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Abstract 15 

During the past five years, deep-learning algorithms have enabled ground-breaking progress towards 16 
the prediction of tertiary structure from a protein sequence. Very recently, we developed SAdLSA, a 17 
new computational algorithm for protein sequence comparison via deep-learning of protein structural 18 
alignments. SAdLSA shows significant improvement over established sequence alignment methods. 19 
In this contribution, we show that SAdLSA provides a general machine-learning framework for 20 
structurally characterizing protein sequences. By aligning a protein sequence against itself, SAdLSA 21 
generates a fold distogram for the input sequence, including challenging cases whose structural folds 22 
were not present in the training set. About 70% of the predicted distograms are statistically significant. 23 
Although at present the accuracy of the distogram predicted by SAdLSA self-alignment is not as good 24 
as deep-learning algorithms specifically trained for distogram prediction, it is remarkable that the 25 
prediction of single protein structures is encoded by an algorithm that learns ensembles of pairwise 26 
structural comparisons, without being explicitly trained to recognize individual structural folds. As 27 
such, SAdLSA can not only predict protein folds for individual sequences, but also detects subtle, yet 28 
significant, structural relationships between multiple protein sequences using the same deep-learning 29 
neural network. The former reduces to a special case in this general framework for protein sequence 30 
annotation. 31 
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 33 

1 Introduction 34 

The amino acid sequence of a protein encodes the information for carrying out its function. One 35 
essential aspect is the tertiary structure of the protein. Indeed, the prediction of protein tertiary structure 36 
from its sequence is a fundamental question in biophysics (1). In order to predict protein structure at 37 
high accuracy, one main challenge is to model the long-range, many-body effects that collectively 38 
dictate a protein’s tertiary structure (2). Over the past several years, exciting breakthroughs have been 39 
made to better address these long-range interactions (2). Using a deep residual convolutional neural 40 
network, significant success has been demonstrated in predicting contacts between individual residues 41 
of a protein sequence (3). Such residue-residue contacts yield both the local secondary structure and 42 
the global fold, and it is the accurate prediction of their synergy that improves model quality. 43 
Subsequently, several groups demonstrated that better residue-residue contact or detailed distance 44 
matrix (distogram) predictions led to significantly improved structure predictions, especially for 45 
challenging targets (4-8). In CASP13, a blind biannual protein structure prediction competition, all 46 
four top-ranked groups in the most challenging, free-modeling category used residue-residue contacts 47 
or distance matrices predicted via deep-learning (9). Among them, DeepMind’s AlphaFold achieved 48 
the best performance using a high-quality distogram to derive statistical folding potentials (6). In 49 
CASP14, many improved deep-learning approaches using the convolutional residual networks were 50 
presented, e.g., (10), but AlphaFold2 dominated the competition using a new, end-to-end deep-learning 51 
algorithm with an attention mechanism (11). 52 

A topic closely related to protein structure prediction is protein sequence comparison or alignment 53 
(12). In the low pairwise sequence identity regime of less than 30%, two protein sequences may exhibit 54 
no apparent sequence similarity yet display significant fold similarity when their structures are revealed 55 
and superimposed (13). This observation is due to the fact that the structural space of protein folds is 56 
very small due to both evolutionary (14) and physical reasons (15). Traditionally, a variety of sequence 57 
alignment approaches have been developed and applied to assist protein structure prediction, e.g., 58 
Hidden Markov Model (HMM) (16) and “threading” approaches (17-19). These efforts provide the 59 
foundation for template-based modeling approaches (20). Conversely, if the structures encoded in the 60 
two sequences are known, their structural alignment generally leads to a more accurate sequence 61 
alignment than those from classical sequence alignment approaches. Such an accurate, meaningful 62 
alignment is often the key to understanding what a novel protein sequence does, e.g., predicting 63 
functional sites (21, 22).  64 

Naturally, this leads to a question: can deep-learning be directly applied to generate a protein sequence 65 
alignment with an accuracy close to the structural alignment counterpart? If so, this would not only 66 
extend the ability to recognize evolutionarily distant sequence relationships but also enable a deeper 67 
learning of the folding code. Moreover, it has practical applications for function and structure 68 
prediction and possibly evolutionary inference. To answer this question, we recently developed 69 
SAdLSA, a sequence alignment algorithm that uses a deep convolutional neural network to learn many 70 
thousands of structural alignments (23). The advantage of SAdLSA was demonstrated in benchmark 71 
tests against HMM-based HHsearch (24). For challenging cases, SAdLSA is ∼150% more accurate at 72 
generating pairwise alignments and ∼50% more accurate at identifying the proteins with the best 73 
alignments in a sequence library. This allowed the program to detect remote relationships that may be 74 
useful for genome annotation or functional predictions. 75 
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Given the encouraging benchmarking results of SAdLSA, one would like to understand why it 76 
performs better than classical sequence comparison approaches. Obviously, the deep-learning 77 
algorithm plays a key role in this improvement, but how does it work? Previously, we have speculated 78 
that SAdLSA implicitly learns the protein folding code without offering direct evidence. In this study, 79 
we shall further substantiate this claim. We noticed that when the same sequence was input into 80 
SAdLSA, SAdLSA aligns the sequence against itself, i.e., self-alignment, and outputs an intra-81 
sequence distogram for the input. This distogram could encode the fold much like a deep-learning 82 
algorithm designed to predict the distogram for a single query sequence, e.g., DESTINI (4). We shall 83 
perform analysis to understand the distogram generated by SAdLSA self-alignment and demonstrate 84 
that SAdLSA provides a more general framework to learn protein structures for sequence annotation 85 
purposes. 86 

2 Methods 87 

For this study, we mainly employ SAdLSA, a deep-learning (DL) based approach for protein sequence 88 
alignment. The details of SAdLSA and the benchmark results have been described in detail elsewhere 89 
(23). Here, we briefly recapitulate its key features. 90 

2.1 SAdLSA 91 

An overview of SAdLSA is presented in Figure 1. The inputs to this network are two position-specific 92 
sequence profiles, each of dimension Nk × 20, where Nk is the length of the k-th sequence (k = 1, 2), 93 
and the 20 columns represent the 20 different amino acids at each residue position (hence position-94 
specific). Here, we use the profiles generated from HHblits (25). In machine-learning language, the 95 
sequence profiles are also known as embeddings. The outer product of these two 1D sequence features 96 
yields a 2D matrix of features, where at position (i,j) of the matrix the elements are a concatenation of 97 
the 20 columns formed from the i-th residue of sequence 1 and the j-th residue of sequence 2. 98 
Subsequently, these 2D features are fed into a fully convolutional neural network consisting of up to 99 
34 multiple residual blocks. The main objective of this neural network model is to predict residue-100 
residue distances for the two input sequences that recapitulates their optimal structural alignment, using 101 
observed structural alignments as the training ground truth. The training distance labels are created 102 
from structural alignments by APoc (21), which takes advantage of a global alignment provide by TM-103 
align (26). 104 

The neural network is composed of multiple residual blocks, either conventional (27) or dilated (28) 105 
in slightly different design variants. The residual block design is a key to train a deep neural network 106 
model. Within a residual block, each convolutional layer is composed of about 64 filters with a kernel 107 
size of 3×3 or 5×5. After the residual blocks, the last 2D convolutional layer outputs 22 channels, 108 
representing 21 distance bins (1 to 20 at 1 Å each, and >20 Å) and channel 0 which is reserved for 109 
ignored pairs (e.g., gap residues missing in a structure, or large distances >30 Å). Finally, a softmax 110 
layer calculates the probability scores for each distance bin. Here, the same network was also applied 111 
to the same two input. The mean probability scores of these two runs are the final output score for this 112 
DL model. This ensures that the alignment is identical if one swapped the position of two input 113 
sequences. For this study, we used the consensus scores from six DL models, including three models 114 
with 14 residual blocks and 64 5×5 kernels in each convolutional layer, and three dilated model with 115 
34 residual blocks (alternating 1,2,8,16,32 dilate rates) and 50 to 75 3×3 kernels. The two type of DL 116 
models have 2.9 and 2.4 million parameters, respectively. 117 
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The outputs from a DL model are the probabilities of distance bins forming an inter-protein residue-118 
residue distance matrix. To build an alignment using dynamic programming (DP), we convert this 119 
probability matrix into a mean distance matrix D, whose element 120 

 𝑑𝑑𝑖𝑖𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 𝑏𝑏𝑘𝑘𝑛𝑛
𝑘𝑘=1 − 𝑐𝑐      (Eq. 1) 121 

where i, j are target/template sequence positions, 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘  is the probability for bin k at position (i, j), 𝑏𝑏𝑘𝑘 are 122 
distance labels from the sequence (1, 2, ... 20, 22). D is subsequently adapted as the scoring matrix to 123 
obtain the optimal alignment using a Smith-Waterman-like DP algorithm (29). The distance matrix D 124 
is also used to calculate an estimated TM-score (30, 31) for ranking the significance of an alignment. 125 
The constant 𝑐𝑐 is set at 1 such that a perfect alignment gives an estimated TM-score of 1. 126 

Since we study the self-alignment of a given sequence, we feed exactly the same sequence profiles into 127 
SAdLSA, and the resulting sequence alignment itself is universally at 100% identity, with a predicted 128 
TM-score ~1. We focus on the residue-residue distance matrix D, which is converted from a general 129 
inter-sequence scenario into a special intra-sequence scenario, because the two input sequences are the 130 
same. 131 

2.2 Data sets 132 

We employed the same test and training sets from the original SAdLSA study (23). Both sets are 133 
curated from the SCOP database (32). The training set is composed of 79,000 pairs from a SCOP30 134 
set of ~5000 domains. These training protein domain sequences share less than 30% identity. The test 135 
set is an extrinsic test set of the sequences of 593 randomly selected protein domains from 391 SCOP 136 
folds. Homologs of the testing sequences at 30% sequence identity or higher, or with a BLAST E-value 137 
< 0.1, are excluded from the training set. In this study, we employed SAdLSA models trained on this 138 
training set and conducted SAdLSA self-alignments on each of the 593 test sequences. 139 

2.3 Analysis 140 

2.3.1 Distogram assessment 141 
It has been well-established that residue-residue contacts characterize a protein structural fold (2, 4). 142 
The most common definition of a protein contact is based on the distance between Cα or Cβ atoms. 143 
That is, a contact between a pair of protein residues i and j is defined if the Euclidean distance between 144 
their Cα (or Cβ) atoms is less than a cutoff value, typically at 8 Å. A popular contact metric adopted by 145 
the CASP assessors (33) is the precision of the top L/k Cβ−Cβ medium- or long-range contact 146 
predictions, where L is the length of the target and k = 1, 2, and 5, and the sequential distance of residues 147 
i and j, |𝑖𝑖 − 𝑗𝑗|, defines the range: short [6, 11], medium [12, 23], and long [24, ∞), i.e., nonlocal residue 148 
pairs. Since SAdLSA was trained on the distances between Cα atoms, we use Cα−Cα contacts with an 149 
8 Å cutoff as our definition of protein inter-residue contacts and consider only medium- or long-range 150 
ones. The predictions are ranked by the probability of forming a Cα−Cα contact. To obtain the 151 
probability, one simply sums the probabilities for distance bins from 0 to 8 Å, since the SAdLSA DL 152 
models output a probability matrix D for 21 distance bins. This probability score is then employed for 153 
the precision analysis as outlined above. The precision is defined as TP/(TP+FP), where TP is the 154 
number of true positives, i.e., native contact observed in an experimental structure, and FP is the 155 
number of false positives within the top L/k contact predictions evaluated. 156 

In addition, we introduce the Mean Absolute Error (MAE) of the predicted distogram versus the ground 157 
truth distogram. Specifically, we calculate the MAE using the coordinates of the Cα atoms of nonlocal 158 
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residue pairs, i.e., the sequential distance of residue pairs is no less than 6. The overall MAE for a 159 
distogram is defined as 160 

 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ �𝑑𝑑𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛�/𝑀𝑀𝑖𝑖,𝑗𝑗      (Eq. 2) 161 

where (i,j) are the indexes of a pair of nonlocal residues separated up to 20 Å in the native distogram, 162 
M the total of such pairs, 𝑑𝑑𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 the predicted distance by the SAdLSA self-alignment, and 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 the 163 
distance observed in the native distogram. Additionally, for each target, we also obtain the MAE values 164 
within each distance bin from 4 to 20 Å. If a target does not have any nonlocal residue pair within a 165 
specific 1Å bin, the MAE calculation is skipped for this bin.  166 

In order to estimate the statistical significance of 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 , we consider its expected value using a 167 
background distribution based on the pairwise residue distances observed in the training distograms. 168 
For each distance bin, we count the residue pairs within this bin as observed in the training ground 169 
truth distograms, and then obtain the observed frequency 𝑓𝑓𝑘𝑘 for this distance bin by dividing the count 170 
against all counts of all bins from 1 to 21 (inter-residue distances between 20 to 30 Å are used for bin 171 
21 as they are what collected for training). Substituting 𝑓𝑓𝑘𝑘 for 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘  in Eq. 1, we obtain the expected 172 
value of 𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒=15.5 Å for any (i,j) according to this reference distribution. Note that our training 173 
ground truth distograms are of inter-sequence residues, in comparison to the distograms of intra-174 
sequence residues from the self-alignment. But, since the inter-sequence distograms are actually 175 
employed for SAdLSA training, it is appropriate to use the distance distribution collected from these 176 
distograms as the reference background. This leads to a naïve way to calculate the expect 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀 , 177 
𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ �𝑑𝑑𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛�/𝑀𝑀𝑖𝑖,𝑗𝑗 , yielding a mean 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑒𝑒𝑒𝑒  of 3.07 Å and a standard deviation of 0.20 Å by 178 

applying the formula to 4,661 structures employed in the training set. Likewise, for comparison the 179 
same formula is applied to the test set, including the overall error and errors for individual distance 180 
bins. Using the one-tailed test for a normal distribution, one can calculate the p-value of an dMAE value 181 
using the background distribution derived from the training set.  182 

2.3.2 t-SNE analysis 183 
We performed t-distributed Stochastic Neighbor Embedding (t-SNE) (34) to analyze the factors that 184 
contribute to the precision of contact predictions by SAdLSA self-alignment. This is a nonlinear 185 
dimensionality reduction tool more suitable for this analysis than a classical principal component 186 
analysis. Five features were used for this analysis including the best training pair for each target 187 
measured by their TM-score (33), the ratio of the total observed native medium- or long-range contacts 188 
over the sequence length, whether the best training pair belongs to the same fold or superfamily as the 189 
target according to the SCOP classification, and the sequence diversity of the multiple sequence 190 
alignment of the target. The TM-score is a protein length-independent metric ranging from 0 to 1, and 191 
a TM-score > 0.4 indicates a statistically significant alignment (26). We use (0,1) to represent the 192 
logical variables (e.g., is it a member of the same SCOP fold or not). The sequence diversity is 193 
calculated with the multiple sequence alignment of the target and defined as 𝑙𝑙𝑙𝑙(𝑁𝑁𝑓𝑓) taken from (23). 194 
In our t-SNE analysis, we employed the default parameters including the perplexity parameter set at 195 
30. 196 

2.4 DESTINI2 197 

For comparison purposes, we employed DESTINI2 to conduct inter-residue distance prediction on the 198 
same test data set, i.e., 593 SCOP domain sequences, used to benchmark SAdLSA. DESTINI2 199 
improves DESTINI by using a deeper, dilated convolutional residual network model. In this study, we 200 
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used 39 dilated residual blocks similar to the one implemented in SAdLSA. For training, about 10000 201 
crystal structures with < 2.5 Å resolution were taken from a March 2020 release of PISCES (35), which 202 
were curated from the PDB database (36). For a fair comparison, we retrained DESTINI2 models by 203 
removing the test set entries and their close homologs from the original DESTINI2 training set using 204 
the same criteria as that used for the SAdLSA test.  205 

3 Results 206 

We conducted self-alignments for 593 target sequences with SAdLSA, using deep-learning models 207 
trained without obvious homologs to any of the 593 target sequences (see Methods). As one would 208 
expect, SAdLSA returns a sequence alignment at 100% identity and a predicted TM-score close to 1. 209 
This seems trivial. But, if one carefully inspects the residue-residue distogram prediction, it not only 210 
contains information giving rise the identical alignment, but also contains inter-residue distance 211 
information to structurally characterize the fold encoded by the sequence itself.  212 

3.1 SAdLSA self-alignment generates a fold-depicting distogram. 213 

Figure 2 illustrates an example of a SAdLSA self-alignment prediction. This 205 AA target sequence 214 
encodes a classic Rossman fold, which is composed of an βαβ alternating secondary structural 215 
segments found in many nucleotide-binding proteins (37). The characteristics of this fold are displayed 216 
in the distance plot calculated between the Cα atoms determined in the crystal structure (Figure 2, top 217 
left panel). The remaining residue-residue distance plots are generated by the SAdLSA self-alignment 218 
of the same sequence. These are from the 21 scoring channels designed to predict the probability of 219 
each pair of Cα atoms falling into each distance bin from 0 to beyond 20 Å. The first three channels are 220 
straight diagonal lines, which give rise the 100% identity in the sequence alignment and are not the 221 
focus of this study. Starting from plots ≥ 4 Å, one recognizes inter-residue distance relationships. First, 222 
the immediate neighboring residues are shown between 3−4 Å. Then, the main secondary structure 223 
elements including the fold’s six α-helices and seven β-strands exhibit their patterns in the 4−5 and 224 
5−6 Å plots. The packing between these secondary structural elements becomes clear in the subsequent 225 
three plots from 6−9 Å. The detailed packing orientations among secondary structural elements are 226 
further delineated in the remaining distance plots up to 20 Å. Finally, the highlights in the >20 Å plot 227 
signal the regions that are distant from each other. The top L medium- or long-range contact predictions 228 
for this case have a precision of 86%, which is sufficient to reconstruct a high-resolution structural 229 
model whose TM-score > 0.7 (2). The mean absolute error dMAE, calculated from the Cα−Cα distances 230 
of all nonlocal residue pairs separated up to 20 Å, is only 1.57 Å from the native distogram. 231 

How accurate is the SAdLSA self-alignment for predicting residue-residue distances in general? If one 232 
examines the dMAE, the overall number looks good with a mean of 2.43 Å, and 92.7% of targets are 233 
below 3 Å (Figure 3 insert). By comparison, if one naively assigns distance distribution according to 234 
the observed fractions from the training set (see Methods), one obtains a mean expected error, 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑒𝑒𝑒𝑒 , 235 
at 3.08 Å. Overall, 96.6% of targets have a smaller distance prediction error by SAdLSA than the value 236 
from the naïve reference approach. Moreover, about 408 (69%) targets have a significant dMAE below 237 
the p-value cutoff of 0.05. Figure 3 further details the distributions of MAE between the SAdLSA 238 
predicted and the corresponding native distograms for individual distance bins from 4 to 20 Å. It is 239 
clear that residues forming direct contacts within the first five bins are most challenging to predict and 240 
exhibit large variations, with the mean MAE gradually decreasing from 6.6 Å in the 3−4 Å bin to 3.4 241 
Å in the 8−9 Å bin. But these distance predictions by SAdLSA are actually highly significant in 242 
comparison to the expected values whose MAE errors are up to 8 Å higher on average than SAdLSA 243 
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predictions. On the other hand, the large distance bins from 14 to 18 Å yield relatively small MAE 244 
values < 2.5 Å, but it is not surprising as the expected MAE is below 2 Å. 245 

From a structural perspective, direct inter-residue contacts are the most important. Moreover, one only 246 
needs to predict a fraction of the total number of contacts in order to obtain a correct fold prediction 247 
(4). We therefore turn our focus to inter-residue contacts. According to the benchmark results on 593 248 
protein sequences, the mean precisions are 40.3%, 52.6% and 63.7% for the top L, L/2, L/5 predictions 249 
of medium- or long-range inter-residue Cα contacts, respectively (Table 1). The detailed distributions 250 
of individual predictions are shown in violin plots (Figure 4). For instance, in the middle top L/2 plot, 251 
about half of the sequences have a precision value > 50%, which is sufficient to derive the correct fold 252 
for a single-domain using these predictions (4). At L/5, 107 (18%) entries have 100% precision, and 253 
the median precision is at 69%. These numbers are not as good as the deep-learning approaches 254 
specifically trained to predict residue distograms, e.g., they are about 25% worse than DESTINI2 255 
(Table 1). Given the fact that SAdLSA was not trained to predict residue distances for a single structure 256 
(see more reasoning in Discussions), but rather to recognize the similarity between pairs of structures, 257 
these results are encouraging and clearly demonstrate the generality of the SAdLSA framework for 258 
learning protein structures. 259 

3.2 What contributes to successful distogram prediction by SAdLSA self-alignment? 260 

Next, we seek to understand the factors that affect the accuracy of distogram predictions by SAdLSA 261 
self-alignment. Like all machine-learning algorithms, the capability of distogram predictions must 262 
come from the training data of SAdLSA. Although SAdLSA was not trained to learn individual protein 263 
folds, we hypothesize that the fold-depicting distogram provided in the SAdLSA self-alignment comes 264 
from learning the training pairs sharing fold similarity as the target sequence. During SAdLSA training, 265 
it mainly focuses on aligned residues across two different sequences, but the network also observes the 266 
relative positions among aligned residues. As a result, SAdLSA learns the folding code of individual 267 
protein sequences, provided that they exhibit significant fold similarity. The more similar in their 268 
structures, ideally the same fold as the training pair, the more likely the distogram pattern is learned 269 
for this specific fold.  270 

3.2.1 Presence of the same fold as a target in the training set is important. 271 
To explore the validity of this hypothesis, for a target structure and a pair of training structures, we 272 
introduce T, defined as the minimal TM-score of the two training structures with respect to the target 273 
structure, using the target to normalize the TM-score. For each target, we find the highest T, denoted 274 
as T*, among all pairs in the training set. Figure 5 shows the correlations between T* and the precision 275 
for the top L/2 residue-residue contact predictions. The violin plots demonstrate a clear upward trend 276 
in precision from the low T* regime to high T* regime. When there is a lack of obvious training 277 
structures that are similar to the target, e.g., when T* < 0.4, the median precision is only at 39%. The 278 
same metric increases to 52% if T* ∈ [0.5, 0.6), and dramatically to 82% if T* > 0.7. The Pearson 279 
correlation coefficient between T* and the precision of all targets is 0.34, which clearly shows the 280 
dependency of precision on T*, despite the indication that other factors are also in play.  281 

For example, Figure 5 shows that there are still very good distogram predictions in the low T* regime. 282 
How could SAdLSA accurately predict a distogram when there is no similar training structure? There 283 
are 11 target sequences with L/2 precision > 60% within T* < 0.4. If one examines these structures, 284 
some of them are composed of multiple domains or subdomain structures. For example, one target, 285 
with SCOP ID d3u7qb, is a 522 AA sequence composed of three Rossman folds and two helical bundle 286 
domains, despite the fact that SCOP defines it as a single domain. Although there is no other structure 287 
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in the training set that resembles the overall structure of this target, the folds of its individual domains 288 
can be learned separately. As shown above, the Rossman fold is relatively easy to learn (Figure 2). As 289 
a result, the overall precision prediction is 76% and the dMAE is 2.44 Å (p-value = 8.0×10-4) for this 290 
query sequence. More interesting examples are analyzed below. 291 

3.2.2 Evolutionary relationships facilitate fold-learning. 292 
What are the other possible contributing factors? In addition to T*, we further consider four other 293 
features including the ratio of total observed native medium- or long-range contacts over the sequence 294 
length, whether the T* training pair belong to the same fold or superfamily according to the SCOP 295 
classification, and the sequence diversity of the multiple sequence alignment of the target. The Pearson 296 
correlation coefficient between each of these four additional features and the contact precision is 0.55, 297 
0.30, 0.33, and 0.33, respectively. Figure 6 shows the results from t-SNE analysis of these five features. 298 
Three big clusters emerge and represent targets whose T* training pair are from the same SCOP 299 
superfamily (240 entries), the same SCOP fold but not the same superfamily (40 entries), and different 300 
SCOP fold (313 entries). They exhibit different levels of difficulty for contact prediction, at mean 301 
precision values of 64%, 60%, and 43%, respectively. This result makes sense as the sequence profiles 302 
from the same superfamily are similar and relatively easy to learn for a neural network model, whereas 303 
sequence profiles from remote families or those without an apparent evolutionary relationship are much 304 
harder to learn. In the same superfamily cluster, there are very few “bad” predictions, e.g., 41 (17%) 305 
targets at L/2 have a precision < 30%. One explanation is the structural variation between the target 306 
and the training structures, despite the fact that they are from the same superfamily. On the other hand, 307 
even for cases where the evolutionary relationship might not be clear, it is still possible to predict a 308 
fold-depicting distogram reasonably well with SAdLSA, as is evident in the clusters where the SCOP 309 
superfamilies are different. In particular, we note that SAdLSA performs very well for a target 310 
structural fold if there are training structures originated from the same SCOP fold but not necessarily 311 
the same SCOP superfamilies, as is evident in the mean precision of 60% among 40 such entries, close 312 
to the value of 64% in the cluster representing the same superfamily. 313 

3.2.3 Delineation of protein folds via deep-learning across SCOP folds. 314 
Notably, even when the best training structures are from a different SCOP fold, there are still many 315 
highly accurate distogram predictions as exhibited in Figure 6. Indeed, there are 102 (33%) such cases 316 
in the different fold cluster with precision > 60% among top L/2 predictions. Three representative 317 
examples are displayed in Figure 7. One main reason for this observation is that they may still have 318 
reasonably close or even a highly similar fold present in the training set, despite the different SCOP 319 
classifications. For 102 targets, 91/62% of them have T* > 0.4/0.5, respectively. Figure 7A illustrates 320 
one such case, which is the C-terminal domain from pyruvate kinase of Leishmania mexicana (38). 321 
Even though there is no structure belonging to the same SCOP fold as the target, there are 12239/498/10 322 
training structures with TM-score > 0.4/0.5/0.6 to the target structure, and the precision for contact 323 
prediction is at 98% with dMAE of 1.68 Å (p-value = 2.5×10-12) from the native distogram. A second 324 
example is delineated in Figure 7B for a domain from Bacillus subtilis Q45498 with unknown function. 325 
It has a T* value of 0.47, among 151 training structures in the TM-score regime 0.4 to 0.5 but none 326 
higher. SAdLSA self-alignment makes a good prediction at 85% and dMAE of 2.29 Å (p-value = 5.1×10-327 
5). For these examples, it is reasonable to conceive that SAdLSA learns to predict this fold at high 328 
precision values through the training on the comparison of these structures.  329 
In addition, there are 127 targets that do not share the same SCOP fold with any member in the training 330 
set. Yet, for 32/41 cases, SAdLSA can predict residue-residue contacts at > 50/60% precision. One 331 
such example is shown in Figure 7C. The target sequence is the hemophore HasA from Yersinia pestis 332 
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(39). The distogram prediction via SAdLSA alignment is at 67% with a dMAE of 2.88 Å (p-value = 333 
0.17). While the results are not as good as the above two cases, one can still find correct predictions 334 
between the main secondary structure elements. Here, the long-range interactions by SAdLSA are 335 
fuzzy and imprecise. Nevertheless, the result is remarkable giving that no training structure shares a 336 
TM-score > 0.4, and its T* is at 0.38. In these cases, SAdLSA likely learns the packing pattern for the 337 
subdomains or fragments of a target sequence from its training structures, which may share relatively 338 
low overall structure similarity but high similarity to some individual domains, subdomains or 339 
fragments, like the example in 3.2.1, but here it is more general and subtle without a clear definition of 340 
the domain.  341 
Lastly, one technical reason why some targets have low precision is due to the definition of this metric, 342 
which penalizes the case where very few medium or long-range contacts are present in the observed 343 
native structure, e.g., coiled-coil structures. With relatively few or even no true positives in extreme 344 
cases, the L/n normalization will bring down the precision value. In fact, the ratio of native contacts 345 
over the length of the sequence has the strongest correlation (0.55) with the contact precision among 346 
all five features considered. There are 22 cases whose ratio < 0.25 between the number of native 347 
medium/long-range contacts and the length of protein. Their mean precision at L/2 is only 9%. 348 
However, 15 of 22 have a significant dMAE < 2.68 Å (p-value < 0.05). Moreover, due to the lack of 349 
long-range contacts, such structures (e.g., #contacts/L < 0.5) are likely more flexible than compact 350 
folds, and therefore, are challenging for structure accurate prediction. In the same superfamily/different 351 
fold cluster, there are 12/49 cases forming the reddish subclusters at the edge in Figure 6. Of these 62 352 
cases in total, 18 have a dMAE ≥ 2.68 Å. Thus, the reason for a few of these poor predictions might 353 
reflect the intrinsic propensity towards disorder for some proteins. 354 

4 Discussions 355 

What structural information does one wish to obtain from a machine-learning algorithm, given an input 356 
protein sequence? Very recently, numerous approaches have employed deep-learning techniques to 357 
predict tertiary protein structure, notably through an inter-residue distogram (2). One may argue that a 358 
more general machine-learning approach should go beyond the prediction of the tertiary structure for 359 
a single sequence to predict structural relationships between multiple protein structures, which may 360 
lead to a deeper understanding of their sequence or functional relationships. For this purpose, we 361 
introduced SAdLSA, which predicts protein sequence alignments by learning their structural alignment 362 
via deep-learning (23). In this contribution via a self-alignment analysis, we extended the previous 363 
study and explicitly demonstrate that SAdLSA learns the protein folding code. The key to 364 
understanding the deep-learning folding code lies in the analysis of the distogram prediction. Indeed, 365 
we obtain distogram predictions at surprisingly high accuracy for many folds, at a mean precision of 366 
52% for the top L/2 contact predictions and a mean absolute error of 2.43 Å in inter-residue distogram 367 
predictions. In terms of dMAE, about 97% of predicted inter-residue distograms are better than expected 368 
from a background prediction, and 74% are statistically significant. This explains the advantage of 369 
SAdLSA over the classic approaches as up to a 100% improvement was observed in benchmark tests 370 
(23). 371 

How does SAdLSA obtain its fold-depicting capability? The most important contribution comes from 372 
similar fold structures subjected to training. The algorithm was designed to pay attention to the 373 
distances between aligned residues. When these two training structures share a similar fold, the 374 
distogram of such fold can be learned, as evident in the correlation between the target and training 375 
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structures (Figure 5). Additionally, if a training sequence is evolutionarily related to a target sequence, 376 
even remotely, it facilitates fold learning. More interestingly, SAdLSA can learn from training 377 
structures that go beyond the SCOP fold, e.g., cases that share no similar SCOP fold or even no similar 378 
overall fold whose TM-score > 0.4 in the training set. This seems surprising at first but may be partially 379 
explained as follows: First, a target may have many structural analogs with high structural similarity 380 
that escapes human manual classification. Second, the protein’s structure may consist of multiple-381 
domains, subdomains, or smaller fragments whose packing pattern may be learned individually and 382 
separately from many training structures. As with all machine-learning based algorithms, since the 383 
prediction capability of SAdLSA comes from the training set, the key question is how general is the 384 
resulting model? The success in this SAdLSA self-alignment benchmark that includes many 385 
challenging cases is a good indication of its generality. But ultimately, it needs the validation in real-386 
world, large-scale applications, ideally at the proteome-level.   387 

Despite this success, we note that the fold-prediction ability of SAdLSA self-alignment is not as 388 
accurate as deep-learning algorithms specially designed to predict protein structures, e.g., DESTINI2. 389 
There are two main reasons for this reduced performance. First, the SAdLSA self-alignment performs 390 
well when a pair of structures sharing a similar fold are present in the training set. But this requirement 391 
is not always true, especially as our training set is derived from ~5000 SCOP domains, which is half 392 
the size of the training set for protein structural prediction, e.g., ~10000 structures for DESTINI2’s 393 
training. Second, the current version of SAdLSA uses sequence profiles as its only input features, 394 
whereas many more features, especially the direct co-evolutionary signals that are essential for the 395 
success of DESTINI2 and the like, are not employed for a technical reason. Nevertheless, more recent 396 
deep-learning algorithms, such as AlphaFold2, directly learn from the multiple sequence alignment 397 
with an “attention” mechanism. Since the same multiple sequence alignment was used to derive the 398 
sequence profile used by SAdLSA as in DESTINI2, in principle, one may design a next generation, 399 
SAdLSA-like algorithm with a similar attention mechanism. It will not only predict protein tertiary 400 
structure via self-alignments, but also compare structures encoded by two different sequences at high 401 
precision. Such work is now underway.  402 
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Figures 525 

 526 

Figure 1. Flowchart of SAdLSA, a deep-learning algorithm for protein sequence alignment. In this 527 
study, the same sequence input is supplied to the SAdLSA pipeline, resulting in an intra-sequence Cα-528 
Cα distogram prediction of a single protein, instead of a typical application scenario whereby the inter-529 
sequence distogram portraying the superimposition of two different proteins is predicted and utilized 530 
for deriving their sequence alignment using dynamic programming.  531 
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 532 

Figure 2. An example of predicting residue-residue distance matrices by SAdLSA self-alignment. The 533 
native (experimental) structure (PBD ID: 1hdo, chain A; SCOP ID: d1hdoa_) of the target sequence, 534 
human Biliverdin IXβ reductase, encodes a classic Rossman fold shown in the cartoon representation 535 
using the red-green-blue color scheme from the N- to C-terminus. For each pair of residues, its 536 
experimentally observed (native) Cα-Cα distance is shown in the upper left corner. The remaining 21 537 
probability density plots are generated by SAdLSA self-alignment for the target sequence. Each plot 538 
predicts the probability of Cα-Cα distance within a distance bin from 0 to 20 Å at 1 Å spacing, and the 539 
probability > 20 Å in the last plot. 540 
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 542 

Figure 3. Mean absolute error of predicted distogram vs native distogram for 593 test cases. The main 543 
plot displays the distribution of MAE values within each Cα-Cα distance bin from 4 to 20 Å for nonlocal 544 
residue pairs. Each bin has a spacing of 1 Å and each blue point represents a target protein. Violin 545 
contours are proportional to the counts of targets at different MAE levels with a bin width of 0.025. 546 
Black boxes and bars represent the 2nd and 3rd quartiles (25% to 75% ranked by MAE values) and the 547 
median of the distributions. The red stars represent the mean values. For comparison, the expected 548 
MAE distributions are shown in orange error bars, which are centered at the mean and extended to ± 549 
sd. The insert shows the histograms of the dMAE values in two separate assessments, calculated (purple) 550 
from the SAdLSA self-alignment and expected (teal) from the background distribution. For each target, 551 
its dMAE value is calculated from all nonlocal residue pairs up to 20 Å as observed in the native 552 
distogram. 553 
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 555 
 556 

Figure 4. Precision of inter-residue contact predictions via SAdLSA self-alignment. The precision of 557 
the top L (light green), L/2 (green), and L/5 (gold) are shown as circles for each target sequence. Violin 558 
contours are proportional to the counts of targets at different precision levels with a bin width of 0.01. 559 
Black boxes, median bars and means are represented following the same plotting scheme as in Figure 560 
3. 561 
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 563 

Figure 5. Precision of inter-residue contact prediction vs T*, the highest TM-score to all structures in 564 
the pairs found in the training set. The violin and box plots follow the same scheme as in Figure 3.  565 
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 567 

Figure 6. T-SNE analysis of factors affect the precision of inter-residue distance predictions. Each 568 
point in the plot represents one of 593 target sequence, color-coded according to its precision value of 569 
the top L/2 Cα-Cα contact prediction at medium/long-range. The template pairs structurally most close 570 
to the target sequence found in the training set are classified according to their SCOP fold and 571 
Superfamily assignments. The brackets < ⋅ > denote the mean among all targets within the same cluster 572 
circled by dashed lines.  573 
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 575 

Figure 7. Examples of distogram predictions by SAdLSA self-alignment in comparison to native 576 
protein structures. Each panel is one example taken from targets whose fellow SCOP fold members (if 577 
any) were not present in the training set. The same scheme as Figure 2 was adopted to display the 578 
native structure and its distogram. Black lines in the native distograms belong to gap or non-standard 579 
amino acids in a crystal structure. The predicted distogram was calculated using the mean residue-580 
residue distance matrix D formulated in the Methods. The precision values are for the medium/long-581 
range residue contacts within top L/2 predictions. The value of dMAE is obtained with Eq. 2.  582 
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Table 583 

Table 1. Mean precision of Medium/Long-range inter-residue contacts for 593 targets. 584 

Method 
Medium/Long-range Contact* 

L L/2 L/5 

SAdLSA (Cα − Cα) 0.403 0.526 0.637 

DESTINI2 (Cα − Cα) 0.645 0.777 0.858 

DESTINI2 (Cβ − Cβ) 0.678 0.803 0.879 

* Medium/Long denote medium or long-range residue-residue contact predictions, converted from the distogram 585 
predicted by each method. All deep-learning models were re-trained to exclude the test set and their close 586 
homologs from the original training sets (see Methods). 587 
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