
CSE 6230:
HPC Tools and Applications

Helen Xu
hxu615@gatech.edu

+

Lecture 21: BP-tree: Overcoming the
Point-Range Operation Tradeoff

for In-Memory B-trees

from Xu, Li, Wheatman, Marneni, Pandey - VLDB 23

mailto:hxu615@gatech.edu

Recall: B-trees are classical indexing structures

B/B+-trees are used
everywhere

• In-memory indexing

• Databases

• Filesystems

2

B-trees are asymptotically optimal for point operations

e.g., insert,
find

Recap: B-tree structure

3

Often similar to the
cache-line size

Recap: B+-tree structure

4

… …

Leaf nodes are
chained together

with pointers

Often used in
practice

All elements
appear in leaves

Often similar to the
cache-line size

OLAP vs OLTP Workloads
•Online analytical processing (OLAP) and online transaction processing
(OLTP) are two different use cases for data-processing systems.

•OLAP is optimized for complex data analysis and reporting, while OLTP
is optimized for transactional processing and real-time updates.

•Traditionally, systems are optimized for one or the other, but recently
there has been exploration into combining both functionalities into one
system.

5https://dev.to/alexmercedcoder/introduction-to-the-world-of-data-oltp-olap-data-warehouses-data-lakes-and-more-2me7

source

https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/#:~:text=optimize%20inventory%20budgets.-,When%20to%20use%20OLAP%20vs.%20OLTP,processing%20and%20real-time%20updates.

Problem: B-tree insert-range tradeoff

•B-trees exhibit a tradeoff between
point inserts (OLTP) and long range
queries (OLAP) as a function of
node size.

•Long range queries are critical for
real-time analytics [PTPH12] and graph
processing [DBGS22, PGK21, PWXB21].

6

Large nodes speed up range scans at the cost of point inserts

YCSB Point Operations
Point operations:

• Insert(k, v): insert a key-value pair (k, v)

• Find(k): return a pointer to the element with the smallest key that is at

least k

Example: Find(15)

7

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root
Find correct pivot

Search in node for correct element

Recap example: Insert 8 into B+-tree

8

14 19 24

2 3 5 7 14 16 19 20 22 23 24 27 29

Root

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Target leaf splits

Target leaf is full:
need to do a data

page split

9

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Need to adjust
pivots

Promote 5 as a
pivot

Recap example: Insert 8 into B+-tree

Ordered Range Operations

The importance of ordered iteration in range operations (scans) depends on
the use case.

For example, the YCSB requires range iteration (in sorted order) to simulate
an application of threaded conversations:

Iterate_range(start, length, f): applies the function f to length
elements in order (by key) starting with the elements with the smallest key
that is at least start

10

Example: Load the first 50
messages on some date

Unordered Range Operations
On the other hand, some applications may not necessarily need access to
the keys in order.

For example: graph processing, feature storage in machine learning, file
system metadata management.

Therefore, we consider another primitive not in YCSB:

Map_range(start, end, f): applies the function f to all elements with keys
in the range [start, end)

11

Example: Iterate
through David’s
neighbors in any

order

Recall: Range operations in B+-trees
Example: Get me 5 elements in sorted order with min key 15.

Step 1: Do a find for the element with the smallest key at least 15

Step 2: Iterate forward 5 steps or until the end, whichever comes first

12

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Start here Iterate

We can use a similar method for the other range API of [start, end) by just
modifying the end condition.

B-tree insert/range query trade-off
There is no one best node size for all operations - large node sizes improve
range query throughput, but slow down inserts.

13

B-tree insert/range query trade-off
There is no one best node size for all operations - large node sizes improve
range query throughput, but slow down inserts.

14

Question: How can we achieve good performance
on all of these operations?

Larger nodes improve range query performance

Increasing the size of nodes decreases the number of nodes accessed
during long range queries and thus the number of random memory
accesses.

15

But larger nodes require
more shifting on every insert

•However, simply increasing the node size does not solve the problem
because larger nodes require more work to maintain during inserts

•Traditionally, B-trees (and B+-trees) use a sorted array to maintain
elements in the nodes

16

B-tree insert/range query tradeoff

How can we improve performance overall despite the insert/range tradeoff?

17

BP-tree: Overcoming the insert/range query
tradeoff

The BP-tree can improve long ranges without sacrificing point operations

18

BP-tree design

19

Motivation: Leaf nodes are the
hotspots in B-tree variants

20

… …

All elements
appear in leaves

 elements
are internal

O(N/B)

•Every insert will modify at least one leaf.

•Only one in every inserts will affect the internal nodes.O(B)

Buffered Partitioned Array (BPA) Design

•The BP-tree overcomes the insert-range tradeoff by using large nodes
with an insert-optimized data structure in the leaves called the Buffered
Partitioned Array (BPA).

•One way to think about the BPA is like collapsing the last two levels of a
B-tree into one insert-optimized array-like data structure.

21

22

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

Example: Insertions in a BPA

23

Log Header Blocks

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

Example: Insertions in a BPA

24

Log Header Blocks

Insert(27)

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

197 15 89 1713 8 93 9532 508 22 2725

Sort log and count how many new elements are destined for each block:

2 + 0 = 2 1 + 0 = 0 2 + 3 = 5 2 + 0 = 2

Example: Insertions in a BPA

25

Log Header Blocks

257 17 50 19 228 13 9589 9327 32

Insert(27)

Insert(22)
197 15 89 1713 8 93 9532 5025 8

197 15 89 1713 8 93 9532 5025 8 22

197 15 89 1713 8 93 9532 508 22 2725

Sort log and count how many new elements are destined for each block:

2 + 0 = 2 1 + 0 = 0 2 + 3 = 5 2 + 0 = 2

Sort and redistribute all elements evenly because at least one block overflowed:

Example: Insertions in a BPA

26

Example range query:
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

27

Example range query:
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr

28

Example range query:
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

Advance the pointers to perform sorted iteration:

log_ptr blocks_ptr

29

Example range query:
iterate_range(start = 7, length = 2, f)

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

197 15 89 178 13 93 9532 508 25

Sort the log and first relevant block, initialize the pointers:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

Advance the pointers to perform sorted iteration:

log_ptr blocks_ptr

197 15 89 178 13 93 9532 508 25

log_ptr blocks_ptr

Bitvector Optimization

30

Log Header Blocks

197 15 89 1713 8 93 9532 5025 8

•To avoid unnecesary sorting, the BPA keeps a bit vector of length
num_blocks that denotes whether the elements in each block are
currently sorted.

• It sorts a block during a range query if and only if the corresponding bit in
the bit vector is unset.

•The bit vector is maintained during inserts / range queries.

Bitvector: 0111

BP-tree concurrency control

31

Recall: Reader-Writer Concurrency

•A reader-writer lock allows concurrent access for read-only operations,
whereas write operations require exclusive access.

•That is, multiple threads can read the data in parallel, but an exclusive
lock is needed for writing/modifying data.

•All other threads (both writers and readers) are blocked when the lock is
taken in write mode.

32

1 1 0 … 0 0 1
0 num_threads

0
1

Writer flag

Readers counter

Recall: Optimistic concurrency control
Concurrency control is defined at the node
level, so we can use the same reader/
writer concurrency scheme for inserts as
regular B-trees.

Most modifications to a B+-tree will not
require a split or merge.

Instead of assuming that there will be a
split/merge, optimistically traverse the
tree using read latches.

If you guess wrong, repeat traversal with
the pessimistic algorithm.

33From Utah CS6530

Range Query Concurrency Control

In regular B-trees, range operations are read-only, so we can just take read
locks top-down, left-right.

34

5 14 19 24

2 3 14 16 19 20 22 23 24 27 295 7 8

Start here Iterate

Example: iterate_range(start=25, length=2)

35

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530

Example: iterate_range(start=25, length=2)

36

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530

Example: iterate_range(start=25, length=2)

37

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530

Example: iterate_range(start=25, length=2)

38

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

R

From Utah CS6530

Example: iterate_range(start=25, length=2)

39

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

From Utah CS6530

R

Example: iterate_range(start=25, length=2)

40

20 A

35 B10

23 C 38 44 D

14 16 23 31 38 41 4435 363 4 6 9 12 1310 11

126

E F G H I

From Utah CS6530

Question: Can we use this scheme for range query concurrency in the BP-tree?

Adapting B-tree Range Query Concurrency
for the BP-tree

Problem: Range queries in the BPA might modify the array (to sort the log /
blocks), so we can’t always take a reader lock on the leaves.

Naive solution: Take read locks on the way down, then always take writer
locks on the leaves.

The naive solution causes performance issues because write locks are
exclusive, so this method bottlenecks other threads.

41

5 14 19 24

BPA

Start here Iterate

BPABPA BPA BPA

R

W W

Using the bitvector to avoid taking the write lock

We use the bitvector optimization to avoid contention on the write lock
when the input distribution is skewed.

For each leaf touched in a range query in the BP-tree:

42

Take the read lock and
check 1) whether the log is
sorted, and 2) whether the
relevant blocks are sorted

(using the bitvector)

If both are true, the
iteration can proceed with

just the read lock

If at least one is false,
upgrade the read lock

to a write lock

Evaluation

43

YCSB Evaluation Framework

We evaluate the BP-Tree on several tests using the Yahoo! cloud serving
benchmark (YCSB) and compare it to a selection of different structures.

The YCSB has two phases:

44

Load - add some base
number of elements

Run - perform concurrent
operations defined by

some workload

Only the run phase
is timed

For concreteness, each phase has 100M operations. The YCSB also allow
definition of input distribution (e.g., uniform random, skewed, etc.)

BP-tree system/experiment setup
•48-core 2-way hyperthreaded Intel® Xeon® Platinum 8275CL CPU @
3.00GHz

•Cache

◦1.5MiB of L1 cache,

◦48 MiB of L2 cache,

◦71.5 MiB of L3 cache across all of the cores

•189 GB of memory

•All experiments on a single socket with 24 physical cores and 48
hyperthreads

•All times are the median of 5 trials after one warm-up trial
45

Evaluation on YCSB benchmarks
Performance of B-tree, Masstree [MKM2012], OpenBwTree [WPL+2018] and BP-tree
on YCSB [CST+10] with 100M ops in both the load and run phase.

46

BP-tree matches the performance of point operations and improves range
queries by 1.5x

B-tree vs BP-tree point operations

47

B-tree vs BP-tree range queries

48

Performance Modeling of Large Nodes

49

To what extent do big nodes help range queries?

•Traditionally node sizes are small (up to 256 bytes) [CGM01, HP03, B18]

•Range queries continue to improve with very large nodes

50

Recall: Cost of access in
Disk-Access Model (DAM)

The DAM [Aggarwal and Vitter, ’88] is a classical model that measures disk page
access (or cache-line accesses, in RAM).

Each memory block fetch has unit cost.

51

Similar to Ideal-Cache model, without tall-cache assumption

Small
memory

Big memory

Block

Total cost = 5

Recall: Random vs Sequential Access Cost
in the Affine Model

The affine model [ABZ96, BCF+19] accounts for sequential block accesses being
faster than random (due to prefetching, etc.).

Random access has unit cost, and sequential access has cost .

Originally designed for disks and accounted for disk seek vs read.

α < 1

52

Small
memory

Big memory

Block

Total cost = 3 + 2α

Finding the empirical parameters
with the scan test

We perform the following scan test to empirically derive :

Allocate a contiguous array of X bytes (X is large, in the GB range)

for block size from 1 to X in powers of 2:

in parallel and in random order, scan over the entire array in separate
blocks of size B

α

ℓ

53

ℓ

Measure time as a function of
varying block size

ℓ ℓ ℓ ℓ ℓ

t1 t2

Finding the empirical parameters
with the scan test

We also need to find , the cost of reading a random location in DRAM, and
, the cost of writing to a random location in DRAM.

By setting (the cache-line size), we can compute the latency of
reading a random cache line in DRAM by dividing the total time by the
number of lines read.

r
w

ℓ = Z

54

Z Z Z Z Z Z

t1 t2

Results of scan test
We found the following:

•

• ns

•The machine has a cache line size bytes, and we use the heuristic
of .

α = 0.3
r = 1.95

Z = 64
w = 2r

55

Expression for cost in
terms of Z, α, r, w, N

Predicted time for
operations

Empirical findings for
parameter values

Empirically validating the affine model in memory

56

DAM model

Empirical

Affine model

•We find the affine model also holds true for RAM using the scan test.

• Interestingly, it continues to hold even when the block goes past 1 page
(4Kb) - more on that later

4Kb

Why does scan performance continue to improve
after page sizes?

57

Although the cache-line prefetcher does not cross page boundaries [Intel

manual], we continue to see performance improvements after 4Kb block reads.

To try to understand why, we used the Intel Performance Counter Monitor
(PCM) to measure the extra bytes read by the memory controller and the L3
cache misses: L3 misses can account for

speedup in blocks up to page size

Extra bytes read by
DRAM memory

controller may explain
larger blocks

Summary
•B-trees (and any other blocked data structure, e.g., B-skip lists) exhibit a
tradeoff between point and range operations depending on the node size.

•The affine model provides a way to analytically determine the benefits of
larger node sizes during scans.

•BP-tree overcomes the decades-old point range tradeoff in B-Trees: it can
increase the performance for workloads that include both point
operations and long scans.

58

59

BACKUP PAST HERE

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

60Slides from: https://www3.cs.stonybrook.edu/~bender/talks/2012-Bender-Dagstuhl-write-optimized-talk.pdf

BP-tree system setup

•48-core 2-way hyperthreaded Intel® Xeon® Platinum 8275CL CPU @
3.00GHz

•Cache

◦1.5MiB of L1 cache,

◦48 MiB of L2 cache,

◦71.5 MiB of L3 cache across all of the cores

•189 GB of memory

•all experiments on a single socket with 24 physical cores and 48
hyperthreads

•All times are the median of 5 trials after one warm-up trial

61

BP-tree raw point data

62

BP-tree raw range data

63

BP-tree YCSB raw data

64

BP-tree on Zipfian

65

