
Announcements

•Today’s guest lecture is postponed to next Tuesday, April 16. The 
corresponding report is postponed to one week after that, Tuesday April 23 
(the usual time, 5pm).


•Slight change of plans for next lecture - it will be on filters and in person.


•The deadline for project slides has been postponed to 1:30pm on 
Wednesday, April 17, the new start of the presentations. Like for the 
proposal, the slides are due at the same time for everyone for fairness.


•Please sign up for a project presentation slot if you have not yet done so.


•Extra credit is due May 1 @ 5pm, final project writeup is due May 2 @ 5pm.
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Sequential Consistency
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Memory Models
•A memory model defines the rules under which writes to stored object 
data become visible to later reads to that data.


•Compiler optimizations (e.g., loop fusion) move statements in the program, 
which can affect the order of read/write operations to potentially shared 
variables.


•Without a memory model, a compiler cannot apply such optimizations to 
multithreaded programs in general.
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for (i = 0; i < 300; i++) 
  a[i] = a[i] + 3; 

for (i = 0; i < 300; i++) 
  b[i] = b[i] + 4; 

for (i = 0; i < 300; i++) 
  { 
    a[i] = a[i] + 3; 
    b[i] = b[i] + 4; 
  } 

https://compileroptimizations.com/category/loop_fusion.htm

Loop fusion

https://en.wikipedia.org/wiki/Memory_model_(programming)
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Motivating Example
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mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

Processor 0 Processor 1

Initially, a = b = 0
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Motivating Example
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Processor 0 Processor 1

Q: Is it possible that Processor 0’s %ebx and Processor 1’s %eax both 
contain the value 0 after the processors have both executed their code?

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load
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Motivating Example
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Processor 0 Processor 1

Q: Is it possible that Processor 0’s %ebx and Processor 1’s %eax both 
contain the value 0 after the processors have both executed their code?

A: It depends on the memory model: how memory operations perform in 
the parallel computer system.

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load
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Sequential Consistency
“[T]he result of any execution is the same as if the 
operations of all the processors were executed in some 
sequential order, and the operations of each individual 
processor appear in this sequence in the order 
specified by its program.” — Leslie Lamport [1979]

8

•The sequence of instructions as defined by a processor’s program are interleaved with 
the corresponding sequences defined by the other processors’ programs to produce a 
global linear order of all instructions.


•A LOAD instruction receives the value stored to that address by the most recent STORE 
instruction that precedes the LOAD, according to the linear order. 


•The hardware can do whatever it wants, but for the execution to be sequentially 
consistent, it must appear as if LOAD’s and STORE’s obey some global linear order.
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Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0From MIT OCW 6.172



Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0From MIT OCW 6.172



Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0From MIT OCW 6.172



Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0From MIT OCW 6.172



Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0From MIT OCW 6.172



Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0From MIT OCW 6.172



Example
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Processor 0 Processor 1

Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

Sequential consistency implies that no 
execution ends with %eax = %ebx = 0

Modern machines 
do not implement 

sequential 
consistency
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Reasoning about Sequential Consistency
•An execution induces a “happens before” relation, which we shall denote as 

. 


• The  relation is linear, meaning that for any two distinct instructions x and 
y, either x  y or y  x. 


• The  relation respects processor order, the order of instructions in each 
processor. 


• A LOAD from a location in memory reads the value written by the most 
recent STORE to that location according to . 


•For the memory resulting from an execution to be sequentially consistent, 
there must exist such a linear order  that yields that memory state.

→

→
→ →

→

→

→
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Mutual Exclusion Without Locks
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Recall: Mutual-Exclusion Problem

Recall: A critical section is a piece of code that accesses a shared data 
structure that must not be accessed by two or more threads at the same 
time (mutual exclusion). 


Most implementations of mutual exclusion employ an atomic read-modify-
write instruction or the equivalent, usually to implement a lock: 


• e.g., xchg, test-and-set, compare-and-swap, etc.
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Mutual-Exclusion Problem

A. Yes, Theodorus J. Dekker and Edsgar Dijkstra showed that it can, as long 
as the computer system is sequentially consistent.

19

Q: Can mutual exclusion be implemented with LOAD’s and STORE’s as the 
only memory operations? 
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Peterson’s Algorithm

20

widget x; // protected variable 
bool A_wants = false; 
bool B_wants = false; 
enum {A, B} turn;

widget 
x

Alice Bobfoo bar
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Peterson’s Algorithm

21

widget x; // protected variable 
bool A_wants = false; 
bool B_wants = false; 
enum {A, B} turn;

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

widget 
x

foo barAlice Bob

Alice Bob
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Intuition behind Peterson’s Algorithm

• If Alice and Bob both try to enter the critical section, then whoever writes 
last to turn spins and the other progresses. 


• If only Alice tries to enter the critical section, then she progresses, since 
B_wants is false. 


• If only Bob tries to enter the critical section, then he progresses, since 
A_wants is false.
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A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob
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Proof of Mutual Exclusion

Theorem. Peterson’s algorithm achieves mutual exclusion on the critical 
section. 


Proof. 


• Assume for the purpose of contradiction that both Alice and Bob find 
themselves in the critical section together. 


• Consider the most-recent time that each of them executed the code 
before entering the critical section. 


•We shall derive a contradiction.
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Proof of Mutual Exclusion

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob
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•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)→
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Proof of Mutual Exclusion

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob
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•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)


•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)

→

→
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Proof of Mutual Exclusion

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob
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•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)


•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)


•Bob’s program order:

writeB(turn = A)  readB(A_wants)  readB(turn)

→

→

→ →
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Proof of Mutual Exclusion

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob
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•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)


•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)


•Bob’s program order:

writeB(turn = A)  readB(A_wants)  readB(turn)


•What did Bob read?

A_wants = ? 
turn = ?

→

→

→ →
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Proof of Mutual Exclusion

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob1

2
3

4 5
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•WLOG, assume that Bob was the last to write to turn:

writeA(turn = B) writeB(turn = A)


•Alice’s program order:

writeA(A_wants = true) writeA(turn = B)


•Bob’s program order:

writeB(turn = A)  readB(A_wants)  readB(turn)


•What did Bob read?

A_wants = true 
turn = A

→

→

→ →
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Proof of Mutual Exclusion

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob

Contradiction: Bob should spin

1

2
3

4 5

From MIT OCW 6.172



Relaxed Memory Consistency
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Memory Models Today

•No modern-day processor implements sequential consistency. 


•All implement some form of relaxed consistency. 


•Hardware actively reorders instructions. 


•Compilers may reorder instructions too.

31From MIT OCW 6.172



Instruction Reordering

To obtain higher performance by covering load latency - 
instruction-level parallelism.
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mov a, 1  ;Store 
mov %ebx, b ;Load

mov %ebx, b ;Load 
mov a, 1  ;Store

Why might the hardware decide to reorder these instructions?

Program Order Execution Order
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Instruction Reordering

When a =/= b, and there is no concurrency.
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mov a, 1  ;Store 
mov %ebx, b ;Load

mov %ebx, b ;Load 
mov a, 1  ;Store

When is it safe for the hardware or compiler to perform this 
reordering?

Program Order Execution Order

From MIT OCW 6.172



Hardware Reordering
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Memory 
SystemProcessor Network
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Hardware Reordering

•The processor can issue stores faster than the network can handle them: 
put them in a store buffer

35

Memory 
SystemProcessor Network

Store Buffer
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Hardware Reordering

•The processor can issue stores faster than the network can handle them: 
put them in a store buffer

•Since a load can stall the processor until it is satisfied, loads take priority, 
bypassing the store buffer. 

36

Memory 
SystemProcessor Network

Store Buffer

Load Bypass
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Hardware Reordering

•The processor can issue stores faster than the network can handle them: 
put them in a store buffer

•Since a load can stall the processor until it is satisfied, loads take priority, 
bypassing the store buffer. 

• If a load address matches an address in the store buffer, the store buffer 
returns the result. 

37

Memory 
SystemProcessor Network

Store Buffer

Load Bypass
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Hardware Reordering

•The processor can issue stores faster than the network can handle them: 
put them in a store buffer

•Since a load can stall the processor until it is satisfied, loads take priority, 
bypassing the store buffer. 

• If a load address matches an address in the store buffer, the store buffer 
returns the result. 

•Thus, a load can bypass a store to a different address.

38

Memory 
SystemProcessor Network

Store Buffer

Load Bypass
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x86-64 Total Store Order

•Loads are not reordered with Loads.

•Stores are not reordered with Stores.

•Stores are not reordered with prior Loads. 

•A Load may be reordered with a prior 
Store to a different location but not with 
a prior Store to the same location.

•Loads and Stores are not reordered with 
Lock instructions. 

•Stores to the same location respect a 
global total order. 

•Lock instructions respect a global total 
order. 

•Memory ordering preserves transitive 
visibility (“causality”).

39

House rules:Instruction Trace
Store1 

Store2 

Load1 

Load2 

Store3 

Store4 

Load3 

Load4 

Load5
From MIT OCW 6.172



x86-64 Total Store Order

•Loads are not reordered with Loads.

•Stores are not reordered with Stores.

•Stores are not reordered with prior Loads. 

•A Load may be reordered with a prior 
Store to a different location but not with 
a prior Store to the same location.

•Loads and Stores are not reordered with 
Lock instructions. 

•Stores to the same location respect a 
global total order. 

•Lock instructions respect a global total 
order. 

•Memory ordering preserves transitive 
visibility (“causality”).

40

House rules:Instruction Trace
Store1 

Store2 

Load1 

Load2 

Store3 

Store4 

Load3 

Load4 

Load5

Loads

Total Store Ordering (TSO) is weaker than sequential consistency.
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Impact of Reordering

41

Processor 0 Processor 1
Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4
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Impact of Reordering

The ordering <2, 4, 1, 3> produces %eax = %ebx = 0.

42

Processor 0 Processor 1
Initially, a = b = 0

mov a, 1  ;Store 
mov %ebx, b ;Load

mov b, 1  ;Store 
mov %eax, a ;Load

1
2

3
4

mov %ebx, b ;Load 
mov a, 1  ;Store

mov %eax, a ;Load 
mov b, 1  ;Store

4
3

2
1

Instruction reordering violates sequential consistency!
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Peterson’s Algorithm Revisited

43

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob

Can reordering cause issues in the proof of correctness for 
Peterson’s algorithm?
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Peterson’s Algorithm Revisited

•The loads of B_wants and A_wants can be reordered before the stores of 
A_wants and B_wants, respectively. 


•Both Alice and Bob might enter their critical sections simultaneously!

44

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob

From MIT OCW 6.172



Memory Fences

•A memory fence (or memory barrier) is a hardware action that enforces an 
ordering constraint between the instructions before and after the fence. 


•A memory fence can be issued explicitly as an instruction (x86: mfence) or 
be performed implicitly by locking, exchanging, and other synchronizing 
instructions. 


•The std library for C++ implements a memory fence via the function 
atomic_thread_fence()*


•The typical cost of a memory fence is comparable to that of an L2-cache 
access.
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Restoring Consistency

Memory fences can restore sequential consistency.

46

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob

A_wants = true; 
turn = B; 
atomic_thread_fence(); 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

B_wants = true; 
turn = A; 
atomic_thread_fence();  
while (A_wants && turn == A); 
bar(&x); // critical section 
B_wants = false;

Alice Bob

Just a memory fence is not enough - you also need to account for the compiler.
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Restoring Consistency

47

A_wants = true; 
turn = B; 
atomic_thread_fence(); 
while (B_wants && turn == B); 
asm volatile(“”:::”memory”); 
foo(&x); // critical section 
asm volatile(“”:::”memory”); 
A_wants = false;

B_wants = true; 
turn = A; 
atomic_thread_fence();  
while (A_wants && turn == A); 
asm volatile(“”:::”memory”); 
bar(&x); // critical section 
asm volatile(“”:::”memory”); 
B_wants = false;

Alice Bob

In addition to the memory fence, we would need to declare variables as 
volatile to prevent the compiler from optimizing away memory references.


The volatile keyword signals to the compiler that the variable should be re-
read from memory each time it is used (instead of being optimized out or 
cached by the compiler in a register).
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Restoring Consistency with C11

48

atomic_store(&A_wants, true); 
atomic_store(&turn, B); 
while (atomic_load(&B_wants) && 
atomic_load(&turn) == B);  
foo(&x); // critical section 
atomic_store(&A_wants, false);

Alice

The C11 language standard defines its own weak memory model, in which you 
can control hardware and compiler reordering of memory operations by: 

•Declaring variables as _Atomic; and

•Using the functions atomic_load(), atomic_store() etc. as needed.

A_wants = true; 
turn = B; 
while (B_wants && turn == B); 
foo(&x); // critical section 
A_wants = false;

Alice

https://en.cppreference.com/w/c/atomicFrom MIT OCW 6.172



Implementing General Mutexes

Theorem [Burns-Lynch]. Any n-thread deadlock-free mutual-exclusion algorithm 
using only load and store memory operations requires  space. 


Theorem [Attiya et al.]: Any n-thread deadlock-free mutual-exclusion algorithm on 
a modern machine must use an expensive operation such as a memory 
fence or an atomic compare-and-swap operation.

Ω(n)

49

Thus, hardware designers are justified when they implement special 
operations to support atomicity. 
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Compare-and-Swap
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The Lock-Free Toolbox

Memory operations

•Load

•Store

•CAS (compare-and-swap)

51From MIT OCW 6.172



Compare-and-Swap

The compare-and-swap operation is provided by the cmpxchg instruction on 
x86-64. The C header file stdatomic.h provides CAS via the built-in function 


atomic_compare_exchange_strong() 

which can operate on various integer types.

52

bool CAS(T *x, T old, T new) { 
if (*x == old) { 
*x = new; 
return true; 

} 
return false; 

}

https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange

•Executes atomically


• Implicit fence
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Mutex using CAS
Theorem. An n-thread deadlock-free mutual-exclusion algorithm using CAS 
can be implemented using  space.Θ(1)

53

void lock(int *lock_var) { 
while(!CAS(lock_var, false, true)); 

}

void unlock(int *lock_var) { 
*lock_var = false; 

}

Just the space for the mutex
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int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
// … 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
result += compute(myArray[i]); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

Race

From MIT OCW 6.172

Summing Problem
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int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
mutex L; 
// … 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
L.lock(); 
result += temp; 
L.unlock(); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

From MIT OCW 6.172

Mutex Solution

Why is compute() 
outside the lock?
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int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
mutex L; 
// … 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
L.lock(); 
result += temp; 
L.unlock(); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

From MIT OCW 6.172

Mutex Solution

What happens if the 
operating system swaps 
out a loop iteration just 

after it acquires the 
mutex?



57

int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
mutex L; 
// … 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
L.lock(); 
result += temp; 
L.unlock(); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

From MIT OCW 6.172

Mutex Solution

What happens if the 
operating system swaps 
out a loop iteration just 

after it acquires the 
mutex?

All other loop iterations 
must wait.
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Mutex Solution
int compute(const X& v); 
int main() { 
const size_t n = 1000000; 
extern X myArray[n]; 
mutex L; 
// … 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
L.lock(); 
result += temp; 
L.unlock(); 

} 
printf("The result is: %d\n”, result); 
return 0; 

}

What happens if the 
operating system swaps 
out a loop iteration just 

after it acquires the 
mutex?

All other loop iterations 
must wait.

All we want is to atomically load 
x, add temp, and then store x



CAS Solution
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int compute(const X& v); 
int main() { 
… 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
int old, new 
do { 
old = result; 
new = old + temp; 

} while (!CAS(&result, old, new)); 
} 
… 

}
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CAS Solution
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int compute(const X& v); 
int main() { 
… 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
int old, new 
do { 
old = result; 
new = old + temp; 

} while (!CAS(&result, old, new)); 
} 
… 

}

Now what happens if the 
operating system swaps 

out a loop iteration?
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CAS Solution
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int compute(const X& v); 
int main() { 
… 

int result = 0; 
#pragma omp parallel for 
for (size_t i = 0; i < n; ++i) { 
int temp = compute(myArray[i]);  
int old, new 
do { 
old = result; 
new = old + temp; 

} while (!CAS(&result, old, new)); 
} 
… 

}

Now what happens if the 
operating system swaps 

out a loop iteration?

No other loop iteration 
needs to wait. The 

algorithm is 
nonblocking.

From MIT OCW 6.172



Lock-Free Algorithms
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Lock-Free Stack
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struct Node { 
Node* next; 
int data; 

}; 

struct Stack { 
Node* head; 
…

92 39head:
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Lock-Free Push

64

void push(Node* node) { 
do { 
node->next = head; 

} while(!CAS(&head, node->next, node)); 
}

92 39head:

81
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Lock-Free Push with Contention

65

void push(Node* node) { 
do { 
node->next = head; 

} while(!CAS(&head, node->next, node)); 
}

92 39head:

8133

CAS may fail if some other thread 
changes the head before you get to it
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Lock-Free Pop

66

Node* pop() { 
Node* current = head; 
while(current) { 
if (CAS(&head, current, current->next)) break; 
current = head; 

} 
return current; 

}

92 39head:

current:
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Lock-Free Pop

67

Node* pop() { 
Node* current = head; 
while(current) { 
if (CAS(&head, current, current->next)) break; 
current = head; 

} 
return current; 

}

92 39head:

current:

From MIT OCW 6.172



Optimization: Compare and CAS

•Compare-and-swap acquires a cache line in exclusive mode, invalidating 
the cache line in other caches. 


•Result: High contention if all processors are doing CAS’s to same cache 
line. 


•Better way: First read if value at memory location changed before doing 
CAS, and only do CAS if value didn’t change
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Lock-Free Push and Pop

69

Node* pop() { 
Node* current = head; 
while(current) { 
if (head == current && CAS(&head, current, current->next)) break; 
current = head; 

} 
return current; 

}

void push(Node* node) { 
do { 
node->next = head; 

} while(head != node->next || !CAS(&head, node->next, node)); 
}
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Lock-Free Data Structures

•Efficient lock-free algorithms are known for a variety of classical data 
structures (e.g., linked lists, queues, skip lists, hash tables). 


• In theory, a thread might starve. Because of contention, its operation might 
never complete. In practice, starvation rarely happens. 
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Practical issues: 
•Memory management 
•Contention 
•ABA problem



The ABA Problem
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ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading 
current->next.

72
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ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading 
current->next.


2. Thread 2 pops the node containing 15.
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ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading 
current->next.


2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94. 
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ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading 
current->next.


2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94. 

4. Thread 2 pushes the node 7, reusing the node that contained 15.
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ABA Example

1. Thread 1 begins to pop the node containing 15, but stalls after reading 
current->next.


2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94. 

4. Thread 2 pushes the node 7, reusing the node that contained 15.

5. Thread 1 resumes, and its CAS succeeds, removing 7, but putting 

garbage back on the list.
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Solutions to ABA

Versioning 

• Pack a version number with each pointer in the same atomically 

updatable word. 

• Increment the version number every time the pointer is changed. 

• Compare-and-swap both the pointer and the version number as a 

single atomic operation. 


Issue: Version numbers may need to be very large. 


Reclamation ∙ Prevent node reuse while pending requests exist. 

• For example, prevent node 15 from being reused as node 7 while Thread 

1 still executing.
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