
Announcements

•Today’s guest lecture is postponed to next Tuesday, April 16. The
corresponding report is postponed to one week after that, Tuesday April 23
(the usual time, 5pm).

•Slight change of plans for next lecture - it will be on filters and in person.

•The deadline for project slides has been postponed to 1:30pm on
Wednesday, April 17, the new start of the presentations. Like for the
proposal, the slides are due at the same time for everyone for fairness.

•Please sign up for a project presentation slot if you have not yet done so.

•Extra credit is due May 1 @ 5pm, final project writeup is due May 2 @ 5pm.
1

Helen Xu
hxu615@gatech.edu

+

Lecture 23: Synchronization
Without Locks

Slides from MIT 6.172

mailto:hxu615@gatech.edu

Sequential Consistency

3From MIT OCW 6.172

Memory Models
•A memory model defines the rules under which writes to stored object
data become visible to later reads to that data.

•Compiler optimizations (e.g., loop fusion) move statements in the program,
which can affect the order of read/write operations to potentially shared
variables.

•Without a memory model, a compiler cannot apply such optimizations to
multithreaded programs in general.

4

for (i = 0; i < 300; i++)
 a[i] = a[i] + 3;

for (i = 0; i < 300; i++)
 b[i] = b[i] + 4;

for (i = 0; i < 300; i++)
 {
 a[i] = a[i] + 3;
 b[i] = b[i] + 4;
 }

https://compileroptimizations.com/category/loop_fusion.htm

Loop fusion

https://en.wikipedia.org/wiki/Memory_model_(programming)
From MIT OCW 6.172

Motivating Example

5

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

Processor 0 Processor 1

Initially, a = b = 0

From MIT OCW 6.172

Motivating Example

6

Processor 0 Processor 1

Q: Is it possible that Processor 0’s %ebx and Processor 1’s %eax both
contain the value 0 after the processors have both executed their code?

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

From MIT OCW 6.172

Motivating Example

7

Processor 0 Processor 1

Q: Is it possible that Processor 0’s %ebx and Processor 1’s %eax both
contain the value 0 after the processors have both executed their code?

A: It depends on the memory model: how memory operations perform in
the parallel computer system.

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

From MIT OCW 6.172

Sequential Consistency
“[T]he result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order
specified by its program.” — Leslie Lamport [1979]

8

•The sequence of instructions as defined by a processor’s program are interleaved with
the corresponding sequences defined by the other processors’ programs to produce a
global linear order of all instructions.

•A LOAD instruction receives the value stored to that address by the most recent STORE
instruction that precedes the LOAD, according to the linear order.

•The hardware can do whatever it wants, but for the execution to be sequentially
consistent, it must appear as if LOAD’s and STORE’s obey some global linear order.

From MIT OCW 6.172

Example

9

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0From MIT OCW 6.172

Example

10

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0From MIT OCW 6.172

Example

11

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0From MIT OCW 6.172

Example

12

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0From MIT OCW 6.172

Example

13

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0From MIT OCW 6.172

Example

14

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0From MIT OCW 6.172

Example

15

Processor 0 Processor 1

Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no
execution ends with %eax = %ebx = 0

Modern machines
do not implement

sequential
consistency

From MIT OCW 6.172

Reasoning about Sequential Consistency
•An execution induces a “happens before” relation, which we shall denote as

.

• The relation is linear, meaning that for any two distinct instructions x and
y, either x y or y x.

• The relation respects processor order, the order of instructions in each
processor.

• A LOAD from a location in memory reads the value written by the most
recent STORE to that location according to .

•For the memory resulting from an execution to be sequentially consistent,
there must exist such a linear order that yields that memory state.

→

→
→ →

→

→

→
16From MIT OCW 6.172

Mutual Exclusion Without Locks

17From MIT OCW 6.172

Recall: Mutual-Exclusion Problem

Recall: A critical section is a piece of code that accesses a shared data
structure that must not be accessed by two or more threads at the same
time (mutual exclusion).

Most implementations of mutual exclusion employ an atomic read-modify-
write instruction or the equivalent, usually to implement a lock:

• e.g., xchg, test-and-set, compare-and-swap, etc.

18From MIT OCW 6.172

Mutual-Exclusion Problem

A. Yes, Theodorus J. Dekker and Edsgar Dijkstra showed that it can, as long
as the computer system is sequentially consistent.

19

Q: Can mutual exclusion be implemented with LOAD’s and STORE’s as the
only memory operations?

From MIT OCW 6.172

Peterson’s Algorithm

20

widget x; // protected variable
bool A_wants = false;
bool B_wants = false;
enum {A, B} turn;

widget
x

Alice Bobfoo bar

From MIT OCW 6.172

Peterson’s Algorithm

21

widget x; // protected variable
bool A_wants = false;
bool B_wants = false;
enum {A, B} turn;

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

widget
x

foo barAlice Bob

Alice Bob

From MIT OCW 6.172

Intuition behind Peterson’s Algorithm

• If Alice and Bob both try to enter the critical section, then whoever writes
last to turn spins and the other progresses.

• If only Alice tries to enter the critical section, then she progresses, since
B_wants is false.

• If only Bob tries to enter the critical section, then he progresses, since
A_wants is false.

22

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

From MIT OCW 6.172

Proof of Mutual Exclusion

Theorem. Peterson’s algorithm achieves mutual exclusion on the critical
section.

Proof.

• Assume for the purpose of contradiction that both Alice and Bob find
themselves in the critical section together.

• Consider the most-recent time that each of them executed the code
before entering the critical section.

•We shall derive a contradiction.

23From MIT OCW 6.172

24

Proof of Mutual Exclusion

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

From MIT OCW 6.172

•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)→

25

Proof of Mutual Exclusion

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

From MIT OCW 6.172

•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)

•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)

→

→

26

Proof of Mutual Exclusion

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

From MIT OCW 6.172

•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)

•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)

•Bob’s program order:

writeB(turn = A) readB(A_wants) readB(turn)

→

→

→ →

27

Proof of Mutual Exclusion

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

From MIT OCW 6.172

•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)

•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)

•Bob’s program order:

writeB(turn = A) readB(A_wants) readB(turn)

•What did Bob read?

A_wants = ?
turn = ?

→

→

→ →

28

Proof of Mutual Exclusion

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob1

2
3

4 5

From MIT OCW 6.172

•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)

•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)

•Bob’s program order:

writeB(turn = A) readB(A_wants) readB(turn)

•What did Bob read?

A_wants = true
turn = A

→

→

→ →

29

Proof of Mutual Exclusion

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

Contradiction: Bob should spin

1

2
3

4 5

From MIT OCW 6.172

Relaxed Memory Consistency

30From MIT OCW 6.172

Memory Models Today

•No modern-day processor implements sequential consistency.

•All implement some form of relaxed consistency.

•Hardware actively reorders instructions.

•Compilers may reorder instructions too.

31From MIT OCW 6.172

Instruction Reordering

To obtain higher performance by covering load latency -
instruction-level parallelism.

32

mov a, 1 ;Store
mov %ebx, b ;Load

mov %ebx, b ;Load
mov a, 1 ;Store

Why might the hardware decide to reorder these instructions?

Program Order Execution Order

From MIT OCW 6.172

Instruction Reordering

When a =/= b, and there is no concurrency.

33

mov a, 1 ;Store
mov %ebx, b ;Load

mov %ebx, b ;Load
mov a, 1 ;Store

When is it safe for the hardware or compiler to perform this
reordering?

Program Order Execution Order

From MIT OCW 6.172

Hardware Reordering

34

Memory
SystemProcessor Network

From MIT OCW 6.172

Hardware Reordering

•The processor can issue stores faster than the network can handle them:
put them in a store buffer

35

Memory
SystemProcessor Network

Store Buffer

From MIT OCW 6.172

Hardware Reordering

•The processor can issue stores faster than the network can handle them:
put them in a store buffer

•Since a load can stall the processor until it is satisfied, loads take priority,
bypassing the store buffer.

36

Memory
SystemProcessor Network

Store Buffer

Load Bypass

From MIT OCW 6.172

Hardware Reordering

•The processor can issue stores faster than the network can handle them:
put them in a store buffer

•Since a load can stall the processor until it is satisfied, loads take priority,
bypassing the store buffer.

• If a load address matches an address in the store buffer, the store buffer
returns the result.

37

Memory
SystemProcessor Network

Store Buffer

Load Bypass

From MIT OCW 6.172

Hardware Reordering

•The processor can issue stores faster than the network can handle them:
put them in a store buffer

•Since a load can stall the processor until it is satisfied, loads take priority,
bypassing the store buffer.

• If a load address matches an address in the store buffer, the store buffer
returns the result.

•Thus, a load can bypass a store to a different address.

38

Memory
SystemProcessor Network

Store Buffer

Load Bypass

From MIT OCW 6.172

x86-64 Total Store Order

•Loads are not reordered with Loads.

•Stores are not reordered with Stores.

•Stores are not reordered with prior Loads.

•A Load may be reordered with a prior
Store to a different location but not with
a prior Store to the same location.

•Loads and Stores are not reordered with
Lock instructions.

•Stores to the same location respect a
global total order.

•Lock instructions respect a global total
order.

•Memory ordering preserves transitive
visibility (“causality”).

39

House rules:Instruction Trace
Store1

Store2

Load1

Load2

Store3

Store4

Load3

Load4

Load5
From MIT OCW 6.172

x86-64 Total Store Order

•Loads are not reordered with Loads.

•Stores are not reordered with Stores.

•Stores are not reordered with prior Loads.

•A Load may be reordered with a prior
Store to a different location but not with
a prior Store to the same location.

•Loads and Stores are not reordered with
Lock instructions.

•Stores to the same location respect a
global total order.

•Lock instructions respect a global total
order.

•Memory ordering preserves transitive
visibility (“causality”).

40

House rules:Instruction Trace
Store1

Store2

Load1

Load2

Store3

Store4

Load3

Load4

Load5

Loads

Total Store Ordering (TSO) is weaker than sequential consistency.

From MIT OCW 6.172

Impact of Reordering

41

Processor 0 Processor 1
Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

From MIT OCW 6.172

Impact of Reordering

The ordering <2, 4, 1, 3> produces %eax = %ebx = 0.

42

Processor 0 Processor 1
Initially, a = b = 0

mov a, 1 ;Store
mov %ebx, b ;Load

mov b, 1 ;Store
mov %eax, a ;Load

1
2

3
4

mov %ebx, b ;Load
mov a, 1 ;Store

mov %eax, a ;Load
mov b, 1 ;Store

4
3

2
1

Instruction reordering violates sequential consistency!

From MIT OCW 6.172

Peterson’s Algorithm Revisited

43

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

Can reordering cause issues in the proof of correctness for
Peterson’s algorithm?

From MIT OCW 6.172

Peterson’s Algorithm Revisited

•The loads of B_wants and A_wants can be reordered before the stores of
A_wants and B_wants, respectively.

•Both Alice and Bob might enter their critical sections simultaneously!

44

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

From MIT OCW 6.172

Memory Fences

•A memory fence (or memory barrier) is a hardware action that enforces an
ordering constraint between the instructions before and after the fence.

•A memory fence can be issued explicitly as an instruction (x86: mfence) or
be performed implicitly by locking, exchanging, and other synchronizing
instructions.

•The std library for C++ implements a memory fence via the function
atomic_thread_fence()*

•The typical cost of a memory fence is comparable to that of an L2-cache
access.

45* https://en.cppreference.com/w/cpp/atomic/atomic_thread_fenceFrom MIT OCW 6.172

Restoring Consistency

Memory fences can restore sequential consistency.

46

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

A_wants = true;
turn = B;
atomic_thread_fence();
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

B_wants = true;
turn = A;
atomic_thread_fence();
while (A_wants && turn == A);
bar(&x); // critical section
B_wants = false;

Alice Bob

Just a memory fence is not enough - you also need to account for the compiler.
From MIT OCW 6.172

Restoring Consistency

47

A_wants = true;
turn = B;
atomic_thread_fence();
while (B_wants && turn == B);
asm volatile(“”:::”memory”);
foo(&x); // critical section
asm volatile(“”:::”memory”);
A_wants = false;

B_wants = true;
turn = A;
atomic_thread_fence();
while (A_wants && turn == A);
asm volatile(“”:::”memory”);
bar(&x); // critical section
asm volatile(“”:::”memory”);
B_wants = false;

Alice Bob

In addition to the memory fence, we would need to declare variables as
volatile to prevent the compiler from optimizing away memory references.

The volatile keyword signals to the compiler that the variable should be re-
read from memory each time it is used (instead of being optimized out or
cached by the compiler in a register).

From MIT OCW 6.172

Restoring Consistency with C11

48

atomic_store(&A_wants, true);
atomic_store(&turn, B);
while (atomic_load(&B_wants) &&
atomic_load(&turn) == B);
foo(&x); // critical section
atomic_store(&A_wants, false);

Alice

The C11 language standard defines its own weak memory model, in which you
can control hardware and compiler reordering of memory operations by:

•Declaring variables as _Atomic; and

•Using the functions atomic_load(), atomic_store() etc. as needed.

A_wants = true;
turn = B;
while (B_wants && turn == B);
foo(&x); // critical section
A_wants = false;

Alice

https://en.cppreference.com/w/c/atomicFrom MIT OCW 6.172

Implementing General Mutexes

Theorem [Burns-Lynch]. Any n-thread deadlock-free mutual-exclusion algorithm
using only load and store memory operations requires space.

Theorem [Attiya et al.]: Any n-thread deadlock-free mutual-exclusion algorithm on
a modern machine must use an expensive operation such as a memory
fence or an atomic compare-and-swap operation.

Ω(n)

49

Thus, hardware designers are justified when they implement special
operations to support atomicity.

From MIT OCW 6.172

Compare-and-Swap

50From MIT OCW 6.172

The Lock-Free Toolbox

Memory operations

•Load

•Store

•CAS (compare-and-swap)

51From MIT OCW 6.172

Compare-and-Swap

The compare-and-swap operation is provided by the cmpxchg instruction on
x86-64. The C header file stdatomic.h provides CAS via the built-in function

atomic_compare_exchange_strong()

which can operate on various integer types.

52

bool CAS(T *x, T old, T new) {
if (*x == old) {
*x = new;
return true;

}
return false;

}

https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange

•Executes atomically

• Implicit fence

From MIT OCW 6.172

Mutex using CAS
Theorem. An n-thread deadlock-free mutual-exclusion algorithm using CAS
can be implemented using space.Θ(1)

53

void lock(int *lock_var) {
while(!CAS(lock_var, false, true));

}

void unlock(int *lock_var) {
*lock_var = false;

}

Just the space for the mutex

From MIT OCW 6.172

54

int compute(const X& v);
int main() {
const size_t n = 1000000;
extern X myArray[n];
// …

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
result += compute(myArray[i]);

}
printf("The result is: %d\n”, result);
return 0;

}

Race

From MIT OCW 6.172

Summing Problem

55

int compute(const X& v);
int main() {
const size_t n = 1000000;
extern X myArray[n];
mutex L;
// …

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
L.lock();
result += temp;
L.unlock();

}
printf("The result is: %d\n”, result);
return 0;

}

From MIT OCW 6.172

Mutex Solution

Why is compute()
outside the lock?

56

int compute(const X& v);
int main() {
const size_t n = 1000000;
extern X myArray[n];
mutex L;
// …

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
L.lock();
result += temp;
L.unlock();

}
printf("The result is: %d\n”, result);
return 0;

}

From MIT OCW 6.172

Mutex Solution

What happens if the
operating system swaps
out a loop iteration just

after it acquires the
mutex?

57

int compute(const X& v);
int main() {
const size_t n = 1000000;
extern X myArray[n];
mutex L;
// …

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
L.lock();
result += temp;
L.unlock();

}
printf("The result is: %d\n”, result);
return 0;

}

From MIT OCW 6.172

Mutex Solution

What happens if the
operating system swaps
out a loop iteration just

after it acquires the
mutex?

All other loop iterations
must wait.

58From MIT OCW 6.172

Mutex Solution
int compute(const X& v);
int main() {
const size_t n = 1000000;
extern X myArray[n];
mutex L;
// …

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
L.lock();
result += temp;
L.unlock();

}
printf("The result is: %d\n”, result);
return 0;

}

What happens if the
operating system swaps
out a loop iteration just

after it acquires the
mutex?

All other loop iterations
must wait.

All we want is to atomically load
x, add temp, and then store x

CAS Solution

59

int compute(const X& v);
int main() {
…

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
int old, new
do {
old = result;
new = old + temp;

} while (!CAS(&result, old, new));
}
…

}

From MIT OCW 6.172

CAS Solution

60

int compute(const X& v);
int main() {
…

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
int old, new
do {
old = result;
new = old + temp;

} while (!CAS(&result, old, new));
}
…

}

Now what happens if the
operating system swaps

out a loop iteration?

From MIT OCW 6.172

CAS Solution

61

int compute(const X& v);
int main() {
…

int result = 0;
#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
int temp = compute(myArray[i]);
int old, new
do {
old = result;
new = old + temp;

} while (!CAS(&result, old, new));
}
…

}

Now what happens if the
operating system swaps

out a loop iteration?

No other loop iteration
needs to wait. The

algorithm is
nonblocking.

From MIT OCW 6.172

Lock-Free Algorithms

62From MIT OCW 6.172

Lock-Free Stack

63

struct Node {
Node* next;
int data;

};

struct Stack {
Node* head;
…

92 39head:

From MIT OCW 6.172

Lock-Free Push

64

void push(Node* node) {
do {
node->next = head;

} while(!CAS(&head, node->next, node));
}

92 39head:

81

From MIT OCW 6.172

Lock-Free Push with Contention

65

void push(Node* node) {
do {
node->next = head;

} while(!CAS(&head, node->next, node));
}

92 39head:

8133

CAS may fail if some other thread
changes the head before you get to it

From MIT OCW 6.172

Lock-Free Pop

66

Node* pop() {
Node* current = head;
while(current) {
if (CAS(&head, current, current->next)) break;
current = head;

}
return current;

}

92 39head:

current:

From MIT OCW 6.172

Lock-Free Pop

67

Node* pop() {
Node* current = head;
while(current) {
if (CAS(&head, current, current->next)) break;
current = head;

}
return current;

}

92 39head:

current:

From MIT OCW 6.172

Optimization: Compare and CAS

•Compare-and-swap acquires a cache line in exclusive mode, invalidating
the cache line in other caches.

•Result: High contention if all processors are doing CAS’s to same cache
line.

•Better way: First read if value at memory location changed before doing
CAS, and only do CAS if value didn’t change

68From MIT OCW 6.172

Lock-Free Push and Pop

69

Node* pop() {
Node* current = head;
while(current) {
if (head == current && CAS(&head, current, current->next)) break;
current = head;

}
return current;

}

void push(Node* node) {
do {
node->next = head;

} while(head != node->next || !CAS(&head, node->next, node));
}

From MIT OCW 6.172

Lock-Free Data Structures

•Efficient lock-free algorithms are known for a variety of classical data
structures (e.g., linked lists, queues, skip lists, hash tables).

• In theory, a thread might starve. Because of contention, its operation might
never complete. In practice, starvation rarely happens.

70From MIT OCW 6.172

Practical issues:
•Memory management
•Contention
•ABA problem

The ABA Problem

71From MIT OCW 6.172

ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading
current->next.

72

15 94head:

current:

26

ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading
current->next.

2. Thread 2 pops the node containing 15.

73

15 94head:

current:

26

ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading
current->next.

2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94.

74

15 94head:

current:

26

ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading
current->next.

2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94.

4. Thread 2 pushes the node 7, reusing the node that contained 15.

75

7 94head:

current:

26

ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading
current->next.

2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94.

4. Thread 2 pushes the node 7, reusing the node that contained 15.

5. Thread 1 resumes, and its CAS succeeds, removing 7, but putting

garbage back on the list.

76

7 94head:

current:

26

Solutions to ABA

Versioning

• Pack a version number with each pointer in the same atomically

updatable word.

• Increment the version number every time the pointer is changed.

• Compare-and-swap both the pointer and the version number as a

single atomic operation.

Issue: Version numbers may need to be very large.

Reclamation ∙ Prevent node reuse while pending requests exist.

• For example, prevent node 15 from being reused as node 7 while Thread

1 still executing.

77

