
Helen Xu 
hxu615@gatech.edu

+

Lecture 24: Filters

mailto:hxu615@gatech.edu


Motivation: Filters are ubiquitous

2

Computational biology

Slide from Michael Bender

Databases

Networking

Streaming

applications

Storage systems



Recap: Filter Data Structure

3
A filter supports approximate membership queries on S.

a
c

b

d

S

U

member(a): yes


member(b): no


member(c): yes


member(d): yes

A filter is an approximate dictionary.

False 
positive

Slide from Michael Bender

e.g., Bloom 
filter



Recap: A Filter Guarantees a False-Positive Rate ε

If , return yes with probability 1


If , return

q ∈ S

q ∉ S

4

Slide from Michael Bender

no with probability > 1 − ε

yes with probability ≤ ε

true positive

true negative

false positive

One-sided error (no 
false negatives)



Recap: False-positive rate enables  
filters to be compact

5

Slide from Michael Bender

space of filter  ≥ n log(1/ε) space of dictionary  = Ω(n log |U | )

small large

For most practical purposes: , so a filter requires ~8 bits per item  ε = 2 %



Recap: The Bloom Filter [Bloom ’70]

Bloom filter: a bit array + k hash functions (k=2 in this example)

6

Slide from Michael Bender

a c b d
S

U

0 1 0 1 0 1 0 0









h1(a) = 1

h2(a) = 3

h1(c) = 5

h2(c) = 3



Bloom filters have suboptimal performance

7

Slide from Prashant Pandey



Applications often work around  
Bloom filter limitations

Bloom filter limitations increase system complexity, waste space, and slow 
down application performance.

8

Slide from Prashant Pandey

Limitations Workarounds

No deletes Rebuild

No resizes Guess N, rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure



Quotient Filters

9

Slide from Prashant Pandey



Quotienting: an alternative to Bloom filters 
[Knuth. Searching and Sorting Vol. 3, ’97]

Store fingerprints compactly in a hash table.

•Take a fingerprint h(x) for each element x.

10

Only source of false positives:

•Two distinct elements x and y, where h(x) = h(y)

• If x is stored and y isn’t, query(y) gives a false positive



Storing fingerprints compactly

11

Slide from Prashant Pandey



Storing fingerprints compactly

12

Slide from Prashant Pandey



Storing fingerprints compactly

13

Slide from Prashant Pandey

•Linear probing

•Robin hood hashing



Storing fingerprints compactly

14

Slide from Prashant Pandey

•Linear probing

•Robin hood hashing

t(y) belongs to slot 4 or 5? 
Use O(1) metadata bits to tell

t(y)



Resolving collisions in the QF

15“A General-Purpose Counting Filter: Making Every Bit Count.” Pandey, Bender, Johnson, and Patro. SIGMOD 2017.

Slide from Prashant Pandey



16

Resolving collisions in the QF
Slide from Prashant Pandey

“A General-Purpose Counting Filter: Making Every Bit Count.” Pandey, Bender, Johnson, and Patro. SIGMOD 2017.



Quotienting enables many features in the QF

•Good cache locality

•Efficient scaling out-of-RAM

•Deletions

•Enumerability/Mergeability

•Resizing

•Maintains count estimates or associate values

•Uses variable-sized encoding for counts [Counting quotient filter]

17

Slide from Prashant Pandey



Quotient filters use less space than Bloom filters 
for all practical configurations

The quotient filter has theoretical advantages over the Bloom filter

18

Slide from Prashant Pandey



19

Quotient filters use less space than Bloom filters 
for all practical configurations

Slide from Prashant Pandey



Quotient filters perform better (or similar) to other 
non-counting filters

• Insert performance is similar to the state-of-the-art non-counting filters

•Query performance is significantly faster at low load-factors and slightly 
slower at higher load-factors

20

Slide from Prashant Pandey



Summary of filters

•Bloom filters [Bloom ‘70]

•Quotient filters 

•Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

•Others

◦Mostly based on perfect hashing and/or linear algebra

◦Mostly static


e.g., Xor filters [Graf & Lemire ‘20]

21

Slide from Prashant Pandey

State of the art in  
practical dynamic filters



Current filter performance
•Performance suffers due to high overhead of collision resolution at high 
load factors

•Problem: many applications are write-heavy and maintain hash tables at 
high load factors.

22

Slide from Prashant Pandey



Space and speed tradeoff in current filters

23

Slide from Prashant Pandey

Applications must choose between space and speed.



24

Space and speed tradeoff in current filters

Update-intensive applications maintain filters close to full.

Slide from Prashant Pandey



Why quotient filters slow down

Quotient filters use Robin-Hood 
hashing (a variant of linear probing)


QFs use 2 bits/slot to keep track of 
runs.


To insert item x:

1.Find its run.

2.Shift other items down by 1 slot.

3.Store f(x).

25

As the QF fills, inserts have to 
do more shifting.

Slide from Prashant Pandey



26

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down
Slide from Prashant Pandey



f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

f13 f14 f15

27

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down
Slide from Prashant Pandey



f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

f13 f14 f15

28

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down
Slide from Prashant Pandey

Kick f8



f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

f13 f14 f15

29

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down
Slide from Prashant Pandey

Kick f8

Kick f12



f1 f2 f3 f4

f5 f6 f7

f12

f9 f10 f11 f8

f13 f14 f15

30

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Why cuckoo filters slow down
Slide from Prashant Pandey

Kick f8

Kick f12

fx

As the CF fills, inserts have to 
do more kicking.

(Note:  and  need to be 

dependent to support kicking) 

h0(x) h1(x)



Aside: Power of two choices

Suppose that n balls are placed into n bins. Let the load of a bin be the 
number of balls in that bin after all the balls have been thrown. What is the 
maximum load over all bins once the process terminates?


Theorem: If the balls are thrown into bins independently and uniformly at 
random, the maximum load is .


Theorem: For each ball, if we choose 2 bins independently and uniformly at 
random and place the ball into the less full one, the maximum load is 

.

O(log(n)/log log(n))

O(log log(n))

31
“Balanced allocations,” Azar, Broder, Karlin, Upfal. STOC ‘94.

More results - https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf

“Expected length of the longest probe sequence in hash code searching,” Gonnet. JACM ’81.

https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf


Cuckoo filter performance

32

Slide from Prashant Pandey

“Cuckoo Filter: Practically Better Than Bloom,” Fan, Anderson, Kaminsky, Mitzenmacher - CoNEXT ’14.



Vector quotient filter design

33“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

Slide from Prashant Pandey



Vector quotient filter design

34“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

Slide from Prashant Pandey



Vector quotient filter design

35“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Slide from Prashant Pandey



How to avoid kicking

In a VQF, an insertion fails if both blocks are full via power-of-two-choices.


Theorem [Berenbrink et al]: If we toss m balls into n bins using the power-of-two-
choices, then, with high probability, the maximum load of any bin is 

.


Therefore, to create a VQF for n items, we allocate  blocks, 
each with capacity  items and false positive rate . 
By the theorem, all items can be inserted into the filter without any block 
reaching maximum capacity, and hence all insertions succeed whp.

m/n + O(ln ln n)

k = O(n ln n)
s = n/k + Θ(ln ln n) ε/2

36“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21
“Balanced Allocations: The Heavily Loaded Case.” Berenbrink, Czumaj, Steger, and Vocking. Siam J. Computing ’06.



Vector quotient filter design

37“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Slide from Prashant Pandey

x
h0(x)

h1(x)



Vector quotient filter design

38“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Slide from Prashant Pandey

x
h0(x)

h1(x)

No kicking -> h0(x) and h1(x) can be 
independent for insert-only workload 

still needed 
for deletes



Vector quotient filter design

39“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Slide from Prashant Pandey

x
h0(x)

h1(x)

No kicking -> h0(x) and h1(x) can be 
independent for insert-only workload 

still needed 
for deletes

By Vocking, variance in block 
occupancy is a lower-order term



Vector quotient filter design

40“Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design,” Pandey et al., SIGMOD ‘21

To insert item x:

1. Compute h0(x) and h1(x).

2. Insert f(x) into emptier block.

3. Kick an item if needed.

Slide from Prashant Pandey

x
h0(x)

h1(x)

No kicking -> h0(x) and h1(x) can be 
independent for insert-only workload 

still needed 
for deletes

By Vocking, variance in block 
occupancy is a lower-order term

Easier 
concurrency



A vectorizable mini quotient filter

41

Each block has b logical buckets.


Fingerprints of each bucket are stored 
together.


We keep a bit vector of bucket 
boundaries.

Insert x, where β(x) = 0

Implemented 
with PDEP

Implemented with 
PSHUFB or VCMPB

Space efficiency is maximized 
with b = s / ln2

Slide from Prashant Pandey



A vectorizable mini quotient filter

42

Each block has b logical buckets.


Fingerprints of each bucket are stored 
together.


We keep a bit vector of bucket 
boundaries.

Insert x, where β(x) = 0

Implemented 
with PDEP

Implemented with 
PSHUFB or VCMPB

Space efficiency is maximized 
with b = s / ln2

Slide from Prashant Pandey

Operations take constant time in a vector model of computation for 
vectors of size  [Blelloch 90]. e.g., using AVX-512 instructions.ω(log log n)



Vector quotient filter (VQF) Performance

43

Slide from Prashant Pandey



Evaluation - Insertion

44

The VQF offers high performance at all load factors

Slide from Prashant Pandey



Evaluation - lookups

45

Slide from Prashant Pandey



Evaluation - concurrency

46

Slide from Prashant Pandey



Quotient filter’s impact in computer science

47

Slide from Prashant Pandey



High Performance Filters For GPUs 
McCoy, Hofmeyr, Yelick, Pandey -  

PPoPP 23, ACDA 23

48



Applications in an exascale world

49

•High Performance Data Analytics (HPDA) is 
the intersection of High Performance 
Computing (HPC) and Big Data


•HPDA applications run on massive 
systems like supercomputers


•GPUs power these supercomputers
#1: Frontier

9408 nodes, 37,632 GPUs
1,685.65 PFlop/s Peak

Slide from Prashant Pandey



Metagenomics

50

Slide from Prashant Pandey

Human gut

Soil sample Human gutWater sample

Metagenomics is the study of microbes that inhabit an environment and their interactions.



Metagenomic Assembly

51

Slide from Prashant Pandey

• Sequences are generated as fragments called reads 
• Rebuilding DNA strands from the reads is compute/memory intensive

It’s like building the puzzle without the picture on the box and there are 
multiple different puzzles in the same box!



MetaHipMer: an exascale metagenomic assembler

52

Slide from Prashant Pandey

Hofmeyr, S., Egan, R., Georganas, E. et al. Terabase-scale metagenome coassembly with MetaHipMer. Sci Rep 10, 10689 (2020).

Input reads

K-mer analysis

De Bruijn graph construction

Contig generation

Alignment

Local Assembly

Scaffolding

On GPU

Extract k-mers



GPUs accelerate metagenomic assembly

53

• MHM recently completed the largest co-
assembly ever

• 9,400 nodes on Frontier

• 37,000 GPUs 
•  71.6 terabyte assembly of Tara Oceans 

dataset

MetaHipMer Running Time

105 terabyte Human Microbiome dataset not assembled yet!

Slide from Prashant Pandey



GPUs are the memory bottleneck

54

! Peak memory usage in k-mer analysis!!!!

Input reads

K-mer analysis

De Bruijn graph construction

Contig generation

Alignment

Local Assembly

Extract k-mers

!

On GPU

Scaffolding

Slide from Prashant Pandey



Tradeoff in GPU-enabled k-mer analysis

55

Slide from Prashant Pandey

Speed Memory

Faster compute Low device memory



Tradeoff in GPU-enabled k-mer analysis

56

Slide from Prashant Pandey

Speed Memory

Faster compute Low device memory

Filters can help overcome the memory-speed tradeof in GPUs!



K-mer analysis requires filters with:

57

Slide from Prashant Pandey

Space efficiency Deletions Key-value supportHigh performance



Existing GPU filters lack critical features

58

Inserts Queries Deletions Counting Key-Value 
Association

Bloom Filter

Blocked 
Bloom Filter[1]

RSQF [2]

SQF [2]

* *

*

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Slide from Prashant Pandey



59

Inserts Queries Deletions Counting Key-Value 
Association

Bloom Filter

Blocked 
Bloom Filter[1]

RSQF [2]

SQF [2]

* *

*

Performance

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Existing GPU filters lack critical features

Slide from Prashant Pandey



60

Inserts Queries Deletions Counting Key-Value 
Association

Bloom Filter

Blocked 
Bloom Filter[1]

RSQF [2]

SQF [2]

* *

*

Performance

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Existing GPU filters lack critical features

Goal: To build a GPU filter that can achieve high-performance 

and supports different features (eg counting, values)

Slide from Prashant Pandey



Proposed solution: TCF and GQF

61

Inserts Queries Deletions Counting Key-Value 
Association

Bloom Filter

Blocked 
Bloom Filter[1]

RSQF [2]

SQF [2]

TCF

GQF

* *

*

Performance

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Slide from Prashant Pandey



Results

• Present new GPU filter designs: 

• Two-Choice Filter (TCF)


• Stable filter with key-value association/deletion

• GPU Quotient Filter (GQF)


•  Filter with key-value association/deletion/dynamic counters

• Up to 4.4x faster than previous GPU filters

• Thread-level point API and host bulk API for easy integration

• 43% reduction in overall peak memory usage in MetaHipMer 

62

Slide from Prashant Pandey



Results

• Present new GPU filter designs: 

• Two-Choice Filter (TCF) 

• Stable filter with key-value association/deletion

• GPU Quotient Filter (GQF)


•  Filter with key-value association/deletion/dynamic counters

• Up to 4.4x faster than previous GPU filters

• Thread-level point API and host bulk API for easy integration

• 43% reduction in overall peak memory usage in MetaHipMer 

63

Slide from Prashant Pandey



GPU Challenges

1. Thread divergence 
• Warps diverge and slow down if threads perform 

different operations

2. Memory coherence 
• Warps slow down if threads read from different 

cache lines

3. Limited memory 
• 80 GB vs 1 TB - GPU memory can’t fall back to 

disk

4. Massive parallelism 
• ~80,000-160,000 simultaneous threads

64

Nvidia A100 Tensor GPU

Slide from Prashant Pandey



Design Goals for GPU Filters

65

Slide from Prashant Pandey

Low associativity


Map each item to one or a 
small number of locations

Space efficiency 

Minimum overhead from 
pointers or over provisioning

Stability 


Items don’t move after 
insertion



Mapping GPU challenges to filter design goals

66

Thread divergence and 
memory coherence

High degree of parallelism

Low associativity

Stability

Space efficiency

Filter design goal GPU challenge

Limited memory

Slide from Prashant Pandey



Two-choice filter on GPUs

67

h0(x)

X

s Slots

s = ω(log log N)

h1(x)



Buckets

N/s

• 

• No drops up to 90% load

• Strategy used by VQF


• Slow on GPUs — too many slots to probe with 
1 warp


• Not stable — tags move inside buckets

• Can increase throughput by setting s to a 

smaller value

• However, can’t reach high space efficiency

s = ω(log log N) ≈ 48

Slide from Prashant Pandey



Choosing the optimal bucket size

68

Can we efficiently use warps with bucket sizes less than 32?

Slide from Prashant Pandey



Choosing the optimal bucket size

69

Can we efficiently use warps with bucket sizes less than 32?

Slide from Prashant Pandey

Yes, with Cooperative Groups

https://developer.nvidia.com/blog/cooperative-groups/



With small bucket sizes, warps  
may not be fully utilized

70

The cooperative groups API lets us split 
warps into smaller teams called 
Cooperative Groups 

This is a logical partition: underlying 
hardware has not changed


Cooperative groups let us trade 
computation for memory:


• Less compute per group, but we can 
amortize cost of loading buckets

Warp

1 team of 32 2 teams of 16 4 teams of 8

Slide from Prashant Pandey



Evaluation - Optimal bucket size

71

Bucket Size



Buckets are modified atomically

•CUDA coherence is weak - no 
guarantee that changes will be 
observed in other blocks without 
thread fencing / atomics

•Cache old state - verify with 
atomicCAS

•All insertions done atomically, all 
queries done lazily

72

Slide from Prashant Pandey



Frontyard-backyard hashing

73

• Bucket size is chosen to be 16 

• Items drop around 70% load

• Small backing table catches drops, 

allows scaling to 90% load

• Backing table is ~1-2% of the total 

filter size.

• Uses linear probing to traverse 

buckets

Slide from Prashant Pandey



Results

74

BF Blocked BF SQF RSQF TCF GQF
False Positive (%) 0.15 0.71 1.17 1.55 0.024 0.19
Bits Per Item 10.10 9.73 9.7 7.87 16 10.68

Slide from Prashant Pandey



Aggregate savings

75

Peak memory use in k-mer analysis is reduced by 2.8 - 5.4x!

This results in a 43% reduction in peak memory use in the 
assembly pipeline

Slide from Prashant Pandey



Takeaways

76

• The two-choice filter overcomes the feature-performance tradeoff of 
previous GPU Filters


• Simple design with strong theoretical foundation results in practical data 
structures

• Using a GPU filter can vastly reduce memory use of k-mer analysis 

• No measured decrease in assembly quality

• No measured increase in overall runtime


• Filters with advanced features simplify the pipeline

Github and lab page: 
Libraries: https://github.com/saltsystemslab/gpu-filters  
UtahDB: http://mod.cs.utah.edu/ 

Slide from Prashant Pandey

https://github.com/saltsystemslab/gpu-filters
http://mod.cs.utah.edu/

