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Recall: B-trees are classical indexing structures

B/B+-trees are used 
everywhere

• In-memory indexing

• Databases

• Filesystems
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B-trees are asymptotically optimal for point operations

e.g., insert, 
find



Recap: B-tree structure
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Often similar to the 
cache-line size



Recap: B+-tree structure
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… …

Leaf nodes are 
chained together 

with pointers

Often used in 
practice

All elements 
appear in leaves

Often similar to the 
cache-line size



OLAP vs OLTP Workloads
•Online analytical processing (OLAP) and online transaction processing 
(OLTP) are two different use cases for data-processing systems.


•OLAP is optimized for complex data analysis and reporting, while OLTP 
is optimized for transactional processing and real-time updates.


•Traditionally, systems are optimized for one or the other, but recently 
there has been exploration into combining both functionalities into one 
system.

5https://dev.to/alexmercedcoder/introduction-to-the-world-of-data-oltp-olap-data-warehouses-data-lakes-and-more-2me7

source

https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/#:~:text=optimize%20inventory%20budgets.-,When%20to%20use%20OLAP%20vs.%20OLTP,processing%20and%20real-time%20updates.


Problem: B-tree insert-range tradeoff

•B-trees exhibit a tradeoff between 
point inserts (OLTP) and long range 
queries (OLAP) as a function of 
node size.


•Long range queries are critical for 
real-time analytics [PTPH12] and graph 
processing [DBGS22, PGK21, PWXB21].
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Large nodes speed up range scans at the cost of point inserts



YCSB Point Operations
Point operations:

• Insert(k, v): insert a key-value pair (k, v)

• Find(k): return a pointer to the element with the smallest key that is at 

least k 

Example: Find(15)
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14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root
Find correct pivot

Search in node for correct element



Recap example: Insert 8 into B+-tree
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14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Target leaf splits

Target leaf is full: 
need to do a data 

page split
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5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Need to adjust 
pivots

Promote 5 as a 
pivot

Recap example: Insert 8 into B+-tree



Ordered Range Operations

The importance of ordered iteration in range operations (scans) depends on 
the use case.


For example, the YCSB requires range iteration (in sorted order) to simulate 
an application of threaded conversations:


Iterate_range(start, length, f): applies the function f to length 
elements in order (by key) starting with the elements with the smallest key 
that is at least start
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Example: Load the first 50 
messages on some date



Unordered Range Operations
On the other hand, some applications may not necessarily need access to 
the keys in order.


For example: graph processing, feature storage in machine learning, file 
system metadata management.


Therefore, we consider another primitive not in YCSB:

Map_range(start, end, f): applies the function f to all elements with keys 
in the range [start, end)
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Example: Iterate 
through David’s 
neighbors in any 

order



Recall: Range operations in B+-trees
Example: Get me 5 elements in sorted order with min key 15.


Step 1: Do a find for the element with the smallest key at least 15


Step 2: Iterate forward 5 steps or until the end, whichever comes first
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5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Start here Iterate

We can use a similar method for the other range API of [start, end) by just 
modifying the end condition.



B-tree insert/range query trade-off
There is no one best node size for all operations - large node sizes improve 
range query throughput, but slow down inserts.
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B-tree insert/range query trade-off
There is no one best node size for all operations - large node sizes improve 
range query throughput, but slow down inserts.
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Question: How can we achieve good performance  
on all of these operations?



Larger nodes improve range query performance

Increasing the size of nodes decreases the number of nodes accessed 
during long range queries and thus the number of random memory 
accesses.
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But larger nodes require  
more shifting on every insert

•However, simply increasing the node size does not solve the problem 
because larger nodes require more work to maintain during inserts

•Traditionally, B-trees (and B+-trees) use a sorted array to maintain 
elements in the nodes
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B-tree insert/range query tradeoff

How can we improve performance overall despite the insert/range tradeoff?
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BP-tree: Overcoming the insert/range query 
tradeoff

The BP-tree can improve long ranges without sacrificing point operations
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BP-tree design
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Motivation: Leaf nodes are the  
hotspots in B-tree variants
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… …

All elements 
appear in leaves

 elements 
are internal

O(N/B)

•Every insert will modify at least one leaf.


•Only one in every  inserts will affect the internal nodes.O(B)



Buffered Partitioned Array (BPA) Design

•The BP-tree overcomes the insert-range tradeoff by using large nodes 
with an insert-optimized data structure in the leaves called the Buffered 
Partitioned Array (BPA).

•One way to think about the BPA is like collapsing the last two levels of a 
B-tree into one insert-optimized array-like data structure.
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Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

Example: Insertions in a BPA
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Log Header Blocks

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

Example: Insertions in a BPA
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Log Header Blocks

Insert(27)

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

197 15 89 1713 8 93 9532 508 22 2725

Sort log and count how many new elements are destined for each block:

2 + 0 = 2 1 + 0 = 0 2 + 3 = 5 2 + 0 = 2

Example: Insertions in a BPA
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Log Header Blocks

257 17 50 19 228 13 9589 9327 32

Insert(27)

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

197 15 89 1713 8 93 9532 508 22 2725

Sort log and count how many new elements are destined for each block:

2 + 0 = 2 1 + 0 = 0 2 + 3 = 5 2 + 0 = 2

Sort and redistribute all elements evenly because at least one block overflowed:

Example: Insertions in a BPA
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Example range query:  
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8
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Example range query:  
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr
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Example range query:  
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

Advance the pointers to perform sorted iteration:

log_ptr blocks_ptr
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Example range query:  
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

Advance the pointers to perform sorted iteration:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

log_ptr blocks_ptr



Bitvector Optimization
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Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

•To avoid unnecesary sorting, the BPA keeps a bit vector of length 
num_blocks that denotes whether the elements in each block are 
currently sorted.


• It sorts a block during a range query if and only if the corresponding bit in 
the bit vector is unset.


•The bit vector is maintained during inserts / range queries.

Bitvector: 0111



BP-tree concurrency control

31



Recall: Reader-Writer Concurrency

•A reader-writer lock allows concurrent access for read-only operations, 
whereas write operations require exclusive access.


•That is, multiple threads can read the data in parallel, but an exclusive 
lock is needed for writing/modifying data.


•All other threads (both writers and readers) are blocked when the lock is 
taken in write mode.

32

1 1 0 … 0 0 1
0 num_threads

0
1

Writer flag

Readers counter



Recall: Optimistic concurrency control
Concurrency control is defined at the node 
level, so we can use the same reader/
writer concurrency scheme for inserts as 
regular B-trees.


Most modifications to a B+-tree will not 
require a split or merge. 


Instead of assuming that there will be a 
split/merge, optimistically traverse the 
tree using read latches. 


If you guess wrong, repeat traversal with 
the pessimistic algorithm.

33From Utah CS6530



Range Query Concurrency Control

In regular B-trees, range operations are read-only, so we can just take read 
locks top-down, left-right.
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5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Start here Iterate



Example: iterate_range(start=25, length=2)

35

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530



Example: iterate_range(start=25, length=2)

36

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530



Example: iterate_range(start=25, length=2)

37

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530



Example: iterate_range(start=25, length=2)
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530



Example: iterate_range(start=25, length=2)
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

From Utah CS6530

R



Example: iterate_range(start=25, length=2)
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20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

From Utah CS6530

Question: Can we use this scheme for range query concurrency in the BP-tree?



Adapting B-tree Range Query Concurrency  
for the BP-tree

Problem: Range queries in the BPA might modify the array (to sort the log / 
blocks), so we can’t always take a reader lock on the leaves.


Naive solution: Take read locks on the way down, then always take writer 
locks on the leaves.


The naive solution causes performance issues because write locks are 
exclusive, so this method bottlenecks other threads.

41

5 14 19 24

BPA

Start here Iterate

BPABPA BPA BPA

R

W W



Using the bitvector to avoid taking the write lock

We use the bitvector optimization to avoid contention on the write lock 
when the input distribution is skewed.


For each leaf touched in a range query in the BP-tree:
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Take the read lock and 
check 1) whether the log is 
sorted, and 2) whether the 
relevant blocks are sorted 

(using the bitvector)

If both are true, the 
iteration can proceed with 

just the read lock

If at least one is false, 
upgrade the read lock 

to a write lock



Evaluation

43



YCSB Evaluation Framework

We evaluate the BP-Tree on several tests using the Yahoo! cloud serving 
benchmark (YCSB) and compare it to a selection of different structures.


The YCSB has two phases:

44

Load - add some base 
number of elements

Run - perform concurrent 
operations defined by 

some workload

Only the run phase 
is timed

For concreteness, each phase has 100M operations. The YCSB also allow 
definition of input distribution (e.g., uniform random, skewed, etc.)



BP-tree system/experiment setup
•48-core 2-way hyperthreaded Intel® Xeon® Platinum 8275CL CPU @ 
3.00GHz


•Cache 

◦1.5MiB of L1 cache, 

◦48 MiB of L2 cache, 

◦71.5 MiB of L3 cache across all of the cores


•189 GB of memory


•All experiments on a single socket with 24 physical cores and 48 
hyperthreads


•All times are the median of 5 trials after one warm-up trial
45



Evaluation on YCSB benchmarks
Performance of B-tree, Masstree [MKM2012], OpenBwTree [WPL+2018] and BP-tree 
on YCSB [CST+10] with 100M ops in both the load and run phase.
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BP-tree matches the performance of point operations and improves range 
queries by 1.5x



B-tree vs BP-tree point operations
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B-tree vs BP-tree range queries
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Performance Modeling of Large Nodes
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To what extent do big nodes help range queries? 

•Traditionally node sizes are small (up to 256 bytes) [CGM01, HP03, B18]


•Range queries continue to improve with very large nodes
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Recall: Cost of access in  
Disk-Access Model (DAM)

The DAM [Aggarwal and Vitter, ’88] is a classical model that measures disk page 
access (or cache-line accesses, in RAM).


Each memory block fetch has unit cost.
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Similar to Ideal-Cache model, without tall-cache assumption

Small 
memory

Big memory

Block 

Total cost = 5



Recall: Random vs Sequential Access Cost  
in the Affine Model

The affine model [ABZ96, BCF+19] accounts for sequential block accesses being 
faster than random (due to prefetching, etc.).


Random access has unit cost, and sequential access has cost .


Originally designed for disks and accounted for disk seek vs read.

α < 1
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Small 
memory

Big memory

Block 

Total cost = 3 + 2α



Finding the empirical parameters  
with the scan test

We perform the following scan test to empirically derive :


Allocate a contiguous array of X bytes (X is large, in the GB range)


for block size from 1 to X in powers of 2:


in parallel and in random order, scan over the entire array in separate 
blocks of size B

α

ℓ

53

ℓ

Measure time as a function of  
varying block size

ℓ ℓ ℓ ℓ ℓ

t1 t2



Finding the empirical parameters  
with the scan test

We also need to find , the cost of reading a random location in DRAM, and 
, the cost of writing to a random location in DRAM.


By setting  (the cache-line size), we can compute the latency of 
reading a random cache line in DRAM by dividing the total time by the 
number of lines read.

r
w

ℓ = Z

54

Z Z Z Z Z Z

t1 t2



Results of scan test
We found the following:

• 

•  ns

•The machine has a cache line size  bytes, and we use the heuristic 
of .

α = 0.3
r = 1.95

Z = 64
w = 2r
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Expression for cost in 
terms of Z, α, r, w, N

Predicted time for 
operations

Empirical findings for 
parameter values



Empirically validating the affine model in memory
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DAM model

Empirical

Affine model

•We find the affine model also holds true for RAM using the scan test.

• Interestingly, it continues to hold even when the block goes past 1 page 
(4Kb) - more on that later

4Kb



Why does scan performance continue to improve 
after page sizes?
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Although the cache-line prefetcher does not cross page boundaries [Intel 

manual], we continue to see performance improvements after 4Kb block reads.


To try to understand why, we used the Intel Performance Counter Monitor 
(PCM) to measure the extra bytes read by the memory controller and the L3 
cache misses: L3 misses can account for 

speedup in blocks up to page size

Extra bytes read by 
DRAM memory 

controller may explain 
larger blocks



Summary
•B-trees (and any other blocked data structure, e.g., B-skip lists) exhibit a 
tradeoff between point and range operations depending on the node size.


•The affine model provides a way to analytically determine the benefits of 
larger node sizes during scans.


•BP-tree overcomes the decades-old point range tradeoff in B-Trees: it can 
increase the performance for workloads that include both point 
operations and long scans.

58



59

BACKUP PAST HERE



Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

60Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf



BP-tree system setup

•48-core 2-way hyperthreaded Intel® Xeon® Platinum 8275CL CPU @ 
3.00GHz

•Cache 

◦1.5MiB of L1 cache, 

◦48 MiB of L2 cache, 

◦71.5 MiB of L3 cache across all of the cores

•189 GB of memory

•all experiments on a single socket with 24 physical cores and 48 
hyperthreads

•All times are the median of 5 trials after one warm-up trial
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BP-tree raw point data
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BP-tree raw range data
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BP-tree YCSB raw data
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BP-tree on Zipfian
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