Center for the Study of Systems Biology

  • Home
  • About us
    • Members
  • Skolnick Research Group
    • Jeffrey Skolnick
    • Suhaas Bonkur
    • Mu Gao
    • Jessica Gilmore Forness
    • Bartosz Ilkowski
    • Rustin Makhmalbaf
    • Lilya Matyunina
    • Nilavrah Sensarma
    • Ishan Sheth
    • Steven Vacha
    • Hongyi Zhou
    • Former Group Members
  • Publications
    • Publications
    • Preprints
  • Software and Services
    • Services
      • DESTINI
      • DR. PRODIS
      • ENTPRISE
      • ENTPRISE-X
      • FINDSITEcomb
      • FINDSITEcomb2.0
      • FRAGSITE
      • Know-GENE
      • LeMeDISCO
      • MEDICASCY
      • MOATAI-VIR
      • PHEVIR
    • Downloads
      • AF2Complex
      • APoc
      • Cavitator
      • DBD-Hunter
      • DBD-Threader
      • EFICAz2.5
      • Fr-TM-align
      • GOAP
      • iAlign
      • IS-score
      • LIGSIFT
      • PULCHRA
      • SAdLSA
    • Databases
      • Apo and Holo Pairs
      • New Human GPCR Modeling and Virtual Screening
      • PDB-like Structures
    • Simulations
      • E. coli Intracellular Dynamics
  • News & Events
    • News
    • ARCHIVE: Distinguished Lecture Series in Systems Biology
  • Jobs

FINDSITEcomb2.0

FINDSITEcomb2.0: A Drug Discovery Tool is an upgrade of the FINDSITEcomb algorithm that was compared to several commercially and freely available docking programs against the DUD set – A Directory of Useful Decoys. We demonstrated that FINDSITEcomb has virtual screening accuracy better than the best docking method under the challenging condition that no templates > 30% sequence ID to the target are present in the ligand binding databases. FINDSITEcomb2.0 is shown to have significant improvment over FINDSITEcomb. FINDSITEcomb2.0 also outperforms state-of-the-art methods that employ machine learning such as a deep convolutional neural network, CNN. With 80% sequence identity cutoff of target to templates for DUD-E set and modeled target structures, the average AUC and ROC 1%, ROC-EF1 enrichment factor of FINDSITEcomb2.0 are 0.879 & 53.72, compared to 0.868 & 29.65 of the deep CNN scoring method, respectively, which employed crystal structures. If FINDSITEcomb2.0 uses crystal structures, then the AUC and ROC-EF1 are 0.898 and 58.22, respectively. Thus, FINDSITEcomb2.0 represents a significant improvement in the state of the art.

Notice: This server is free for non-commercial users.
Commercial users – to use this server, please send an email to Dr. Jeffrey Skolnick: skolnick@gatech.edu.

If you find this service useful, please cite the following paper: Zhou, H, Cao H, Skolnick J. 2018. FINDSITEcomb2.0: A New Approach for Virtual Ligand Screening of Proteins and Virtual Target Screening of Biomolecules. Journal of Chemical Information and Modeling. 58(11): 2343-2354 doi: 10.1021/acs.jcim.8b00309. PDF

For virtual ligand screening

For virtual target screening

Output format
Download benchmarking results

This site is maintained by Dr. H. Zhou: hzhou3@gatech.edu

  • Skolnick Research Group
    • Jeffrey Skolnick
    • Suhaas Bonkur
    • Mu Gao
    • Jessica Gilmore Forness
    • Bartosz Ilkowski
    • Rustin Makhmalbaf
    • Lilya Matyunina
    • Nilavrah Sensarma
    • Ishan Sheth
    • Steven Vacha
    • Hongyi Zhou
    • Former Group Members
  • Software and Services
    • Services
      • DESTINI
      • DR. PRODIS
      • ENTPRISE
      • ENTPRISE-X
      • FINDSITEcomb
      • FINDSITEcomb2.0
      • FRAGSITE
      • Know-GENE
      • LeMeDISCO
      • MEDICASCY
      • MOATAI-VIR
      • PHEVIR
    • Downloads
      • AF2Complex
      • APoc
      • Cavitator
      • DBD-Hunter
      • DBD-Threader
      • EFICAz2.5
      • Fr-TM-align
      • GOAP
      • iAlign
      • IS-score
      • LIGSIFT
      • PULCHRA
      • SAdLSA
    • Databases
      • Apo and Holo Pairs
      • New Human GPCR Modeling and Virtual Screening
      • PDB-like Structures
    • Simulations
      • E. coli Intracellular Dynamics

Copyright © 2023 · Minimum Pro on Genesis Framework · WordPress · Log in