Lecture 24: Filters Helen Xu hxu615@gatech.edu

╋

Georgia Tech College of Computing School of Computational Science and Engineering Slide from Michael Bender

Motivation: Filters are ubiquitous

Computational biology

Databases

Networking

Storage systems

Streaming applications

Recap: Filter Data Structure

A filter supports approximate membership queries on S.

Recap: A Filter Guarantees a False-Positive Rate ε

If $q \in S$, return yes with probability 1

no with probability $> 1 - \varepsilon$ true negative If $q \notin S$, return false positive yes with probability $\leq \varepsilon$

true positive

One-sided error (no false negatives)

Slide from Michael Bender

Recap: False-positive rate enables filters to be compact

For most practical purposes: $\varepsilon = 2\%$, so a filter requires ~8 bits per item

Slide from Michael Bender

Recap: The Bloom Filter [Bloom '70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

Bloom filters have suboptimal performance

	Bloom filter	Optimal
Space (bits)	$pprox 1.44 \; n \log(1/\epsilon)$	$pprox n \log(1/\epsilon) + \Omega(n)$
CPU cost	$\Omega(1/\epsilon)$	O(1)
Data locality	$\Omega(1/\epsilon)$ probes	O(1) probes

Applications often work around Bloom filter limitations

Limitations

No deletes

No resizes

No filter merging or enumeration

No values associated with keys

Bloom filter limitations increase system complexity, waste space, and slow down application performance.

Quotient Filters

Quotienting: an alternative to Bloom filters [Knuth. Searching and Sorting Vol. 3, '97]

Store fingerprints compactly in a hash table. • Take a fingerprint h(x) for each element x.

Only source of false positives:

- Two distinct elements x and y, where h(x) = h(y)If x is stored and y isn't, query(y) gives a false positive

 $\Pr[x \text{ and } y \text{ collide}] = \frac{1}{2^p}$

• b(x) =location in the hash table • t(x) = tag stored in the hash table

Implementation: 2 meta-bits per slot.

$$h(x) \dashrightarrow h_{\theta}(x) \parallel h_{I}(x)$$

Implementation: 2 meta-bits per slot.

$$h(x) \longrightarrow h_{\theta}(x) \parallel h_{1}(x)$$

"A General-Purpose Counting Filter: Making Every Bit Count." Pandey, Bender, Johnson, and Patro. SIGMOD 2017.

Quotienting enables many features in the QF

- Good cache locality
- Efficient scaling out-of-RAM
- Deletions
- Enumerability/Mergeability
- Resizing
- Maintains count estimates or associate values
- Uses variable-sized encoding for counts [Counting quotient filter]

Quotient filters use less space than Bloom filters for all practical configurations

	Quotient filter	Bloom filter	Optimal
Space (bits)	$pprox n \log(1/\epsilon) + 2.125 n$	$pprox 1.44 \ n \log(1/\epsilon)$	$pprox n \log(1/\epsilon) + \Omega(n)$
CPU cost	O(1) expected	$\Omega(1/\epsilon)$	O(1)
Data locality	1 probe + scan	$\Omega(1/\epsilon)$ probes	O(1) probes

The quotient filter has theoretical advantages over the Bloom filter

Quotient filters use less space than Bloom filters for all practical configurations

Bloom filter: ~ $1.44 \log(1/\epsilon)$ bits/element.

Quotient filter: $\sim 2.125 + log(1/\epsilon)$ bits/element.

Quotient filters perform better (or similar) to other non-counting filters

- slower at higher load-factors

 Insert performance is similar to the state-of-the-art non-counting filters Query performance is significantly faster at low load-factors and slightly

Summary of filters

- Bloom filters [Bloom '70]
- Quotient filters
- •Cuckoo/Morton filters [Fan et al. '14, Breslow & Jayasena '18]
- Others
 - Mostly based on perfect hashing and/or linear algebra
 Mostly static
- e.g., Xor filters [Graf & Lemire '20]

_____ State of the art in ______ practical dynamic filters

Current filter performance

- Performance suffers due to high c load factors
- Problem: many applications are w high load factors.

Performance suffers due to high overhead of collision resolution at high

Problem: many applications are write-heavy and maintain hash tables at

Space and speed tradeoff in current filters

Applications must choose between space and speed.

Space and speed tradeoff in current filters

Update-intensive applications maintain filters close to full.

Why quotient filters slow down

Quotient filters use Robin-Hood hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of runs.

To insert item *x*:

- 1.Find its run.
- 2.Shift other items down by 1 slot. 3.Store f(x).

As the QF fills, inserts have to do more shifting.

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

Why cuckoo filters slow down

s = O(1) slots/block (e.g., s=4)

Why cuckoo filters slow down

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

Why cuckoo filters slow down

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

Why cuckoo filters slow down

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

Why cuckoo filters slow down

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

As the CF fills, inserts have to do more kicking.

(Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking)

Aside: Power of two choices

Suppose that n balls are placed into n bins. Let the **load** of a bin be the number of balls in that bin after all the balls have been thrown. What is the **maximum load** over all bins once the process terminates?

Theorem: If the balls are thrown into bins **independently** and uniformly at random, the maximum load is $O(\log(n)/\log\log(n))$.

Theorem: For each ball, if we choose 2 bins independently and uniformly at random and place the ball into the less full one, the maximum load is $O(\log \log(n))$.

"Expected length of the longest probe sequence in hash code searching," Gonnet. JACM '81. "Balanced allocations," Azar, Broder, Karlin, Upfal. STOC '94. More results - <u>https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf</u>

Cuckoo filter performance

"Cuckoo Filter: Practically Better Than Bloom," Fan, Anderson, Kaminsky, Mitzenmacher - CoNEXT '14.

otimal	Cuckoo filter
$1/\epsilon)+\Omega(n)$	$pprox n \log(1/\epsilon) + 3n$
D(1)	up to 500
) probes	random probes

Vector quotient filter design

"Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

Vector quotient filter design

Each block is a small quotient filter with false-positive rate $\varepsilon/2$ and capacity s.

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

"Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

Vector quotient filter design

Each block is a small quotient filter with false-positive rate ε/2 and capacity *s*.

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

"Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

How to avoid kicking

choices, then, with high probability, the maximum load of any bin is $m/n + O(\ln \ln n)$.

reaching maximum capacity, and hence all insertions succeed whp.

- In a VQF, an insertion fails if both blocks are full via power-of-two-choices.
- Theorem [Berenbrink et al]: If we toss m balls into n bins using the power-of-two-

Therefore, to create a VQF for n items, we allocate $k = O(n \ln n)$ blocks, each with capacity $s = n/k + \Theta(\ln \ln n)$ items and false positive rate $\varepsilon/2$. By the theorem, all items can be inserted into the filter without any block

"Balanced Allocations: The Heavily Loaded Case." Berenbrink, Czumaj, Steger, and Vocking. Siam J. Computing '06. "Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

Vector quotient filter design

 $h_0(x)$

 $h_1(x)$

 ${\mathcal X}$

Each block is a small quotient filter with false-positive rate ε/2 and capacity *s*.

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

"Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

Vector quotient filter design

 $h_0(x)$

 $h_1(x)$

 ${\mathcal X}$

Each block is a small quotient filter with false-positive rate ε/2 and capacity *s*.

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

"Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

Vector quotient filter design

 $h_0(x)$

 $h_1(x)$

 \mathcal{X}

Each block is a small quotient filter with false-positive rate ε/2 and capacity *s*.

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

independent for insert-only workload "Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

Vector quotient filter design

 $h_0(x)$

 $h_1(x)$

 $\boldsymbol{\chi}$

Each block is a small quotient filter with false-positive rate ε/2 and capacity *s*.

To insert item x:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

"Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design," Pandey et al., SIGMOD '21

A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are stored together.

We keep a bit vector of bucket boundaries.

Insert x, where $\beta(x) = 0$

Space efficiency is maximized with b = s / ln2

41

W

bc

A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are stored together.

Insert x, where $\beta(x) = 0$

Space efficiency is maximized with b = s / ln2

Operations take constant time in a vector model of computation for vectors of size $\omega(\log \log n)$ [Blelloch 90]. e.g., using AVX-512 instructions.

Vector quotient filter (VQF) Performance

	Optimal	VQF
Space (bits)	$pprox n \log(1/\epsilon) + \Omega(n)$	$pprox n \log(1/\epsilon) + 2.91 n$
CPU cost	O(1)	O(1)
Data locality	O(1) probes	2 probes

Evaluation - Insertion

The VQF offers high performance at all load factors

Evaluation - lookups

Evaluation - concurrency

Quotient filter's impact in computer science

Computational biology

- 1. Squeakr
- 2. deBGR
- 3. Mantis
- 4. VariantStore
- 5. MetaHipMer

Databases/Systems

- 1. Anomaly detection
- 2. BetrFS file system
- Graph representation

Theoretically well-founded data structures can have a *big impact* on multiple subfields across *academia and industry*

High Performance Filters For GPUs McCoy, Hofmeyr, Yelick, Pandey -PPoPP 23, ACDA 23

- •High Performance Data Analytics (HPDA) is the intersection of High Performance **Computing** (HPC) and **Big Data**
- •HPDA applications run on massive systems like supercomputers
- •GPUs power these supercomputers

Applications in an exascale world

#1: Frontier 9408 nodes, 37,632 GPUs 1,685.65 PFlop/s Peak

Metagenomics

Soil sample

Water sample

Human gut

Metagenomics is the study of microbes that inhabit an environment and their interactions.

Metagenomic Assembly

- Sequences are generated as fragments called reads

It's like building the puzzle without the picture on the box and there are multiple different puzzles in the same box!

Rebuilding DNA strands from the reads is compute/memory intensive

MetaHipMer: an exascale metagenomic assembler

Input reads

K-mer analysis

De Bruijn graph construction

Contig generation

Alignment

Local Assembly

Scaffolding

Extract *k*-mers

GPUs accelerate metagenomic assembly

- MHM recently completed the largest coassembly ever
 - 9,400 nodes on Frontier
 - 37,000 GPUs
 - 71.6 terabyte assembly of Tara Oceans dataset

MetaHipMer Running Time

105 terabyte Human Microbiome dataset not assembled yet!

GPUs are the memory bottleneck

Peak memory usage in *k*-mer analysis!

Tradeoff in GPU-enabled k-mer analysis

Speed

Memory

Faster compute Low device memory

Tradeoff in GPU-enabled k-mer analysis

Speed

Filters can help overcome the memory-speed tradeoff in GPUs!

Faster compute

Memory

Low device memory

K-mer analysis requires filters with:

High performance

Space efficiency

Deletions

Key-value support

Existing GPU filters lack critical features

	Inserts	Queries	Deletions	Counting	Key-Value Association
Bloom Filter					
Blocked Bloom Filter ^[1]					
RSQF ^[2]			*		*
SQF [2]					*

[1] Junger et al. 2020[2] Geil et al. 2018

Existing GPU filters lack critical features

	Inserts	Queries	Deletions	Counting	Key-Value Association	Performa
Bloom Filter						
Blocked Bloom Filter ^[1]						
RSQF ^[2]			*		*	
SQF [2]					*	

[1] Junger et al. 2020[2] Geil et al. 2018

Existing GPU filters lack critical features

	Inserts	Queries	
Bloom Filter			
Blocked Bloom Filter ^[1]			
RSQF ^[2]			
SQF [2]			

Goal: To build a GPU filter that can achieve high-performance and supports different features (eg counting, values)

[1] Junger et al. 2020 [2] Geil et al. 2018

Proposed solution: TCF and GQF

	Inserts	Queries	
Bloom Filter			
Blocked Bloom Filter ^[1]			
RSQF ^[2]			
SQF [2]			
TCF			
GQF			

[1] Junger et al. 2020[2] Geil et al. 2018

- Present new GPU filter designs:
 - Two-Choice Filter (TCF)
 - Stable filter with key-value association/deletion
 - GPU Quotient Filter (GQF)
 - Filter with key-value association/deletion/dynamic counters
- Up to 4.4x faster than previous GPU filters
- Thread-level point API and host bulk API for easy integration
- 43% reduction in overall peak memory usage in MetaHipMer

Results

- Present new GPU filter designs:
 - Two-Choice Filter (TCF)
 - Stable filter with key-value association/deletion
 - GPU Quotient Filter (GQF)
 - Filter with key-value association/deletion/dynamic counters
- Up to 4.4x faster than previous GPU filters
- Thread-level point API and host bulk API for easy integration
- 43% reduction in overall peak memory usage in MetaHipMer

Results

GPU Challenges

1. Thread divergence

 Warps diverge and slow down if threads perform different operations

2. Memory coherence

 Warps slow down if threads read from different cache lines

3. Limited memory

 80 GB vs 1 TB - GPU memory can't fall back to disk

4. Massive parallelism

• $\sim 80,000-160,000$ simultaneous threads

Nvidia A100 Tensor GPU

Design Goals for GPU Filters

Stability

Low associativity

Items don't move after insertion

Map each item to one or a small number of locations

Space efficiency

Minimum overhead from pointers or over provisioning

Mapping GPU challenges to filter design goals

Filter design goal

Low associativity

Stability

Space efficiency

GPU challenge

Thread divergence and memory coherence

High degree of parallelism

Limited memory

Two-choice filter on GPUs

- $s = \omega(\log \log N) \approx 48$
 - No drops up to 90% load
 - Strategy used by VQF
- Slow on GPUs too many slots to probe with 1 warp
- Not stable tags move inside buckets
- Can increase throughput by setting s to a smaller value
 - However, can't reach high space efficiency

Choosing the optimal bucket size

Can we efficiently use warps with bucket sizes less than 32?

Choosing the optimal bucket size

Can we efficiently use warps with bucket sizes less than 32?

Yes, with <u>Cooperative Groups</u>

https://developer.nvidia.com/blog/cooperative-groups/

With small bucket sizes, warps may not be fully utilized

The cooperative groups API lets us split warps into smaller teams called **Cooperative Groups**

This is a logical partition: <u>underlying</u> hardware has not changed

Cooperative groups let us trade computation for memory:

 Less compute per group, but we can amortize cost of loading buckets

Evaluation - Optimal bucket size

Buckets are modified atomically

• CUDA coherence is weak - no guarantee that changes will be observed in other blocks without thread fencing / atomics

- Cache old state verify with atomicCAS
- All insertions done atomically, all queries done lazily

Frontyard-backyard hashing

- Bucket size is chosen to be 16
- Items drop around 70% load
- Small backing table catches drops, allows scaling to 90% load
- Backing table is ~1-2% of the total filter size.
- Uses linear probing to traverse buckets

Slide from Prashant Pandey

Results

	BF	Blocked BF	SQF	RSQF	TCF	GQF
False Positive (%)	0.15	0.71	1.17	1.55	0.024	0.19
Bits Per Item	10.10	9.73	9.7	7.87	16	10.68

(b) Point Queries.

74

Slide from Prashant Pandey

This results in a 43% reduction in peak memory use in the assembly pipeline

Peak memory use in k-mer analysis is reduced by 2.8 - 5.4x!

Takeaways

- The two-choice filter overcomes the feature-performance tradeoff of previous GPU Filters
- Simple design with strong theoretical foundation results in practical data structures
- Using a GPU filter can vastly reduce memory use of k-mer analysis No measured decrease in assembly quality • No measured increase in overall runtime

- Filters with advanced features **simplify** the pipeline

Github and lab page:

Libraries: https://github.com/saltsystemslab/gpu-filters **UtahDB:** http://mod.cs.utah.edu/

