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The tertiary structure of a native protein is dictated by the

interplay of local secondary structure propensities, hydrogen

bonding, and tertiary interactions. It is argued that the space of

known protein topologies covers all single domain folds and

results from the compactness of the native structure and

excluded volume. Protein compactness combined with the

chirality of the protein’s side chains also yields native-like

Ramachandran plots. It is the many-body, tertiary interactions

among residues that collectively select for the global structure

that a particular protein sequence adopts. This explains why

the recent advances in deep-learning approaches that predict

protein side-chain contacts, the distance matrix between

residues, and sequence alignments are successful. They

succeed because they implicitly learned the many-body

interactions among protein residues.
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Determination of the native fold of a protein from its

amino acid sequence is a fundamental question in bio-

physics. Given the validity of the Anfinsen hypothesis

that the native conformation of the protein is at a global

free energy minimum, the native structure is the best

compromise of local conformational preferences and ter-

tiary interactions [1]. There are three factors that deter-

mine the global fold of a protein: First and foremost is the

peptide bond that provides hydrogen bonding; this is the

key directional term driving protein folding [2]. One

might also expect the peptide bond to provide local chain

stiffness. Then, there are the amino acid’s side chains

which provide the sequence specificity of the protein.
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Amino acids are chiral, with the majority of native resi-

dues comprised of L-amino acids which have a preference

for right handed a-helices and a right handed twist of

b-sheets [2]. Third, native proteins structures are well

packed, compact structures whose average internal pack-

ing density is comparable to crystalline solids [3]. Thus,

the interplay of conformational preferences as provided

by the local in sequence interactions among the side

chains and backbone atoms, hydrogen bonding and chain

compactness driven by tertiary interactions dictate the

particular native structure a protein adopts. But to what

extent do the structural properties of proteins depend

solely on the intrinsic residue propensities with complete

neglect of their interactions with other residues in the

protein [4,5]? If this term were dominant, then local

geometric and sequence specific effects would be most

important. Conversely, what general features of protein

structures arise from chain compactness and excluded

volume with complete neglect of sequence specificity

[6,7]? If compactness were to play a major role in dictating

the general geometric and topological features of pro-

teins, then perhaps, many body interactions between

protein residues provide the specificity responsible for

which structure a protein adopts, with local residue inter-

actions providing the conformational bias to its secondary

structure. This contribution explores these issues.

Despite the intuitive view that local peptide sequence

interactions dominate, as illustrated in Figure 1, we argue

that it is chain compactness which explains many general

protein features, most especially the space of protein

folds, with local sequence specific effects providing a

major, but not deterministic, driving force for secondary

structure. Another key component is many-body, nonlo-

cal in sequence interactions. While the importance of

many body interactions was recognized for decades [8],

the advent of deep-learning approaches enables the con-

sideration of a wide spectrum of many-body effects that

ultimately select the structure a given sequence adopts

[9–12,13�,15��,16��].

At one extreme, one might imagine that every protein

family adopts a unique protein fold which bears no

statistically similar structural relationship to evolutionary

unrelated proteins [17]. That is, the structure adopted by

a given protein family is truly unique. Alternatively, due

to inherent stereochemical restraints, perhaps there are a

limited number of structurally distinct folds that single

protein domains adopt [18,19�,20]. This is consistent with

the observation of convergent folds and the fact that very

diverse sequences adopt similar protein structures [21].
Current Opinion in Structural Biology 2021, 68:1–8
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Figure 1
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Illustrating the interactions that dictate the (a) compact shape and (b) overall structural fold of a protein sequence. In (a), hydrogen bonds (dashed

orange lines) yields a-helices or b-strands (purple cartoons). Together with various protein sidechain interactions (van der Waals representation),

hydrophobic (white), positive (blue), negative (red), and polar (green), lead to the compactness of a protein. The protein backbone (ball-and-stick

representation, carbon (cyan), nitrogen (blue), and oxygen(red) atoms) is characterized by the ’,c torsion angles. In (b), many-body, long-range

interactions among residues (ball-and-stick representations) give rise to the specific protein fold (grey cartoon), as demonstrated for E. coli

dihydrofolate reductase [57]. Snapshot images were created with VMD [58].

Box 1 Ramachandran plot: The rotation of a protein backbone

chain can be characterized by two dihedral angles called (’,c), see

Figure 1, left panel. The two dimensional plot of this pair of angles is

known as the Ramachandran plot, which shows energetically

preferred angle regions, largely dictated by steric constraints.

Free-modeling: This is the most challenging category of protein

targets in the CASP. A free-modeling target does not have a homolog

whose atomic structure has been experimentally determined and

identified in the Protein Data Bank. Hence, it is a hard target for

homology-based structure prediction approaches such as

‘threading’ and sequence profile methods. Predicted structures in

this category are generally of lower quality than when related tem-

plate structures can be identified.
Fold convergence could occur either because the space of

single domain protein structures is inherently limited, or

it could just reflect the evolutionary process by which all

contemporary proteins emerged from a small set of ances-

tral peptides that were subsequently replicated, modified

and shuffled to assemble all native folds [22–25]. Perhaps,

the latter occurred but was subject to the inherent global

stereochemical constraints of proteins. This would result

in population of the same types of global folds indepen-

dent of how they are generated. However, their relative

population might be dictated by the initial primordial sets

of primordial peptides. By studying quasi-spherical, ran-

dom, flexible chains comprised of random sequences

protein-like average composition of L-amino acids com-

pacted into the same volume as native proteins, those

protein properties that result from compaction and

excluded volume were explored [26]. Remarkably, the

topology of every single domain native protein (e.g. when

the local chain details are ignored, e.g. a helix is replaced

by a smooth curve down its principal axis), is found in the

structural library of compact, quasi-spherical proteins.

This also implies that the structural space of single

domain proteins is likely complete. What is more striking

is that these compact, quasi-spherical random proteins

exhibit protein like distributions of virtual bond angles;

this result was not built into the model. While their

backbone Ramachandran (’,c) plots are more diffuse

than native proteins, they occupy very similar regions

(Box 1). Thus, in compact structures, backbone geometry

and protein side chain chirality generate the approximate
Current Opinion in Structural Biology 2021, 68:1–8 
native (’,c) distribution without consideration of addi-

tional factors. These results suggest that the space of

protein global protein folds and local geometric structures

arise from protein compactness and local side chain

geometry and nothing more. When artificial proteins

containing native like secondary structures are folded,

as expected, they also cover the space of single domain

proteins [26].

Recent work on homopolymeric proteins containing

equal numbers of D-residues and L-residues, demi-chiral

proteins, shows that they when compacted they too

contain all observed native folds, that is, the space of

native folds is complete [27��]. But due to defects in chain

packing caused by the formation of local secondary

structures, they contain all native-like ligand-binding
www.sciencedirect.com
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pockets, including native active site geometries with

L-amino acids. At what point following the origin of life

was protein fold space fully populated is uncertain. Local

chain stiffness is induced by intrinsic local conformational

preferences and hydrogen bonding between residues.

Because they have fewer internal hydrogen bonds due

to their less regular secondary structure, such demi-chiral

proteins are thermodynamically less stable. Selection for

stability could drive selection toward the amino acid

homochirality found in contemporary proteins. Thus,

the space of protein folds is due to global tertiary inter-

actions arising from the hydrophobic effect that drives

compactness (Box 1).

The above results justify the conceptual approach adopted

in threading where one considers a library of protein folds

and then finds the structure that the given target sequence

prefers [28–30]. But what dictates the preference of a given

sequence for a given global structure? How much of the

protein’s free energy a property of the individual amino

acids without consideration of other residues? Clues to the

nonlocal nature of secondary structure propensities go back

to the pentane effect in alkanes [31] and is reflected in the

fact that the exact location of the (’,c) minima of amino

acids depends on the neighboring amino acids [32]. The

history of secondary structure prediction provides addi-

tional insights. Despite the use of deep-learning to predict

protein secondary structure, the best secondary structure

methods are about 85% accurate, having improved only

marginally over the past 15 years from much simpler

machine learning approaches which had an accuracy of

about 80% [33]. Thus, as secondary structure schemes

advanced from consideration of individual residue propen-

sities [5] to neural network models that considered local

windows of residues [34] to deep-learning approaches, the

accuracy of secondary structure prediction has saturated

[33]. One logical explanation is that even more distant,

subtle nonlocal interactions perhaps involving the entire

protein sequence or a significant fraction of it dictate what

secondary structure is adopted for some parts of the protein

chain. Indeed, chameleon sequences (identical sequences)

adopt different secondary structures depending on context

[35]. The importance of nonlocal interactions has been

recognized for a long time [36], but until recently the tools

did not exist to fully address this issue.

Over the past several years, exciting breakthroughs have

been made that include the long-range residue-residue

interactions [37]. Using a deep residual convolutional

neural network, Xu et al. were the first to demonstrate

significant success in predicting (Cb–Cb) contacts

between individual residues of a protein sequence in

CASP12 [9,10], a blind biannual protein structure predic-

tion competition. Such Cb–Cb contacts encode both the
local secondary structure and the global fold, and it is their
synergy that could improve model quality. Despite that, their

utility in structure prediction was not shown in CASP12
www.sciencedirect.com 
[38]. Subsequently, several groups demonstrated that

better contact predictions yielded significantly better

structure predictions, especially for challenging targets

[11,12,13�,14,16��]. In CASP13, all four top-ranked groups

in the most challenging, free-modeling category (Box 1)

used residue-residue contacts or distance matrices pre-

dicted via deep-learning [39]. Among them, AlphaFold

achieved the best performance using high-quality resi-

due-residue distance matrices to derive statistical folding

potentials [16��].

Prior to the arrival of deep-learning algorithms, the most

successful approaches for structure prediction were tem-

plate-based [40] and employed HMM-based sequence

profiles [41] or relied on threading [29,42]. Threading

combines various evolution based sequence profiles and

statistical pair potentials to generate the best alignment

with experimentally known protein structures (as tem-

plates), using dynamic programming algorithms. Both

approaches exploit the completeness of fold space and

their scoring functions are either local in sequence as in

HMM methods, consider individual pairs of interacting

residues, did not consider higher order residue correla-

tions, and in the case of threading because pair potentials

are used, the best scores represent, a local and not

necessarily, global optimum. Sequence profile and

threading based methods fail when the best structural

template is evolutionarily too remote to be detected [43].

To overcome these issues, direct co-evolutionary signals

detected from the multiple sequence alignment (MSA)

to infer inter-residue contacts were employed [44].

Although proposed decades ago [45], success was only

possible when more sequences were available for build-

ing deep MSAs [46], and better algorithms were devel-

oped to disentangle indirect correlations from direct

residue-residue contacts [47,48]. However, co-evolution-

ary approaches (also known as direct-coupling analysis)

often yielded sparse contact predictions with many false

positives [49]. These false positives occur because

they do not consider the higher order correlations

between many covarying residues implicit in the protein’s

structure.

As indicated above, it was recognized long ago that the

long-range interactions in a sequence are important to

folding [50]. Addressing this shortcoming is the key

reason for the success of deep-learning algorithms

[9–11] and enables the prediction of native-like clusters

of contacts. One example is found in Figure 2 which

shows the DESTINI protocol for deep learning based

contact/distance matrix prediction. As a representative

case depicted in Figure 2, in a systematic clustering

analysis of the contacts generated by a deep-learning

versus co-evolutionary analysis, most contacting clusters

of residues were identified by both methods [11]. In 70%

of the analyzed proteins, the difference between the two
Current Opinion in Structural Biology 2021, 68:1–8
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Figure 2
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Illustration of the deep-learning algorithm DESTINI for protein structural prediction [11]. (a) Flowchart of DESTINI using a representative example

(TT1751 of Thermus thermophilus HB8, PDB code 1J3M). A multiple sequence alignment is constructed for the query sequence (purple) from

scanning homolog hits in a large sequence library containing many millions of sequences. Sequence profiles, both 1D and 2D (e.g. direct-coupling

scores), are extracted as features fed into a deep convolutional neural network, which outputs a residue-residue contact or distance matrix. The

contact map is shown for the query sequence from DESTINI [9] (upper triangle) in comparison with predictions by co-evolutionary analysis by

CCMPred [59] (lower triangle). Medium and long-range native contacts are represented by circles filled in different colors to differentiate

contacting clusters of side chains, and isolated sparse contacts are represented by grey circles. Correctly predicted contacts by either method

are indicated by black borders surrounding the circles. False positives are represented by red dots. Other contacts are local or short range shown

Current Opinion in Structural Biology 2021, 68:1–8 www.sciencedirect.com
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approaches is less than or equal to one cluster. The

success of deep-learning is mainly due to the ability to

generate coherent, native-like contact patterns and elim-

inate spurious isolated contacts [11]. Deep-learning dis-

covered how protein secondary structures pack with the

corresponding pattern of native, nonlocal side chain

interactions.

As demonstrated by DESTINI [11], having accurate

residue-residue contact predictions, the chance of folding

into native-like protein structure greatly improves. Then,

as demonstrated in DESTINI2, generalization to residue-

residue distance matrix prediction dramatically boosts

model accuracy. In a challenging test set [43], as shown

in Figure 3, using DESTINI2, 69% of targets have a TM-

score > 0.4 versus 41% using the contact matrix of DES-

TINI and just 9% by the classic threading-based approach

TASSER [51]. The mean model TM-score is 0.52 by

DESTINI2 versus 0.39 by DESTINI. Even when there

is no improvement in medium/long range (whose residue

separation � 12) contact predictions, an average TM-

score improvement of 0.10 is observed in models built

by distance predictions. Remarkably, in cases where the

precision of contact prediction decreases slightly (<10%),

probably due to a comprise for better overall distance

prediction, an improvement of mean TM-score at 0.08 is

achieved. This improvement largely comes from better

assembly of secondary structure segments assisted by

accurate long-range distance restraints. For over 95% of

targets, 80% of secondary segments (3 states: a, b, coil)

have at least one long distance restraint (>10 Å) correctly

predicted. Overall, using the distance matrix for protein

structure prediction is a small yet significant step forward.

Although other deep-learning predictions such as torsion

angles were also utilized, they seem to add very minor

improvement at best [13�,16��,52], as propagation of very

small (�5�) errors in backbone angle predictions from

canonical values can significantly impact the overall fold

[53].

The spectacular success of deep-learning in protein struc-

ture prediction benefits from three major factors: First,

because each residue-residue pair becomes a training data

point, there are now enough training data points for the

millions of parameters typically found in a deep neural

network model. Second, one only needs a fraction of

native long-range residue contacts to correctly, or approx-

imately, fold a protein, though the exact criteria are fold-

dependent. For a globular fold, it is estimated that about

L/4 to L/5 accurate long-range contacts are sufficient for
in light grey squares along the diagonal. Finally, structural models are folde

(DESTINI2, purple), respectively. Both are superimposed onto the native str

evolutionary approach (CCMPred) is revealed by clustering analysis of the p

deep learning for contact clusters and individual clustered contacts, respec

removing NMR structural targets from the original set [11]. In each violin plo

box inside indicates the interquartile range from 25% to 75%; the median is

up to 1.5 times the interquartile range. The red circle is positioned at the m
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folding a sequence of N amino acids [11,54]. The distance

matrix then acts to fine-tune this approximate structure.

Lastly, since protein fold space is already complete in the

current protein data bank [55], fold prediction is much

easier when the answer is more or less known and trained

to recognize, than in a scenario where most proteins folds

are novel.

Problem solved? Not quite. As with other machine-learn-

ing algorithms, distance prediction via deep-learning is

knowledge-based and is expected to perform poorly on

novel sequences. To drive the inference process, the

quality of the MSA is essential. When the MSA is

‘shallow’, for example, for a novel sequence with no

known homologs (beyond the sensitivity of existing

sequence alignment algorithms), the success rate dramat-

ically decreases. For example, when the effective number

of sequences in an MSA is less than 50, DESTINI2 only

has a 23% chance of predicting an acceptable fold with a

TM-score > 0.4 for hard targets.

The deep learning approaches described above focus on

an individual protein and then predict pairs of residue

contacts or the distance matrix between residues.

Threading and sequence profile based methods take a

complementary approach to protein structure prediction

and use the structure of an existing template and then

predict the best alignment of the target sequence of

interest to that of the template. Can deep learning be

applied to generate the best alignment between two

different proteins? If so, this would not only extend

the ability to recognize evolutionary distant sequences,

but if successful it could further help learn the folding

code. Towards this goal, we have developed SAdLSA, a

sequence alignment algorithm that uses a deep convolu-

tional neural network to learn from hundreds of thousands

of structural alignments [15��]. It can detect remote

structural relationships without protein structures, yet

still benefits from the power of deep-learning the protein

folding code. Thus, the successes of deep-learning

strongly argues that while the local side chain geometry

provides a bias toward the appropriate regions within the

space of torsion angles, and compaction provides the

approximate space of protein folds, it is the many-body,

nonlocal interactions between residues that ultimately

select the fold for a given protein sequence.

Given a deeper understanding of the factors that dictate

protein structure from sequence, could this information

be used to reverse engineer how protein structures
d using the contact matrix (DESTINI, green) and distance matrix

ucture (grey). (b) The advantage of deep-learning (DESTINI) over a co-

redicted contacts. Violin plots of the improvement in coverage by

tively, for 362 targets, curated from the ‘glass-ceiling’ set after

t, the black contour is proportional to the probability density; the blue

 represented by a black bar within the box; and the whisker extends

ean value.
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Figure 3
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Performance analysis of the deep-learning approaches (contact-driven DESTINI and distance-driven DESTINI2), and classic threading-based

TASSER on the ‘glass-ceiling’ set. (a) Histograms of TM-scores for each protein target. The shaded area represents good, native-like models. (b)

Model quality improvement from contact-driven to distance matrix-driven. Each circle represents a target protein, color-coded according to the

predicted precision of the top L medium/long range contact predictions. (c) Correlation between model quality improvement and the precision of

the top L medium/long range contact predictions. Target points are color-coded according to the TM-score of DESTINI2 models.
evolve? On the most straightforward level, one could use

existing deep learning algorithms to drive the design of

novel sequences. However, this does not directly address

the question as to how new proteins folds arise in nature.

To address this issue, one could imagine applying deep

learning tools to existing structures whose substructures

have been identified as putative primordial fragments

[24,56] to explore if they have stronger signals than later

evolving fragments. If so, perhaps, deep learning

could be used to identify strongly predicted, and possibly

oldest, protein fragments. It could then be used to con-

struct a structure based evolutionary analysis as to how

existing folds emerged and perhaps suggest possible ways

of morphing existing sequences to adopt different

structures.
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Qin C, Žı́dek A, Nelson AWR, Bridgland A et al.: Improved protein
structure prediction using potentials from deep learning.
Nature 2020, 577:706-710

Convincingly demonstrated that deep-learning significantly improves
protein structure prediction.

17. Xie L, Bourne PE: Detecting evolutionary relationships across
existing fold space, using sequence order-independent
profile-profile alignments. Proc Natl Acad Sci U S A 2008,
105:5441-5446.

18. Sillitoe I, Dawson N, Thornton J, Orengo C: The history of the
CATH structural classification of protein domains. Biochimie
2015, 119:209-217.

19.
�

Andreeva A, Kulesha E, Gough J, Murzin AG: The SCOP database
in 2020: expanded classification of representative family and
superfamily domains of known protein structures. Nucleic
Acids Res 2020, 48:D376-D382

This work presents a timely update of the SCOP structural database that
has been extremely useful to the structural biology community.

20. Schaeffer RD, Liao Y, Cheng H, Grishin NV: ECOD: new
developments in the evolutionary classification of domains.
Nucleic Acids Res 2017, 45:D296-D302.

21. Lupas AN, Ponting CP, Russell RB: On the evolution of protein
folds: are similar motifs in different protein folds the result of
convergence, insertion, or relics of an ancient peptide world?
J Struct Biol 2001, 134:191-203.

22. Eck RV, Dayhoff MO: Evolution of the structure of ferredoxin
based on living relics of primitive amino acid sequences.
Science 1966, 152:363-366.

23. Romero Romero ML, Rabin A, Tawfik DS: Functional proteins
from short peptides: Dayhoff’s hypothesis turns 50. Angew
Chem Int Ed Engl 2016, 55:15966-15971.

24. Nepomnyachiy S, Ben-Tal N, Kolodny R: Complex evolutionary
footprints revealed in an analysis of reused protein segments
of diverse lengths. Proc Natl Acad Sci U S A 2017, 114:11703-
11708.

25. Alva V, Lupas AN: From ancestral peptides to designed
proteins. Curr Opin Struct Biol 2018, 48:103-109.

26. Brylinski M, Gao M, Skolnick J: Why not consider a spherical
protein? Implications of backbone hydrogen bonding for
protein structure and function. Phys Chem Chem Phys 2011,
13:17044-17055.

27.
��

Skolnick J, Zhou H, Gao M: On the possible origin of protein
homochirality, structure, and biochemical function. Proc Natl
Acad Sci U S A 2019 http://dx.doi.org/10.1073/pnas.1908241116

This paper examined the structure and functional properties of demichiral
proteins composed of equimolar mixtures of D and L amino acids. It
demonstrated that the fold space of single domain demichiral proteins
covers all native protein topologies and that demi-chiral proteins could
engage in contemporary biochemistry with the most ancient metabolism
functions most frequently generated at random.

28. Bowie JU, Luthy R, Eisenberg D: A method to identify protein
sequences that fold into a known three-dimensional structure.
Science 1991, 253:164-170.

29. Zhou H, Zhou Y: SPARKS2 and SP3 servers in CASP6. Proteins
(Supplement CASP issue) (Suppl. 7):2005:152-156.

30. Zheng W, Zhang C, Wuyun Q, Pearce R, Li Y, Zhang Y: LOMETS2:
improved meta-threading server for fold-recognition and
structure-based function annotation for distant-homology
proteins. Nucleic Acids Res 2019, 47:W429-W436.

31. Flory PJ, Jackson JG: Statistical Mechanics of Chain Molecules.
Hanser Publishers; 1989.

32. Jagielska A, Skolnick J: Origin of intrinsic 3(10)-helix versus
strand stability in homopolypeptides and its implications for
www.sciencedirect.com 
the accuracy of the Amber force field. J Comput Chem 2007,
28:1648-1657.

33. Torrisi M, Pollastri G, Le Q: Deep learning methods in protein
structure prediction. Comput Struct Biotechnol J 2020, 18:1301-
1310.

34. Rost B: Review: protein secondary structure prediction
continues to rise. J Struct Biol 2001, 134:204-218.

35. Li W, Kinch LN, Karplus PA, Grishin NV: ChSeq: a database of
chameleon sequences. Protein Sci 2015, 24:1075-1086.

36. Go N, Taketomi H: Respective roles of short- and long-range
interactions in protein folding. Proc Natl Acad Sci U S A 1978,
75:559-563.

37. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 2015,
521:436-444.

38. Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin A:
Assessment of contact predictions in CASP12: co-evolution
and deep learning coming of age. Proteins 2018, 86(Suppl.
1):51-66.
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