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Abstract

Motivation: From evolutionary interference, function annotation to structural prediction, protein sequence comparison
has provided crucial biological insights. While many sequence alignment algorithms have been developed, existing
approaches often cannot detect hidden structural relationships in the ‘twilight zone’ of low sequence identity. To ad-
dress this critical problem, we introduce a computational algorithm that performs protein Sequence Alignments from
deep-Learning of Structural Alignments (SAdLSA, silent ‘d’). The key idea is to implicitly learn the protein folding code
from many thousands of structural alignments using experimentally determined protein structures.

Results: To demonstrate that the folding code was learned, we first show that SAdLSA trained on pure a-helical proteins
successfully recognizes pairs of structurally related pure b-sheet protein domains. Subsequent training and benchmarking
on larger, highly challenging datasets show significant improvement over established approaches. For challenging cases,
SAdLSA is �150% better than HHsearch for generating pairwise alignments and �50% better for identifying the proteins
with the best alignments in a sequence library. The time complexity of SAdLSA is O(N) thanks to GPU acceleration.

Availability and implementation: Datasets and source codes of SAdLSA are available free of charge for academic
users at http://sites.gatech.edu/cssb/sadlsa/.

Contact: mu.gao@gatech.edu or skolnick@gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein sequence comparison and alignment are an essential compo-
nent of computational biology. While the classic BLAST algorithm
is an efficient heuristic approach (Altschul, 1997), it often fails to
detect subtle, yet significant, similarity for sequences within the ‘twi-
light zone’ of sequence identity, where <30% of aligned residues are
identical (Muller et al., 1999; Rost, 1999). To address this issue,
profile–profile-based sequence comparison methods take the advan-
tage of the fact that many sequence variations arise from divergent
evolution within the same protein family (Eddy et al., 1995;
Sadreyev and Grishin, 2003; Yona and Levitt, 2002). Among the
best are algorithms based on Hidden Markov Models (HMMs;
Eddy et al., 1995; Soding, 2005; Steinegger et al., 2019), e.g. the
widely adopted HHsearch approach (Steinegger et al., 2019).
Although they are more sensitive than BLAST, the issue of identify-
ing sequence and structural similarity in the twilight zone remains.

It is well known that the three-dimensional structures of proteins
are more conserved than their sequences (Chothia and Lesk, 1986).
Often, the structural comparison of two protein domains reveals
that they belong to the same structural fold, but their structural simi-
larity is not obvious from their corresponding sequence comparison
(Holm and Sander, 1996). Thus, compared to protein sequence
space, protein fold space is far more compact. One main reason for

this observation is that physical constraints limit the number of pos-
sible protein folds to about �1000 for individual domains (Zhang
et al., 2006). The underlying physical principles not only allow for
maintenance of the same fold due to divergent evolution, where
diminished sequence similarity is beyond the sensitivity of a se-
quence comparison algorithm, but also result in similar fold topolo-
gies being independently discovered by convergent evolution. Either
way, it is highly desirable to develop a more sensitive sequence align-
ment algorithm that can provide insights about the structural rela-
tionships between proteins without prior knowledge of their
corresponding structures and whether or not the proteins are in fact
evolutionarily related.

As a step toward achieving this long-sought goal, we present
SAdLSA (Sequence Alignments from deep-Learning of Structural
Alignments), a novel deep-learning-based approach that performs
very sensitive sequence alignments by deep learning (DL) of the pro-
tein folding code from tens of thousands of protein structural align-
ments. The goal of SAdLSA is to reproduce protein structural
alignments when only the sequences (and not their corresponding
native structures) are known. Although for benchmarking purposes,
we used the experimental structures and our evaluation procedure is
somewhat similar to ‘threading’ (e.g. Skolnick et al., 2004), it is im-
portant to note that unlike threading, the application of SAdLSA
does not require any structural information as input.
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2 Materials and methods

As shown in Figure 1, the main component of SAdLSA is a fully con-
volutional neural network consisting of multiple residual blocks (He
et al., 2016). The network takes sequence profiles generated from
the classic sequence search algorithms as input, and then learns the
residue–residue distances obtained by optimal structural superpos-
ition (Zhang and Skolnick, 2005) on the two structures encoded by
their respective sequences. The learning focuses on cross-sequence
residue distances between pairs of proteins displayed in the struc-
tural alignment. This idea was inspired by, but is fundamentally dif-
ferent from, intra-sequence residue distance prediction designed for
protein structural prediction (Senior et al., 2020; Xu, 2019). The latter
aims to predict the distance relationships between amino acids within
the same sequence, whereas our objective is to infer structural relation-
ships between the pairs of sequences subjected to direct comparison.
For each pair of residues from the two respective sequences, the DL
network outputs a probability distribution of their residue–residue dis-
tance in 21 bins ranging from 0 to 20 Å, at 1 Å spacing, with the last
bin for pair distances >20 Å. Finally, a dynamic programming (DP) al-
gorithm provides an optimal sequence alignment according to the pre-
dicted residue–residue distance matrix.

2.1 Deep-learning neural network model
The architecture of the DL neural network is shown in Figure 1. The
inputs to the network are two sequence profiles generated from PSI-
BLAST version 2.2.26 (Altschul, 1997) or HH-suite version 3.0
(Steinegger et al., 2019), each of dimension Nk�20, where Nk is the
length of the kth sequence (k¼1, 2), and the 20 columns represent
20 different amino acids at each residue position. The outer product
of these two one-dimensional features is then performed to form a
two-dimensional (2D) feature matrix, where at position (i, j) of the
matrix the elements are a concatenation of the 20 columns formed
from the ith residue of sequence 1 and the jth residue of sequence 2.

Given these 2D features, the purpose of this neural network model is
to predict a matrix of alignment distances for the two input sequen-
ces. To accomplish this objective, we employ a fully convolutional
residual neural network consisting of up to 80 convolutional layers.
Each residual block consists of two 2D convolutionary layers, two
rectifier layers and an addition layer. In a residual block, the inputs
xi are transformed into F(xi)þxi prior to the second activation (see
Fig. 1), where F(xi) is the residual function (He et al., 2016). If the
new convolutional layers after xi reduce the training error, F(xi)
should deliver a meaningful value; otherwise, then it is approxi-
mated by zero. Thus, residual blocks provide an effective way to
train a deep neural network.

In our implementation, each convolutional layer is composed of 64
filters with a kernel size of 3�3 or 5�5. If an input sequence is longer
than 400 residues in length, to prevent memory overflow, we randomly
sample up to 400 residue segments. After the convolutionary blocks,
the outputs are transposed and averaged prior to the last 2D convolu-
tionary layer that outputs 22 channels, representing 21 distance bins
(1–20 at 1 Å each, >20 Å, and ignored pairs). The latter is reserved for
missing labels caused by gap residues in a protein’s structure. Finally, a
softmax layer is employed for calculating the probability scores for
each distance bin (Bishop, 2006). For training, we employed the cross-
entropy as the loss function. Our network model takes proteins of vari-
able lengths. The SAdLSA alignment distance prediction module is
implemented using TensorFlow (Abadi et al., 2016). The training dis-
tance labels are created from structural alignments by APoc (Gao and
Skolnick, 2013). The global alignment algorithm of APoc is essentially
an improved version of TM-align (Zhang and Skolnick, 2005).

The direct output from a deep-learning model is a matrix of
probabilities of distance bins. For the purpose of DP, we convert this
probability matrix into a mean distance matrix D, whose element

dij ¼
Pn
k¼1

pk
ijbk, where i and j are the target/template sequence posi-

tions, pk
ij is the probability for bin k at position (i, j), bk is distance

Fig. 1. Flowchart of SAdLSA. The inputs are two sequence profiles fed into a fully convolutional residual neural network. The output of the network is a matrix of predicted

structural alignment distances, which are then employed by a DP procedure to obtain the optimal sequence alignment. In benchmark tests, the quality of the sequence align-

ment is assessed by the TM-score (Zhang and Skolnick, 2004)
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labels from the sequence (1, 2, . . . 20, 22). D is subsequently used as
the scoring matrix to obtain the optimal alignment using a Smith–
Waterman like DP algorithm (Smith and Waterman, 1981).
Specifically, the scoring matrix for DP is d0�D, where d0 is set at
16, and both gap-opening and extension penalties are set at �2.
These parameters are empirically selected and have not been opti-
mized. The distance matrix D is also used to calculate an estimated
TM-score (Zhang and Skolnick, 2004) for the alignment (see
Section 2.6). For each network model, we perform five training ses-
sions and use the average of outputs of these five models to obtain a
consensus distance matrix.

2.2 Pure a and pure b datasets
For proof-of-concept, two datasets of protein domains are curated
from the SCOP database v2.07e composed of 5884 domains at 30%
sequence identity (Fox et al., 2014). The training set consists of 695
pure a-helical structures. The a-helical protein training set must sat-
isfy two conditions: (i) each protein is categized as an all-a structure
by SCOP and (ii) the protein cannot have any b-strand residues
according to DSSP (Kabsch and Sander, 1983). Of these, we obtain
12 534 a-structure pairs that have a TM-score >0.4 as the training
pairs. We use them to train our deep-learning models that predict
the residue–residue distance at the optimal structural alignment.
Similar criteria were applied to curate the pure b-sheet structures,
except that we substitute b-sheet structures for a-helical structures.
This yields a testing set of 121 pure b-sheet protein structures. In the
test, for each b-sheet sequence, we perform a systematic scan with
SAdLSA on the template structure library of 5884 SCOP domains,
which includes �1000 SCOP folds and the maximum size of each
fold family is limited to 50 entries. Note that the template library
contains all fold classes.

2.3 SCOP10 testing datasets
Testing sets are curated from 2964 SCOP domain cluster representa-
tives at 10% sequence identity. To prevent bias, we limit the max-
imum number of entries for each fold to 10. From these �3k entries,
we randomly select 593 domain sequences as the main testing set.
The remainder serves as the template library. From it, we derived
two benchmark tests: (i) PAIR947 for assessing pairwise alignment
quality given the sequence pairs and (ii) LIB593 for searching a se-
quence library to find the sequences with the closest matching pairs
of structure. To derive PAIR947, for each of the 593 testing sequen-
ces, we randomly select up to two template entries to form pairs
with the query, if they have a TM-score >0.45 in the structural
alignment. This procedure gives the 947 target/template pairs as the
pairwise alignment testing set. In the LIB593 test, we search the full
SCOP10 sequence library for each of the 593 target sequences.

2.4 SCOP30 training/validation datasets
The 5884 SCOP domain representatives are employed to derive the
training and validation datasets. First, we remove all entries in the
593 SCOP10 domain test set from the SCOP30 domain set and also
remove all the homologs if they share a BLAST e-value <0.1 with
any entry in the testing set. We perform structural alignments with
APoc on the remaining entries in the SCOP30 set and retain all pairs
with a TM-score >0.4. This procedure yields about 79k protein
pairs. We then randomly split them into five pairs of training/valid-
ation sets, with each validation set containing 5k entries and remain-
ing proteins comprise the training set. The validation cases are used
primarily to prevent overfitting and to select appropriate hyper-
parameters, including the learning rate, momentum and the weight
decay parameter for the L2 regularization. We did not perform ex-
tensive brute-force search for the best hyper-parameters, but rather
selected a set of reasonably good parameters from hundreds of train-
ing runs.

2.5 Sequence profiling
PSI-BLAST version 2.2.26 is employed to derive the sequence profile
from the UniProt Ref90 sequence database released on April 25,

2018 (Wu, 2006). HH-suite version 3.0 is employed with a specially
curated sequence database Uniclust30 released on October, 2017
(Steinegger et al., 2019). We first run HHblits on this sequence li-
brary to derive the appropriate HMM model for each target and
template sequence in our benchmark tests. Using these HMM mod-
els, we run HHsearch for searching hits in a sequence library or run
HHalign for pairwise alignment. In all HHsearch or HHalign runs,
we fully enabled the MAC algorithm by using mact¼0. This pro-
cedure yields the best TM-score for the domain’s sequence align-
ment. In the benchmark test on a/b sets, we employed PSI-BLAST
profiles as the training features to SAdLSA, and in the SCOP10/30
benchmark tests, we employed HHblits profiles as the training
features.

2.6 Alignment assessment and ranking
Since we benchmark SAdLSA on protein sequences with experimen-
tally determined structures, this allows us to build structural models
using the sequence alignment and then assess the quality of the se-
quence alignment using the TM-score, ranging from 0 to 1, a protein
length-independent metric where a TM-score >0.4 indicates a statis-
tically significant alignment (Zhang and Skolnick, 2004). For evalu-
ation, given an alignment between a target sequence and a template
sequence, we build a structural model for the target sequence by
copying coordinates from the experimental structure of the corre-
sponding template. This structural model is then compared with the
experimental (native) structure of the target by the program TM-
score (Zhang and Skolnick, 2004). In order to evaluate the quality
of the template, we also perform direct structural alignments using
experimental structures of both the target and template with APoc
(Gao and Skolnick, 2013), which yields a TM-score from an opti-
mized structural alignment.

SAdLSA primarily ranks the sequence alignment by a predicted
TM-score, which can be used for both pairwise comparison and li-
brary searches. Given an alignment, we employ the distance matrix
D defined in Section 2.1 to predict the TM-score of the sequence
alignment. Specifically, we use ti ¼ di � c, where i is the align-
ment position, di is taken from the matrix D along the optimal path
from DP, and c is an offset constant set at 1. The matrix of mean dis-
tance immediately yields,

Predicted TM-score �
XN
i¼1

1

1þ ðti=d0Þ2
� �

2
4

3
5=LT (1)

where N is the length of the sequence alignment, LT is the length of
the target sequence, ti is the mean distance taken from the distance
matrix and d0 ¼ 1:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LT � 153
p

� 1:8:
Alternatively, when searching a sequence library, the alignment

score s from DP may be used for ranking hits. In addition, the statis-
tical significance can be estimated from the Z-score¼ s � sð Þ=r;
where s and r denote the mean and standard deviation,
respectively.

3 Results

We describe three different tests. In the first test, we demonstrate
that the deep-learning model is transferrable between different fold
classes. The second test shows the improvement in pairwise se-
quence alignments. The third test examines the performance of
SAdLSA in searching hits from a sequence library.

3.1 Aligning sequence encoding b-structures from

learning sequences encoding a-structures
As with any machine-learning approach, one major concern is the
transferability of the learned models to new cases. To address this,
we first provide a proof-of-concept illustration using 12k pairwise
structural alignments generated by comparing 695 a-helical protein
domains as the training set (see Section 2.2). Our test set is the
sequences of 121 b-sheet domains; for each target, we search for its
best hit in �6000 SCOP sequences encoding �1000-folds including
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all 4-fold classes (a, b, a/b and aþb) that share <30% sequence
identity among themselves and the target sequences (Fox et al.,
2014). Thus, we examine the ability to identify sequences encoding
b-sheet domains with DL models trained on structural alignments of
a-helical proteins. The goal is to examine if the information learned
by DL models trained on a protein fold classes is transferable to an-
other completely different, fold class. If so, this would imply that
SAdLSA has learned the protein folding code. The top hit ranked by
its alignment score is subsequently evaluated and compared to the
corresponding top hit by PSI-BLAST. In this test, SAdLSA uses the
same sequence profile generated and employed by PSI-BLAST for its
sequence alignments. As shown in the head-to-head comparison plot
(Fig. 2A), SAdLSA exhibits a clear advantage over PSI-BLAST. For
83% of targets, SAdLSA achieves better alignments than PSI-BLAST
in terms of the respective TM-score. The mean TM-score of
SAdLSA is 0.558 versus 0.427 by PSI-BLAST. This difference is stat-
istically highly significant (P-value¼2.4�10�13, paired two-tailed
Student t-test, same below). The improvement is observed not only
in cases difficult for PSI-BLAST at high e-values, but also for rela-
tively easy ones. Perhaps, the most relevant metric is the count of
cases where a good sequence alignment (TM-score >0.4) is
obtained. Considering only the top-ranked hits, SAdLSA identifies
good alignments for 89 cases whereas 64 cases are found by PSI-
BLAST (Fig. 2C).

If we use sequence profiles generated by the well-established
HMM approach HHsearch (Steinegger et al., 2019) instead of the
PSI-BLAST profiles as the training features and repeat the same
training and testing procedures, we obtain good top-ranked hits for
91 cases and an improved mean TM-score at 0.587, which is slightly
better than 0.576, the mean TM-score of top 1 hits by HHsearch
using the same sequence profiles, though the statistical significance
is not obvious at a P-value of 0.15. Note that we fully enable the
Maximum Accuracy algorithm of HHsearch (setting the mact par-
ameter at 0 throughout this study instead of the default value). With
its default parameter, the mean TM-score of HHsearch top hits is
significantly worse at 0.523. Nevertheless, the lack of a clear advan-
tage over the optimal performance of HHsearch is largely due to the
small training set generated from <700 a-helical structures and the
fact that HH-suite already performs well on this relatively easy
benchmark set for HHsearch (but not for SAdLSA whose parame-
ters were learned from a limited number of a-helical proteins). We

next demonstrate the advantage of SAdLSA on a bigger training
dataset and on more challenging test sets.

3.1 Comprehensive benchmark tests on SCOP domains
Encouraged by the above results, which are strongly suggestive that
SAdLSA has learned the underlying protein folding code, we further
trained SAdLSA on a much larger set of 79k pairs from the SCOP30
library and tested it on an extrinsic test set of 593 protein domain
sequences randomly selected from 391 SCOP folds (see Section 2.3).
Homologs of the testing sequences at 30% sequence identity or
higher, or with a BLAST e-value <0.1, are excluded from the train-
ing set.

3.2.1 Pairwise sequence alignment test

In the first test, PAIR947 that is designed to assess alignment qual-
ity, we tested the quality of the alignments for the 947 target/tem-
plate pairs which have good structural alignments whose TM-scores
>0.45. Each target sequence has up to two such pairs randomly
selected from structural alignments across a template sequence li-
brary, SCOP10, which contains �3000 SCOP domains sharing
<10% sequence identity with the target sequences. Thus, this test is
very challenging. We compared the results of SAdLSA with
HHsearch (Steinegger et al., 2019). To make it a fair comparison,
we employed the same sequence profiles as HHsearch in the training
of SAdLSA. Overall, the performance of SAdLSA is significantly better
than HHsearch (Fig. 3A–C). In 77% of cases, the alignments produced
by SAdLSA are better than HHsearch. The mean TM-score of
SAdLSA alignments is 0.339, which is 23% higher than the mean
TM-score of 0.275 of HHsearch alignments (P-value¼2.5�10�106).
Since this is a very challenging test set, we focus on good alignments
with TM-scores >0.4. In this regard, SAdLSA produces 254 good
alignments versus 168 by HHsearch. (Note that the default parame-
ters of HHsearch produced only 106 good alignments.) Importantly,
while both methods generally produce good alignments for relative-
ly easy cases (blue circles in Fig. 3B), for the hard cases (red circles),
SAdLSA found 127 good alignments, 154% more than the 50 cases
found by HHsearch. This shows the highly significant advantage of
SAdLSA (P-value¼9.7�10�106). Moreover, the probability scores
estimated by SAdLSA for aligned residue–residue distances provide

Fig. 2. A proof-of-concept demonstration of SAdLSA. (A) Head-to-head comparison between PSI-BLAST and SAdLSA on 121 sequences encoding b-sheet structures. The

training set of SAdLSA is composed of 695 sequences encoded for a-helical structures only. Each circle represents the top-ranked sequence hit for each b-sheet protein obtained

by applying each method to scan a sequence library of �6000 SCOP protein domain sequences that share no >30% sequence identity to the query sequences and that include

�1000-fold types. The color scale is according to the PSI-BLAST e-value. (B) Statistics of good sequence alignment hits with a TM-score >0.4 for the top 1 and the best of top

5 ranked hits. The P-value is calculated on paired TM-scores using the Student t-test
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a reasonable confidence estimate for the alignments (Fig. 3D).
About 88% of aligned residue pairs with a probability >90% within
3 Å are <3 Å in the actual optimal structural alignment of the native
structures. This allows us to predict the TM-score using Equation
(1) to estimate alignment quality.

3.2.2 Sequence library search test

Having demonstrated that SAdLSA indeed produces significant bet-
ter sequence alignments than a classic HMM-based approach, we
further show that its better sequence alignments could be utilized to
identify better templates in the SCOP10 library consisting of �3000
sequences from �1000-folds, i.e. the LIB593 test. Figure 4A shows
the results of the best of top 5 ranked hits by SAdLSA compared to
HHsearch. Overall, in 77% of cases, SAdLSA predicts a better se-
quence alignment than HHsearch in terms of TM-score. The mean
of TM-score by SAdLSA is 0.499, versus 0.454 by HHsearch (P-val-
ue¼1.5�10�38). Both methods dominate over the baseline method
PSI-BLAST, which has a mean TM-score of 0.242 and produces
poorer alignments in virtually all cases. Overall, SAdLSA found a
good alignment for 390 cases, versus 338 cases by HHsearch.
Among the hard cases, SAdLSA found good hits for 124 queries,
57% more than the 79 cases by HHsearch.

Moreover, to verify that SAdLSA indeed selects better templates
than HHsearch, and does not just improve alignment quality for the
same target/template pairs, we compare the quality of the template
hits found above by performing the structural alignments using the

experimental structures of the targets and the corresponding best
template hits. As the results shown in Figure 4B indicate, in 297
(50%, mostly easy, in blue) cases, the two methods identify the
same structural template; notably, in 218 (37%) cases, SAdLSA
found a better template, which is �2.8 times the 78 (13%) cases
where HHsearch finds a better template. Evidently, SAdLSA is su-
perior to HHsearch in detecting significant structural relationships
within a sequence library.

The quality of SAdLSA sequence alignment can be assessed from
the predicted TM-score using Equation (1). Supplementary Figure
S1 shows a high correlation coefficient of 0.89 between the pre-
dicted TM-score and the TM-score assessed on the structural model
built from the SAdLSA sequence alignment, and a correlation coeffi-
cient of 0.85 between the predicted TM-score and the TM-score cal-
culated using the experimental structures of both template and
target.

Unlike the deep-learning-based contact predictions, SAdLSA is
less dependent on sequence diversity of the multiple sequence align-
ment (MSA) employed for deriving input features. Supplementary
Figure S2 plots the top models’ TM-scores versus sequence diversity.
It has a modest correlation at 0.40. This is not surprising because a
significant alignment may be obtained if both sequences subjected to
the alignment hit similar MSAs, even when there are very few
sequences in the MSAs.

We also analyzed whether SAdLSA is biased toward certain fold
classes. Supplementary Table S1 shows that there is no such bias in
general. For example, a t-test on model TM-score between all a and

Fig. 3. Benchmark test PAIR947 on 947 protein sequence pairs compared using HHsearch and SAdLSA. (A) The violin plots show the TM-score given by the sequence align-

ment from HHsearch and SAdLSA, and the best structural alignment from TM-align. In each plot, the black box indicates the interquartile range from 25% to 75%; the me-

dian is represented by a black bar within the box, and the whisker extends up to 1.5 times the interquartile range. The red circle is positioned at the mean value. Individual

data points from each method are shown as small circles in the same color code as the boxplot. The contour of the violin is proportional to the estimated density from the data

point counts. (B) Head-to-head comparison between HHsearch and SAdLSA for all 947 cases. Each point is defined by the respective TM-scores assessed on the method’s opti-

mal sequence alignment. The color code indicates the level of difficulty according to the posterior probability scores given by HHsearch. Those with a probability score <0.95

are considered as hard cases. (C) Statistics of good sequence alignment hits with a TM-score >0.4 from the benchmark set. The P-value is calculated on paired TM-scores using

the Student t-test. (D) Predicted alignment distance at different probability ranges estimated by SAdLSA versus the true distance by structural alignment according to TM-align
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all b classes yields an insignificant P-value of 0.61. The mean TM-
scores of all classes are around 0.50, with the exception that the a/b
class is somewhat better at 0.55 and membrane proteins are some-
what worse at 0.42. The reason is likely due to the fact that the a/b
class have better templates available than other classes, whereas the
membrane class has fewer good template available, as reflected by
the mean TM-score of the templates via structurally searching the
best templates for each target (Supplementary Table S1).

Finally, the run time statistics of SAdLSA are shown in
Supplementary Figure S3. Thanks to GPU acceleration, the time
complexity is O(N) with respect to query sequence length, which is
highly desirable for practical application. Using 4 Nvidia P100
GPUs, it took �10 min to perform alignments against all 3000
sequences in the SCOP10 library for an input target sequence of
�400 residues in length.

4 Discussions

While these benchmark results demonstrate SAdLSA’s significant
advantage over previous methods, why is it better? Sequence align-
ment is essentially a comparison of the folding code encrypted with-
in protein sequences. The classical substitution tables, such as the
BLOSUM matrices (Henikoff and Henikoff, 1992), can be viewed
as a mean-field approximation that compares individual amino
acids. A better model, such as HMM, also considers immediate
neighboring residues. While there are efforts to incorporate add-
itional nonlocal interactions (Soding and Remmert, 2011), more
accurate folding code comparison demands the consideration of
nonlocal, long-range effects arising from correlations between resi-
dues that are distant in the sequence. Our deep-learning network
with many layers learns the folding code with long-range effects by
comparing entire sequences with their corresponding structural
alignment. Indeed, here, a general deep-learning framework for
improving sequence comparison is built by implicitly learning pro-
tein folding codes through structural comparison.

Although SAdLSA is ready for practical application, its linear
time complexity is dependent on the memory capacity of GPUs. At
present, proteins <1500 residues in length can be accommodated by
16 GB GPU memory. This may be overcome by parsing the input
protein sequences into domains in advance. Another limitation is

that the program relies on the generation of input sequence profiles
by more speedy sequence library search tools.

One straightforward application of SAdLSA is to protein structure
prediction. For this purpose, we note that there are different deep-
learning-based approaches developed for predicting residue–residue
contacts or even distances within the same sequence; the contact or
distance information is then utilized for deriving the protein’s structure
(Gao et al., 2019; Senior et al., 2020; Xu, 2019). In contrast, by taking
advantage of the observation that the number of distinct protein do-
main structures is rather small, we demonstrate that one can directly
infer structural relationships to known folds. This provides a general-
purpose sequence comparison approach whose potential applications
go far beyond protein structure prediction, with the possibility of
obtaining deeper functional or evolutional inferences.
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