D 4P 1/3 2nnz(A)

P2/3 + 12nf
P2/3

nnz(A)+nfL
P + nfc

P



1.5D algorithm results for 
full-graph GCN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. SC’20

§ Scales with both P (GPUs – x axis) and c (replication layers in CA algorithms)
§ This is 1 GPU/node on Summit (all GPUs per node results in paper)
§ Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)
§ These results are from Summit at ORNL



Sketching Sparse Data with SpMM

Large sparse data matrix A is reduced to a smaller matrix via sketching in order to 
accelerate downstream computation, linear regression, low-rank approximation, 
full-rank matrix decomposition, trace estimation, graph sparsification, and more. 

Assume A is an m-by-n tall skinny sparse matrix representing the data with m >> n. 
We want to apply a d-by-m sketching matrix S that is dense. The entries of S can be 
random Gaussian, uniform over (−1,1), or simply ±1.

Want: fast kernel for computing the dense-sparse matrix matrix product (SpMM):
P𝑨 = 𝑺 𝑨

One can naïvely generate the dense matrix and use an optimized SpMM kernel for 
this operation. In this case, S might not even fit in memory.

Central Challenge: How to use on-demand random number generation to 
convert a portion of memory movement cost into computation cost?

Tianyu Liang, Riley Murray, Aydın Buluç, and James Demmel. Fast multiplication of random dense matrices with 
fixed sparse matrices. In International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024. 



Classes of GNN Samplers

Node-wise: Sample k neighbors per vertex in batch
» GraphSAGE, PinSAGE
» Distributed CPU and Single-node GPU implementations exist

Layer-wise: Sample k neighbors in aggregated neighborhood of batch
» FastGCN, LADIES
» Single-node GPU implementation exists

Graph-wise: Sample k vertices in graph, use induced subgraph as batch
» No current distributed CPU or GPU implementation exists

My talk from now on will focus on distributed GPU implementations of 
node-wise and layer-wise sampling, by using communication-avoiding 
sparse-matrix multiplication



Full sampling-based training pipeline
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b: number of vertices in each batch
s: number of vertices to be sampled per vertex (GraphSAGE) or layer (LADIES)
f: number of features
n: number of total vertices
k: number of batches to be sampled at once



Graph Sampling in GNN training
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Procedure As = SAMPLE(A, Q):
Compute probabilities via SpGEMM

Column extraction

Row extraction
SpGEMM

Independent rejection sampling per row



GraphSAGE sampler

• GraphSAGE samples s neighbors per vertex in batch u.a.r.
• We compute each vertex’s probability distribution with SpGEMM
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LADIES sampler

• LADIES samples s neighbors in aggregated neighborhood of batch
• We compute each batch’s probability distribution with SpMSpV
• We compute distributions of k batches at once, via SpGEMM 

Graph G

SpMSpV with A (adjacency matrix of G)
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Full sampling-based training pipeline
(w/ parallelism)

b: number of vertices in each batch
s: number of vertices to be sampled per vertex (GraphSAGE) or per layer (LADIES)
f: number of features
n: number of total vertices
k: number of batches to be sampled at once
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Implementation details

• PyTorch 1.13 with NCCL 2.9 backend
» Kipf-Welling GCN model (2-layers, 16 hidden activations)

• System:
» Perlmutter at NERSC/LBL
» 4 NVIDIA A100s per node

• Sampling Baseline:
» Quiver (v0.1.1)1

» Single-node, multi-GPU GNN library on top of PyTorch Geometric2

» Supports GraphSAGE sampling

• Datasets:
Name Vertices Edges Features Labels

Amazon 14M 231M 300 24

Protein 8M 2B 128 256

Papers 111M 1.6B 128 172



Distributed GraphSAGE sampling with 
1.5D SpGEMM

– Batch size = 256, Sample number = 10, Minibatch Count = n / 256

– Speedup over Quiver for same GPU count (40X for Amazon, 3X for Protein)
» Quiver iterates over minibatches to sample
» We can sample a bulk set of minibatches with a larger Q matrix

– For appropriate replication factor, scales across process count



Distributed LADIES sampling with 
1.5D SpGEMM

– Batch size = 256, Sample number = 10, Minibatch Count = n / 256
– Like GraphSAGE, we can sample a bulk set of minibatches with a larger      

matrix
– For appropriate replication factor, scales linearly across process count

Alok Tripathy, Katherine Yelick, Aydın Buluç. Distributed Matrix-Based Sampling for Graph Neural Network 
Training. MLSys 2024 (to appear)



What if we replicate the graph topology?

– Performance of our graph replication-based algorithm. 
– We show speedups over Quiver on large GPU counts on each dataset. 
– Quiver's preprocessing step ran out of memory on Papers with 128 GPUs, 

so we do not include a Quiver datapoint there.

Alok Tripathy, Katherine Yelick, Aydın Buluç. Distributed Matrix-Based Sampling for Graph Neural Network 
Training. MLSys 2024 (to appear)



Pattern 4: Sampled dense-dense matrix 
Multiplication (SDDMM)

Graph attention: making 
edge weights learnable

GrB_mxm(W, A, H, H, … );
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Sparsitute MMICCs center

• Sparsitute: A mathematical Institute for Sparse Computations in Science 
and Engineering is a new Mathematical Multifaceted Integrated 
Capability Center (MMICC) funded by the US Department of Energy.

• Sparsitute brings leading researchers across the nation working on 
various aspects of sparsity together to accelerate progress and impact.

• Its research agenda aims to advance the state-of-the-art in sparse 
computations both as a unified topic and within three broad pillars: 
sparse and structured matrix computations, sparse tensor 
computations, and sparse network computations, as well as their 
interconnections. 

http://sparsitute.lbl.gov

http://sparsitute.lbl.gov/


Conclusions

• Sparsity is a common problem in computational science and 
machine learning and is of interest to many challenges in high-
energy physics, nuclear and plasma physics, power grid analysis, 
biology, traffic modeling and quantum chemistry.

• The overarching strategic goal of our research is to provide an 
integrated treatment of sparsity across different applied math 
research areas, to increase the profile of research in sparse 
computations, and to make a long-lasting impact on science 
applications

• Extreme parallelism and extremes-scale data, and hence the need 
for distributed memory parallelism is here to stay and will get 
worse 

• Communication-avoiding algorithms, and novel data 
structures for sparse matrices and tensors will be the key to 
overcome these adverse technological trends 
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