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Abstract 
Accurate descriptions of protein-protein interactions are essential for understanding biological 
systems. Remarkably accurate atomic structures have been recently computed for individual 
proteins by AlphaFold2 (AF2). Here, we demonstrate that the same neural network models from 
AF2 developed for single protein sequences can be adapted to predict the structures of multimeric 
protein complexes without retraining. In contrast to common approaches, our method, 
AF2Complex, does not require paired multiple sequence alignments. It achieves higher accuracy 
than some complex protein-protein docking strategies and provides a significant improvement over 
AF-Multimer, a new development of AlphaFold for multimeric proteins. Moreover, we introduce 
metrics for predicting direct protein-protein interactions between arbitrary protein pairs and 
validate AF2Complex on some challenging benchmark sets and the E. coli proteome. Lastly, using 
the cytochrome c biogenesis system I as an example, we present high-confidence models of three 
sought-after assemblies formed by eight members of this system.   
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Introduction 
AlphaFold2 (AF2), a deep learning approach developed by DeepMind for predicting protein 
structure given a sequence, has greatly advanced protein structure prediction[1, 2]. In CASP14, a 
blind test for protein structure prediction, AF2 achieved remarkable performance when assessed 
on the individual domains of target protein sequences[1]. Because deep learning is a data-driven 
approach, two key factors contributing to the success of AF2 are the completeness of the structural 
space of single-domain proteins and an abundance of sequences in sequence databases[3]. 
Together, these factors have made it possible to train sophisticated neural network models for 
accurate protein structure prediction. 
In addition to single-domain targets, AF2 also delivered excellent results on multi-domain 
proteins[1] and has been applied to such proteins in several model organisms[2]. Considering that 
intra-protein domain-domain interactions are not physically different from inter-protein 
interactions, these AF2 results are very intriguing. They hint that, in principle, AF2 could be 
repurposed to predict whether a pair of proteins interact and if so, to predict the quaternary 
structure of the resulting protein complex. After all, many proteins that form complexes in 
prokaryotes are fused into long, single-chain, multi-domain proteins in eukaryotes[4]. The same 
physical forces that drive protein folding are also responsible for protein-protein associations[5]. 
Moreover, it is known that the structural space of protein-protein interfaces, the regions where 
direct physical contacts are found between protein partners forming a complex, is quite small[6]. 
Taken together, it is very likely that the neural network models trained for single-chain structure 
prediction have already learned the representations necessary to model protein complexes made of 
multiple single-chain proteins[3]. Indeed, some examples of using such a neural network model to 
predict complex structures were demonstrated with RoseTTAFold[7], whose design was inspired 
by AF2, even though its examples were likely present in its own model training set. 
Until now, conventional approaches for predicting the structure of protein complexes include a 
docking component[8-11], which is limited by force-field accuracy and the completeness of 
conformational space sampling. A second class of approaches is template-based methods, which 
utilize experimentally resolved multimeric structures[12-16]. More recent methods incorporate 
inter-protein residue-residue contact predictions obtained via co-evolutionary analysis[17] and a 
deep learning algorithm[18]. 
Can AF2 be adapted to predict the structure of a protein complex? After the release of AF2, efforts 
immediately began to seek an answer. The first such study involved simply connecting two protein 
sequences with a poly-glycine linker, thus converting it into a single-chain structure prediction 
problem[19]. A much better solution is to modify the “residue_index” feature used by AF2, which 
eliminates the need for a covalent linker that likely creates artifacts[20, 21]. Meanwhile, studies 
have been carried out whereby models of single proteins generated with AF2 are used with docking 
methods. They are based on the idea that AF2 generates high-quality monomeric models that could 
improve the chance of native-like poses in docking[22]. One issue with these studies, as some 
authors pointed out, is that the benchmark set tested includes protein structures used to train the 
AF2 deep learning models. Although the AF2 models were not trained on protein complex 
structures, the use of the holo monomers in training compromises rigor because AF2 likely 
provides an “observed” holo-structure for docking.  
Going beyond the prediction of the structure of the protein complex given that the proteins interact, 
are more fundamental but more challenging questions: Can AF2 be adapted to predict protein-
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protein interactions given an arbitrary pair of protein sequences, and more generally, can it identify 
higher order protein complexes? Several high-throughput experimental techniques have been 
designed to identify interacting protein partners[23-26], but their results are far from complete and 
are often mutually inconsistent. Computationally, template-based approaches have been used[27], 
but they are limited to the detection of homologs. Combining standard protein-protein docking 
methods with co-evolutionary signals[28] or even with deep learning models[29] has also been 
carried out on full proteomes. These are powerful approaches, but they rely on paired multiple 
sequence alignments (MSAs) as inputs. Generating paired MSAs requires the identification of 
orthologous sequences across species, which is impractical in many cases because it is confounded 
by the presence of paralogs in eukaryotes, protein cross-talk in disease pathways, and novel 
pathogen-host interactions. After all, one main consequence of evolution is the diversification of 
protein functions by producing paralogs[30]. These paralogs may interact with different partners 
without using a conserved interaction mode. Therefore, it is highly desirable to develop an 
approach that is not dependent on paired multiple sequence alignments. 
In this study, using multiple test sets and without using paired sequence alignments, we 
demonstrate that AF2 can be adapted to predict both the presence of protein-protein interactions 
and the corresponding quaternary structures. Although our tests are primarily conducted on dimers, 
the method, AF2Complex, can be applied to higher-order oligomers, and we show examples of 
such. Critically, it is necessary to devise proper metrics to estimate the confidence of a predicted 
protein complex model. By adapting metrics previously introduced for comparing the similarity 
of protein-protein interfaces[31], we introduce new metrics for assessing the likelihood of protein-
protein interactions. When AF2Complex was applied to a previously defined “gold standard” 
interaction set in E. coli [32], it found that many protein pairs are likely due to associations in large 
assemblies that are not necessarily in direct physical contact. Finally, we apply AF2Complex to 
make novel predictions on sought-after assemblies of a cytochrome c biogenesis system[33, 34].  

Results 
An overview of AF2Complex is illustrated in Fig. 1 with the details in Methods. Given query 
sequences of a target protein complex, the input features for each query are first collected by 
applying the original AF2 data pipeline. Then, AF2Complex assembles the individual monomer 
features for complex structure prediction. Among the input features, the most critical are the 
MSAs, which are obtained by extending each monomeric alignment sequence to the full complex 
length with gap paddings. Correspondingly, to mark separate peptide chains we sequentially 
increase the residue index feature of the second or later monomer(s) by a large number. The 
structural templates of monomer sequences are also re-indexed accordingly. If the input contains 
multiple copies of the same sequence, i.e., a homo-oligomer, it is treated as if they were 
heterogeneous sequences. In this way, one can readily reuse pre-computed features for individual 
sequences, e.g., from proteomes of species, for protein-protein interaction screening without any 
extra step such as MSA pairing. The input features for the putative complex are then separately 
supplied to AF2 DL models, and the resulting structure models retained for analysis. Finally, the 
likelihood of complex formation is assessed by two metrics: the interface-score and the predicted 
interface TM-score (piTM), both of which evaluate the confidence of the predicted protein-protein 
interface if found in an assessed model (see Methods). Each of these two scores ranges from 0 to 
1, where a higher score indicates higher confidence. 
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Fig. 1. Overview of the AF2Complex workflow. The multiple sequence alignments of query protein 
sequences A (blue), B (purple), and C (green) are joined together by padding gaps (grey) in the MSA 
regions belonging to other proteins, and the short black lines represent an increase in the residue index to 
distinguish separate protein chains. Structure templates for individual proteins are also retrieved from the 
Protein Data Bank. Using these sequence and template features, an AF2 DL model generates a complex 
model after multiple recycles. The interface residues between proteins in the final complex model are then 
identified and their interface-score S is calculated to rank model confidence (see Methods). 

We note that AF2Complex was originally based on the five monomer DL models of AF2. After 
the release of AF-Multimer[35], additionally AF2Complex was adapted to take five multimer DL 
models for predictions using unpaired MSAs. Throughout this work, without note, we present 
structural models obtained with AF2’s monomer DL models, rather than with AF-Multimer 
models. 
Accurate predictions on some CASP14 multimeric targets. We first applied AF2Complex to 
the multimeric targets of CASP14[36, 37]. To simulate a CASP14 prediction scenario (see 
Methods), the input feature predictions described below were obtained by using databases 
available prior to May 15, 2020, CASP14’s starting date. Because the structures of many assembly 
targets have not been released to the public, it is impossible to conduct a reliable statistical analysis 
of our predictions. However, they do showcase the potential of AF2Complex.  
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Fig. 2. Top complex models generated by AF2Complex for selected CASP14 assembly targets. Each target 
is labeled with its target name, e.g., H1072, followed by its stoichiometry in parentheses, e.g., A2:B2. For 
targets with available experimental structure coordinates, the TM-score between the model and 
experimental structure is provided. For other structures only an image of the predicted model is given. 
Models are colored red and green, and experimental structures are in blue and gold. (a) SYCE2-TEX12 
delta-Ctip complex. (b) N4-cytosine methyltransferase. (c) G3M192 from Escherichia virus CBA120. Only 
the N-terminal domains, which have an intertwined complex structure, are shown from a model of the full 
trimer. (d) Four rings from the T5 phage tail subcomplex. (e) DNA-directed RNA polymerase from Bacillus 
phage AR9. All images were generated with VMD [38]. 

Fig. 2 displays the results of AF2Complex on some challenging targets. The first example, H1072, 
is a heterotetramer (stoichiometry A2B2) consisting of two copies of two coiled-coil protein 
sequences[39]. Despite the simple topologies and the availability of an experimental structure for 
one monomer, H1072 is a difficult target. No group participating in the CASP14 competition 
provided a correct model of the complex[36]. In contrast, the top model by AF2Complex achieved 
a remarkable TM-score[40] of 0.90 when superimposed onto the experimental structure (Fig. 2a). 
The second example, H1065, is a challenging heterodimer as one component lacks a homolog in 
the PDB[36]. In this case, AF2Complex generated a highly accurate complex model with a TM-
score of 0.94 (Fig. 2b). The interface similarity score (IS-score), which was designed to evaluate 
dimeric protein-protein interfaces[41], is 0.60 with a significant P-value of 2×10-20. The third 
example, T1070o, is a homo-trimer with intertwined β-sheets at the N-termini (Fig. 2c). Although 
we could not evaluate the overall complex structure because its experimental structure is 
unavailable, we were able to evaluate a monomeric structure that contains a free-modeling domain 
target (T1070-D1). If we extract this monomeric domain from our top complex model and compare 
it to the native structure, our model for T1070-D1 yields a TM-score of 0.74, which is a significant 
improvement over 0.62 by AF2 in its official CASP14 assessment. This example indicates that, by 
modeling the entire homo-oligomeric target complex, one may obtain a structural model with 
higher quality, especially for an intertwined oligomer.  
The last two targets are from large molecular machines whose full experimental coordinates are 
unavailable. One of them, H1060, is part of a T5 phage tail assembly[36, 37]. The total size of this 
complex target is 6,582 residues, which is too large to be modeled in full. However, it is possible 
to model its four ring-like sub-structures, which are formed by 3 to 12 copies of four distinct 
monomers. AF2Complex returns models of these four rings at highly confident interface-scores 
ranging from 0.56 to 0.83 (Fig. 2d). The most challenging one is the 12-membered ring, for which 
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our model forms an ellipse instead of the expected circular structure. Using AF-Multimer DL 
models, we obtained a single model with the expected C12 symmetry using unpaired MSAs but 
failed to build a physical model with paired MSAs (see SI). The last example, H1097, is a DNA-
directed RNA polymerase from Bacillus phage AR9. It is composed of five hetero-monomers, 
totaling 2,682 amino acids. AF2Complex generates a highly confident model with an interface-
score of 0.79 (Fig. 2e). Given that there are quite a few RNA polymerase structures in the current 
PDB, perhaps this result is not surprising. But the fact that AF2Complex can produce a model 
without paired MSAs in this case strongly indicates that paired MSAs might not be essential. 
Significantly higher accuracy over docking-centric approaches and improvement on AF-
Multimer. Next, we conducted a benchmark test using 17 heterodimers released after Apr 30, 
2018, which was the cutoff date of PDB structures collected for training the AF2 models. This set, 
named CP17, was curated for assessing various docking-centric strategies in a recent study[22]. 
One such strategy is to build a complex model using the ColabFold version of AF2[20], then split 
the monomers from the predicted AF complex and use the ClusPro[42] docking method to generate 
complex models. This strategy yields an acceptable or better top-ranked model for fewer than half 
of the targets. By comparison, the overall top models from AF2Complex are acceptable or better 
(see Methods) in 15 of 17 (88%) cases, and 13 (76%) models are of medium or high quality 
according to the DockQ score[43] (Fig. 3a, Supplementary Table 1), with a mean of 0.62, a 
dramatic improvement from 0.25 of the docking-centric approach. Another complex, docking-
centric strategy increases the mean of DockQ score from 0.25 to 0.47[22]. Nevertheless, the 
improvement still falls behind AF2Complex on the same set (Fig. 3b). However, in one of the two 
cases when AF2Complex failed, the combined strategy resulted in a high-quality model. In these 
two failed cases, each has one monomer with only single-digit depth in its monomeric MSAs, 
which may explain these failures.  
Moreover, using AF2 monomer DL models, AF2Complex performs quite close to AF-
Multimer[35] on the CP17 set (Fig. 3c), with a mean DockQ score of 0.62 versus 0.65. The mean 
score of AF2Complex increases to 0.74 using AF-Multimer DL models (Fig. 3d), thanks to 
unpaired MSAs, increased recycles and the interface-score metric (Supplementary Table 2). By 
combining the overall best model from AF2Complex runs using either monomer and multimer DL 
models of AF, we obtain acceptable or better models for all 17 targets.  
To address the small target size of CP17, a large-scale benchmark study was further carried out on 
1,192 dimers and 593 oligomers (see Methods and SI). On 440 heterodimers obtained using the 
same DL models, AF2Complex performs significantly better than AF-Multimer, albeit at smaller 
advantage (median/mean 0.69/0.56 versus 0.65/0.55, p-value = 5×10-3, see SI and Fig. S2), 
whereas their performance on the homodimer set is comparable (Fig. S2). AF2Complex further 
improves (median/mean 0.70/0.57 on the heterodimers, p-value = 6×10-4) if the overall top ranked 
model of both monomer and multimer DL runs are assessed. It must be pointed that AF-Multimer 
(version 2.1.1) may yield unphysical models with severe clashes for a complex, especially for large 
oligomeric targets including homo-oligomers. In contrast, AF2Complex mitigates this issue with 
unpaired MSAs using the same multimer DL models and deals much more effectively with 
unpaired MSAs and the original monomer DL models of AF2 (SI and Fig. S3).  
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Fig. 3. Comparison of 
AF2Complex and three 
alternative approaches on the 
CP17 data set. The 
coordinates of the circles 
correspond to the DockQ 
scores of the top overall 
models from each approach 
versus AF2Complex. (a) AF2 
models docked by ClusPro, 
(b) Docking models refined 
by AF2, plus additional 
complex models obtained by 
running AF2 on paired MSAs 
according to ref [22], and (c 
& d) AlphaFold-Multimer 
[35]. The AF2 deep learning 
models trained for the 
prediction of monomeric 
protein structures, denoted as 
“monomer DL models”, were 
employed by AF2Complex in 
(A-C), and the AF-Multimer 
deep learning models, 
denoted as “multimer DL 
models”, were applied with 
AF2Complex in (d). All 
MSA inputs to AF2Complex 

are unpaired as described in Methods. Vertical and horizontal blocks represent the regions of incorrect 
(white), acceptable (green), medium (blue), and high-quality (red) complex models according to the DockQ 
score (see Methods). 

Predicting physical interactions among arbitrary protein pairs. Having been rather successful, 
an obviously tantalizing question is: Can this approach be applied to predict direct protein-protein 
interactions for an arbitrary pair of proteins? To answer this question, we devised a new test using 
the 34 unique protein sequences from the CP17 set. The goal was to find the 17 true interacting 
pairs given in CP17 from the 561 all-against-all pairwise combinations. Here, we naively assumed 
that all protein pairs other than the CP17 pairs are non-interacting, and any hit above a cutoff value 
of a metric adopted for evaluation is a false positive. Fig. 4 shows the results by using four different 
metrics to predict protein-protein interactions. Note that the model predictions for all pairs were 
carried out under exactly the same configuration in AF2Complex runs. Overall, both the interface-
score and the piTM-score demonstrate a clear advantage over the other two metrics, the pTM-
score and pLDDT-score of AF2[1]. Because we expect that most pairs of proteins are non-
interacting, we focus on the regime of low false positive rate (i.e., FP < 0.1) in the receiver 
operating characteristic (ROC) curve. The normalized area under the curve (AUC) of this plot, 
AUC0.1, is 0.72 and 0.69 for interface-score and piTM, versus 0.49 and 0.10 for pTM and pLDDT, 
respectively. For reference, random guessing yields an AUC0.1 of 0.05. As expected, pLDDT is 
not ideal for evaluating protein complex models because it was designed for single domain 
evaluation. Although the pTM metric is much more discriminating than pLDDT, it is still much 
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worse than interface-score or piTM in this regard. The same trend is also displayed in the precision-
recall plot, whereby we achieved ~45% recall (equivalent to the true positive rate) at ~90% 
precision, and the recall increases to ~70% at ~45% precision. Correspondingly, the interface-
score and piTM values are 0.55/0.59 and 0.45/0.50, respectively. Overall, the results encouragingly 
conclude that AF2Complex can be used to predict protein-protein interactions. 
 

 
 

Fig. 4. Identification of true interacting protein pairs in the all-against-all pool for the CP17 set by various 
confidence metrics. (a) Receiver operating characteristic curve and (b) the precision-recall curve. The 
random curve is the expected result by randomly guessing interacting protein pairs. 

Application to the E. coli proteome. The E. coli proteome consists of about 4,300 protein 
sequences. An all-against-all run with AF2Complex would require about 0.5 to 2.4 million 
computing node hours on the Summit supercomputer, which is beyond our allocation. Instead, we 
focused on a “gold standard” set of 701 PPIs previously curated largely from high-throughput 
experiments, and a set of 6,849 randomly selected, putatively non-interacting pairs (see Methods). 
Here, we have two goals: one is to test AF2Complex on a large-scale; the other is to build complex 
models for some known interacting protein pairs whose structures are difficult to determine 
experimentally. We speculated that the “gold standard” set contains pairs from a large assembly 
that are not necessarily in direct contact, e.g., as in ribosome. To test this hypothesis, we divided 
the positive set into subsets, whereby each monomer in the subset does not appear more than C 
times in the putative interacting set (the full set is covered when C < ∞). Fig. 5 shows the 
corresponding ROC and PR curves for these sets. The ROC curve displays a clear trend in which 
higher C values correspond to lower true positive rate or recall. This analysis suggests that some 
of the pairs in the positive set do not interact directly, yielding low or even zero scores. When we 
considered proteins that appear only once (i.e., C = 1), we obtained a result that largely 
recapitulates the benchmark performed above, with a slightly lower AUC0.1 of 0.60. The AUC0.1 

drops to 0.50 at C = 3, 0.40 at C = 5, and 0.22 for the full set, likely due to the inclusion of more 
non-direct interacting pairs as C increases. Further analysis also found a barrier to accurate 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.11.09.467949doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467949
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

modeling is the lack of the exact context of the protein-protein interaction. For example, the 
chaperonin protein GroL is the most frequent monomer in this set, appears in 79 pairs. It is part of 
a large assembly that requires seven GroL copies forming a ring stacked with another heptameric 
GroE ring. However, when GroL was modeled alone with another putative partner, we only found 
models with low confidence scores. Despite this difficulty, the result suggests that AF2Complex 
performs as expected in a large-scale test. Of the positive set, among the predicted models with 
confident scores (interface-score > 0.45), we found that about 40% of these predictions have not 
been experimentally characterized (defined if both monomers share > 70% sequence identity with 
sequences found in the same PDB entry). Therefore, novel discoveries are expected from these 
models. 
 

 
Fig. 5. A Large-scale test on the E. coli proteome suggests that many pairs previously thought to interact 
directly are likely in assemblies of components that are not necessarily in direct contact. The interface-score 
was used as the varying metric to derive the (a) ROC curve and (b) the precision-recall curve. For a dimer 
target, C is defined by the maximum of the appearances of its two monomers in this data set. 

Structural models of cytochrome c biogenesis system I. Two E. coli targets with high-
confidence models, CcmE/CcmF and CcmF/CcmH, caught our attention. These proteins belong 
to the cytochrome c maturation (Ccm) system I, which is composed of eight constituents 
(CcmABCDEFGH)[33, 34]. We note that E. coli CcmH has a fused C-terminal domain that 
appears as the standalone protein CcmI in other species with a similar Ccm system. As illustrated 
in Fig. 6a, it is thought that the Ccm system I consists of two modules: module 1 includes 
CcmABCD and is responsible for acquiring and loading a heme molecule onto the heme chaperone 
CcmE[44]. CcmE then shuttles the heme from module 1 to module 2, composed of CcmFGH, 
where the heme is delivered to CcmF[45]. Subsequently, CcmFGH covalently attaches the heme 
to nascent cytochrome c-type proteins[46, 47].  
Many mechanistic details of the Ccm system are still unclear, in part because there are no structures 
of the assembled modules. To date, the best effort is a partial model of the CcmCDE complex 
generated using co-evolutionary analysis[48]. The main reason for this knowledge gap is that the 
assemblies involve transient but essential interactions among membrane proteins (except for 
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CcmA) that are difficult to capture experimentally. We sought to address this knowledge gap with 
AF2Complex by modeling about two dozen combinations of Ccm components (see Methods). 
From these computational experiments, we present the confident models of three assemblies, 
A2B2CDE, EFH, and FGH, the last one with and without apocyt peptides, all with high interface-
score (0.82, 0.56, and ~0.72, respectively). These models are likely biologically relevant, and we 
were able to model the heme in the expected sites in all these models.  

 
Fig. 6. E. coli. cytochrome 
c maturation system I. (a) 
An illustration of the 
components and function 
of the Ccm I system, 
composed of eight proteins 
named CcmABCDEFGH. 
The system covalently 
attaches heme molecules 
to cytochrome c proteins 
via three functional 
complexes. (b) Two 
models (left and right 
panels) of one complex: 
CcmA2B2CD engage 
CcmE (left panel) and 
disengage CcmE (right 
panel). which loads a heme 
from CcmA2B2CD and 
chaperones it to CcmF. 
Insets show conserved 
residues implicated for 
heme binding in CcmC, 
CcmD and CcmE, 

respectively. 
Conformational 

differences between these 
two models are shown in 
the middle panel, where 
the backbone of CcmC 
was used to superimpose 

the two models. Viewed from the top (the periplasmic side), the two conformations of CcmA2B2 are 
displayed in blue and grey. Movement relative to CcmC is evident in CcmA2B2 but not in CcmD, which 
appears tightly coupled with CcmC. For clarity, CcmE is omitted in this superposition plot. (c) A view of 
interactions between CcmCD and CcmE in their engaged structural model shown in the left panel of (a). 
CcmCD representations are transparent for clarity. The sidechain of interacting residues (defined by heavy 
atom distance 4.5 Å) are shown. His130 and Try134 of CcmE are shown in the Van der Waals 
representation, and other interacting residues, including the Trp114 and Trp119 from the heme-binding 
WWD domain of CcmC, are shown in the licorice representation. (d & e) Views of a heme molecule docked 
into the putative binding-pocket in CcmC, using the structural model in which is CcmE bound to 
CcmA2B2CD as the initial apo-structure. A pore for heme access in CcmC manifests, where CcmC is shown 
in a surface representation (d). The heme is shown in van der Waals (d) and Licorice (e) representations. 
The vinyl group expected for His130CcmE attachment is marked in (e). 
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CcmA2B2CDE. First, we identified two different conformational states in the top two highest-
ranking models of A2B2CDE (Fig. 6b). Extensive interactions are observed between CcmCD and 
CcmE in one model (Fig. 6b left panel), where the heme chaperone CcmE extends its heme-
binding loop, characterized by two conserved residues His130CcmE and Tyr134CcmE, to reach the 
heme binding site (HBS) in CcmC that includes His60CcmC and His184CcmC, and another conserved 
residue, Tyr17 of CcmD. The heme-binding loop of CcmE is oriented away from the HBS of 
CcmCD in the other model (Fig. 6b right panel), in which the interactions between CcmC and E 
disappear, and the only remaining inter-protein residue-residue contacts are between a pair of 
transmembrane helices of CcmC and E. This conformation presumably corresponds to a resting 
state before heme loading, after heme unloading, or both. The disengagement of CcmE leads to 
conformational changes within CcmA2B2CD (Fig. 6b center panel). Using CcmC as the reference 
to superimpose the two complexes, movement is evident in CcmA2B2 but not in CcmD, which 
appears tightly coupled with CcmC. The root mean squared deviation (RMSD) of the CcmC 
backbone is ~1 Å. Corresponding to this movement, the number of residue-residue contacts 
between CcmB and CcmC drops by 45%, and the CcmBC protein-protein interfaces display larger 
changes between the two models than the other interfaces (similarity score, IS-score, of 0.65 versus 
scores >0.84). These large conformational changes could be the result of ATP hydrolysis within 
CcmA. As previously proposed[44], the energy of the hydrolysis could be harnessed to release the 
cargo-loaded CcmE.  
Extensive contacts are present in the model with CcmC tightly bound with CcmE. The interactions 
involve Trp114 and Trp119 of a tryptophan-rich loop (WWD domain[49]), sitting at one edge of 
the binding pocket of the heme (Fig. 6c). A pore is visible between transmembrane helices 2 and 
5 of CcmC and exposes a heme molecule bound to CcmC (Fig. 6d). The pore may allow the access 
of heme from the outer leaflet, but no channel for potential heme trafficking is present within 
CcmC as previously speculated[49]. The role of His60CcmC and His184CcmC, predicted heme iron-
coordinating residues, is confirmed as well (Fig. 6e). His130CcmE is only ~4 Å away from the 3-
vinyl of heme (IUPAC numbering), which is the proposed site of covalent attachment to 
His130CcmE to complete the heme delivery to CcmF. 
CcmEFH. Next, we addressed the question of how a heme-carrying CcmE could deliver heme to 
the CcmFGH complex. We obtained a confident model in which CcmE is in complex with CcmF 
and CcmH (Fig. 7a). CcmE interacts with CcmF such that the HBS of CcmF faces the HBS of 
CcmE, which has a heme-handling motif like that in CcmC. The distance between His130CcmE and 
His303CcmF is ~6 Å (Fig. 7a inset). CcmF has two heme-binding sites: one (P-heme) for the 
cytochrome attachment and the other accessory heme (TM-heme) that assists the ejection of the 
P-heme[34]. His303 is highly conserved and is known to coordinate the Fe cation bound to P-
heme. Similar interacting poses between CcmE and CcmF were obtained in models generated in 
the absence of CcmH.  
Consistently, the heme-bound model displays the P-heme coordination role of His303CcmF and 
His173CcmF, and the TM-heme is coordinated by His261CcmF and His461CcmF (Fig. 7b). TM-heme 
was co-crystallized with CcmF from Thermus thermophilus (TtCcmF) in a recent published X-ray 
structure[50]. Without using this structure as a template, our predicted CcmF model has a TM-
score of 0.92 compared to the experimental structure. However, a critical loop containing the 
equivalent histidine of E. coli His303CcmF is missing in the TtCcmF structure, suggesting that the 
P-heme binding pocket might be flexible. Indeed, only one of the two expected tryptophans (W229 
and W236) from the WWD domain is in contact with the P-heme in the heme-bound model. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2021.11.09.467949doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467949
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

Moreover, CcmF in our model does not expose a pore as observed the TtCcmF structure, in which 
the pore was speculated to enable P-heme access[50]. The structural difference may be attributed 
to lipid molecules occupying the pore in the crystal structure but absent in our computational 
model. 
 

 

Fig. 7. Structural models of the CcmEFH complex from E. coli. (a) CcmE is believed to deliver a heme to 
CcmF. Two views of a top model generated by AF2Complex are shown in the cartoon representation. The 
inset shows the key heme handling residues, His130 and Tyr134 of CcmE and the two histidines of CcmF. 
(b) Two heme molecules computationally docked to expected heme-binding sites of CcmF using the model 
shown in (a). The critical heme iron coordinating residues, His173 (P-His1) and His303 (P-His2) for the P-
heme delivered by CcmE and eventually attached to an apo-cytochrome c protein and His261 (TM-His1) 
and His461 (TM-His2) for the co-factor TM-heme are also shown. 

CcmFGH. After the heme is delivered to CcmF, the final step performed by this system is the 
attachment of the heme to apocytochrome c (apocyt c). This step involves a complicated 
mechanism that is not fully understood[47]. However, our model of the CcmFGH complex 
provides structural insights into the mechanism (Fig. 8a). First, we note the mobility of the N-
terminus of CcmH (which would be the full CcmH in many other systems that also have CcmI but 
is fused to CcmH in E. coli). In the absence of CcmE, the N-terminus of CcmH occupies the site 
otherwise occupied by CcmE, essentially moving closer to the HBS of CcmF. This configuration 
leaves an opening for CcmG, another thiol-disulfide oxidoreductase (like CcmH), now sitting at 
the site previously occupied by the CcmH N-terminal domain. Remarkably, the CcmFGH complex 
is arranged such that a reaction groove is formed, in which an apocyt c can be sequentially passed 
among the CXXC motifs of CcmG (Cys80 and Cys83) and CcmH (Cys43 and Cys46) to reach the 
HBS of CcmE (Fig. 8a).  
To investigate further, we modeled CcmFGH together with 11 different apocyt peptides, each 
containing one or two CXXCH motifs (see Methods). Remarkably, in all top models, the apocyts 
are invariably located in the predicted reaction groove (Fig. 8b). Physical contact between 
Cys46CcmH and an apocyt cysteine is present in some models (Fig. 8c). We further modeled a heme 
in the expected P-heme site of CcmF. The heme-bound model is largely as expected, but more 
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conformational changes are necessary for apocyt-heme attachment, as the cysteines of the apocyt 
are still ~16 Å away from the 8-vinyl group of the P-heme. The speculation echoes large 
conformational changes upon heme-binding revealed in recently determined structures of CcsBA, 
a cytochrome c synthetase from a different Ccm system[51]. 
 

 
Fig. 8. Structural models of the CcmFGH complex with and without apo-cytochrome c substrates from E. 
coli. (a) Two views of a top model of CcmFGH are shown in the same orientations as the two views in Fig. 
7a, respectively. The CcmH N-terminal domain moves closer to the heme-binding sites of CcmF, leaving 
space to accommodate CcmG that now binds CcmF with CcmH. Critical cysteines of the CXXC motifs of 
CcmG (Cys80 and Cys83) and H (Cys 43 and Cys46), and the P-heme-binding histidines (His 173 and 
His303) of CcmE are shown in the vdW representations in the inset. (b) Superimposed 22 structural models 
of the CcmEFH and apocyt acceptors by AF2Complex. CcmFGH are shown in lines, and apocyts are shown 
in cyan tubes. All apocyts are found within the same groove formed by the three Ccm proteins. The 
superposition uses the backbone atoms of CcmFGH as the reference. The sulfur atoms from the CXXC 
motifs of apocyts are shown in orange spheres to differentiate from those of CcmGH. (c) A heme molecule 
computationally docked to the P-heme’s binding site in CcmF using one of the models shown in (b). One 
of the Cys residues of apocyt is found within 4 Å from Cys46 of CcmH. The distance between the other 
Cys residue of apocyt and the 8-vinyl group of the heme is about 16 Å. 

Of the previously proposed mechanisms[47], our model supports the following: after entering the 
reaction groove, apocyt c is first reduced by Cys80 and Cys83 of CcmG. Next, the reduced apocyt 
attacks one of Cys43 and Cys46 of CcmH to form a mixed disulfide. This intermediate complex 
then retrieves the heme acquired by CcmF, and subsequently the mixed disulfide is resolved by 
the second cysteine of CcmH. Finally, the holo-cytochrome c is released. The CXXC motif of 
CcmH then reverts to the oxidized state, and CcmG dissociates to be reduced by the thiol-disulfide 
interchange protein DsbD. In all models of CcmFGH and also models from separate modeling of 
a CcmGH complex, the CXXC motifs of CcmG and H are separated by ~15 Å, and hence the 
reduction of a mixed disulfide between these two motifs as proposed in an alternate 
mechanism[47] is unlikely according to these models. Interestingly, the two CcmH domains, 
encoded in two ORFs in some organisms but fused together in E. coli, are linked by a long loop 
without direct interactions. This is an exception to the notion that fused proteins directly 
interact[4]. In this case, both CcmH domains instead interact with a third protein, CcmE. The 
function of the CcmH C-terminal domain remains unclear, but likely involves interactions with an 
apocyt c.  
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Discussion 
Our findings clearly demonstrate that AF2 can be adapted to predict the structure of protein 
complexes at much higher accuracy than classical docking approaches, even if the docking 
approaches use monomeric structures predicted by AF2. One reason is that predicting all the 
protein structures involved in a complex simultaneously by AF2Complex may overcome issues 
associated with rigid-body docking. Importantly, we have shown in multiple benchmark tests that 
high-quality complex prediction can be achieved without using paired MSAs as input, which also 
significantly enhances AF-Multimer and returns more physical complex models. This feature may 
lower the barrier for applications including some challenging cases in which pairing MSAs is 
impractical. 
But why is it possible to achieve successful complex modeling without using paired MSAs? After 
all, for predicting single chain structures and also for predicting complex structures, MSAs for 
each individual protein are still necessary and important. One reason is that sophisticated deep 
learning models reduces their reliance on large MSAs[1, 52]. Moreover, we speculate that the 
accurate amino acids packing capabilities offered by AF2 deep learning models may be another 
key reason[1, 3]. In particular, the structural module of AF2 ignores the sequential order of amino 
acids and has likely learned energetically favorable patterns among packed amino acids. If these 
patterns are applicable universally to amino acids of either intra- or inter-proteins, success is then 
expected. Empirically, the results above indicate this is likely the case. After all, protein-protein 
interactions are not physicochemically different from what drives protein folding in the first place. 
Their interface structures likely have been learned during the training of AF2 deep learning models 
for monomeric protein model prediction. 
Furthermore, by assessing the confidence of a predicted complex model with carefully designed 
metrics, one may generalize this deep learning approach to predict direct protein-protein 
interactions. We demonstrate that the interface-score or piTM metric can be applied to effectively 
predict interacting pairs. When applied to an E. coli proteome, we were able to infer that some of 
the previously selected interacting pairs in the “gold standard” set are likely from large complex 
assemblies without direct interactions.  
Using the E. coli cytochrome maturation system I as an example, we demonstrated that this 
powerful computation tool can be applied to interrogate a molecular system comprised of many 
proteins arranged in different packing orientations. By way of example, AF2Complex can generate 
highly confident models that depict the complexes involved in the loading, release, and delivery 
of a heme-chaperone, including a reaction groove responsible for the final attachment of a heme 
to an apo-cytochrome protein. Remarkably, high-confidence models were obtained for these 
assemblies that include multiple conformational states involving transient interactions with the 
heme chaperone and apocytochrome c peptides. Although the approach is currently limited to 
structural models without directly incorporating a heme, docking studies suggest that our models 
are consistent with known biochemical evidence, though other conformations are also expected. 
One major hurdle to this bottom-up approach for predicting protein interactions is that the context 
of such a hypothetical complex is often unavailable a priori. For example, if a complex involves 
one homodimer and another monomer, it would be difficult to model if we only consider a single 
heterodimer. Another challenge is post-translational modifications. For instance, proper modeling 
of CcmEFH and CcmFHI requires the cleavage of the N-terminal signal peptide of CcmH to obtain 
biologically accurate models. Nevertheless, the power of a deep learning-based approach for 
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predicting direct protein-protein interactions has been demonstrated. It is expected to contribute 
profound structural insights into the understanding of many biological molecular systems. 

Methods 
AF2Complex workflow. AF2Complex was initially built upon the official release of the source 
code and monomer neural network models of AlphaFold2 (version 2.0.1)[1], and subsequently 
upgraded to support the multimer neural network models of AlphaFold-Multimer (AF version 
2.1.1). For the purpose of large-scale applications, the original data pipeline was separated from 
the neural network inference. We refer to the data pipeline and neural network inference portions 
as stage 1 and 2, respectively. The split allows us to derive input features for individual protein 
sequences and then reuse them to assemble input features for subsequent complex predictions. We 
used different sets of sequence libraries[53-56] and Protein Data Bank (PDB)[57] releases to 
generate appropriate input features for different test sets, as described below.  
To generate the MSAs for predicting complex structures made of N distinct protein sequences, 
each with a length Li and a stoichiometry number Si (𝑖𝑖 = 1 …𝑁𝑁), we apply Algorithm 1 to the 
MSAs of individual proteins. The application creates a new set of complex MSAs, whose length 
is the sum of all individual sequences including multiple copies in the case of homo-oligomers, 
and whose depth is the sum of the depths of all individual MSAs. The complex MSAs are primarily 
composed of gaps, except for the regions in which each individual target sequence has its own 
window of MSAs (see Fig. 1 of the Main text for a schematic example).  

Algorithm 1 Complex MSA Creation 
def make_complex_msa (protein_msa_list): 

1: msa_length ← ∑ 𝐿𝐿𝑖𝑖 ×𝑁𝑁
𝑖𝑖=1 𝑆𝑆𝑖𝑖    𝑁𝑁 is the number of proteins, 𝐿𝐿𝑖𝑖  and 𝑆𝑆𝑖𝑖 are the length and stoichiometry of protein i 

2: msa_depth ← ∑ 𝐷𝐷𝑖𝑖 ×𝑁𝑁
𝑖𝑖=1 𝑆𝑆𝑖𝑖     𝐷𝐷𝑖𝑖 is the depth of the MSAs of protein i 

3: msa  ← initialize_msa_with_gaps (msa_length, msa_depth) 
4: col_start ← 0 
5: row_start ← 0 
6: for i ← 1 to N do 
7:   for j ← 1 to 𝑆𝑆𝑖𝑖 do 
8:      col_end  ← col_start + 𝐿𝐿𝑖𝑖 
9:      row_end ← row_start + 𝐷𝐷𝑖𝑖 
10:      msa[ row_start : row_end, col_start : col_end ] ← msai      𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 is the set of MSAs of protein i 
11:      col_start ← col_end 
12:      row_start ← row_end 
13:   end for 
14: end for 
15: return msa 

When supplied to a monomer AF DL model, the “residue_index” input feature for the target 
complex was modified by increasing the residue indices of individual protein sequences by 𝑏𝑏(𝑝𝑝 −
1), where b is an arbitrarily chosen number of 200, which satisfies the condition larger than the 
coverage of the relative positional encoding at 32 (that is, the sequential distance between two 
residue indices |𝑖𝑖 − 𝑗𝑗| ≤ 32, see Algorithm 4 of the Supplementary Method of reference[1]), and 
p denotes the index of each monomer starting from 1. Likewise, the template structures for 
individual proteins were also collected for the complex prediction. However, we did not 
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specifically search for and supply a complex template for the target. Without a note, the neural 
network models used for subsequent structure prediction were the five monomer AF2 models, each 
with a fine-tuned head for predicting paired alignment errors, which allows the prediction of the 
TM-score (pTM) [1]. We took advantage of this head for deriving metrics for evaluating complex 
predictions (see below). In the tests described in this study, we increased the number of recycles 
up to 20, depending on sequence lengths; the maximum number of recycles for target sequences 
longer than 500 residues was progressively decreased to reduce computational costs. The recycle 
steps were stopped early if the backbone Cα distogram converged [20]. In practice, these options 
may be adjusted by end users. 
Metrics for complexation evaluation. Previously, we introduced the interface TM-score (iTM-
score) and interface-similarity score (IS-score) for measuring the structural similarity between 
protein-protein interfaces[31]. Both scores were introduced to deal with issues associated with the 
TM-score, which is not ideal for comparing structure similarity of protein complexes[31, 58]. In 
this study, we used a similar concept but modified it accordingly for estimating the confidence of 
a predicted complex model. We first introduce the predicted interface TM-score, piTM,  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = max
𝑖𝑖∈ℐ 

 
1
𝐼𝐼
�

1

1 + �〈𝑒𝑒𝑖𝑖𝑖𝑖〉 𝑑𝑑0(𝐼𝐼)⁄ �2𝑗𝑗 ∈ ℐ

  (1) 

where ℐ  is the set of interface residues observed in the predicted model structure, and the 
cardinality of ℐ is the total number of interface residues I ≡ |ℐ|. Using the local reference frames 
of interface residue i, the predicted alignment error head of AF2 gives an estimated distance 〈𝑒𝑒𝑖𝑖𝑖𝑖〉 
for interface residue j from its position in the experimental structure[1]. The piTM score is the 
optimal rotation/translation that gives the best estimated score, and 𝑑𝑑0(𝐼𝐼) is a normalization factor 
given by, 

𝑑𝑑0(𝐼𝐼) = �1.24√𝐼𝐼 − 153 − 1.8   𝑖𝑖𝑖𝑖 𝐼𝐼 ≥ 22
0.02𝐼𝐼                            𝑖𝑖𝑖𝑖 𝐼𝐼 < 22

 (2) 

Note that we adjust the original formula of 𝑑𝑑0 to better deal with the cases where a low number of 
contacts are observed. Furthermore, we define the interface-score S as the follows, 

𝑆𝑆 = �
1
𝐼𝐼

max
𝑖𝑖∈ℐ\ℐ𝑝𝑝 

 �
1

1 + �〈𝑒𝑒𝑖𝑖𝑖𝑖〉 𝑑𝑑0(𝐼𝐼)⁄ �2𝑗𝑗 ∈ ℐ𝑝𝑝

𝐶𝐶

𝑝𝑝=1

 (3) 

which is similar to piTM, but we now calculate a piTM score for each protein chain p of the 
complex separately and then sum the scores. Each chain p has an observed number of interface 
residues ℐ𝑝𝑝, and ℐ is the union of ℐ𝑝𝑝. The optimal local reference for calculating the score for chain 
p can only be selected by interface residues not belonging to chain p. An important difference 
between our metrics and the ipTM score introduced in ref [35] is that we focus on interface residues 
(versus full chains[35]), which is the most relevant for our interaction predictions. 
CASP14 multimeric targets. We modeled all assembly targets if the total size of an assembly is 
less than 3,000 residues, which is a limit imposed by our available computing resources. The 
sequence libraries employed for our predictions are UniRef90 created in 2020-01[59], and the 
reduced BFD, MGnify, and Uniclust30 libraries[53-56] provided with the AF2 release. All these 
libraries are composed of sequences available prior to CASP14. For template retrieval from the 
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PDB, we restricted ourselves to structures released before the starting date of CASP14 as well. 
From the final predictions, we selected some difficult targets with promising results to present.  
CP17 set. This set was taken from ref [22] and consists of 17 heterodimer targets released after 
2018-04-30, on which the experimental structures were collected from the PDB for training the 
AF2 neural network models. We used the same sequence library as above but restricted the 
structural templates from the PDB to those dated before the same cutoff date for the AF2 training 
structures. In the benchmark test of the 17 targets, three independent runs were carried out, and 
each generated five top models. We evaluate the overall top-ranked model of the 15 models 
according to the interface-score. This protocol was used to evaluate both monomer and multimer 
AF neural network models. In the second benchmark test of identifying the 17 heterodimers out 
of all 561 pairs of these 34 individual protein sequences of the dimers, one single run was 
conducted for all pairs. Up to 20 recycles were allowed in each of these runs.  
The top-ranked (by the interface-score) models were compared with their corresponding 
experimental structures with the programs IS-score[41] and DockQ[43]. Inaccurate, acceptable, 
medium, and high-quality models are defined by DockQ score regimes [0.0, 0.23), [0.23, 0.48), 
[0.48, 0.80), and [0.80, 1.0], respectively. 
Dimer1193 and Oligomer562 sets. To create benchmark sets for objective evaluations of the AF2 
models, we curated two sets from the experimental structures released recently in the PDB. First, 
we retrieved the information of all 120,703 protein assemblies on Jan 7, 2022 from the PDB. They 
were split into two subsets, 92,047 complex structures (Earlier Set) released prior to Apr 30, 2018, 
and 24,853 assemblies (Later Set) released after that date, which is the cutoff date for the structure 
collection used to train the AlphaFold DL models including both monomer and multimer DL 
models[35]. We assume all assemblies in the Earlier Set were used for DL training and removed 
all the “easy” homologs in the Later Set by using the 30% sequence identity clusters of all protein 
sequences provided by the PDB. For a complex in the Later Set to be considered further, at least 
one protein chain of this complex must not be found within the same 30% sequence identity cluster 
as any chain of any structure in the Earlier Set. This selection procedure left 8,544 assembly 
structures. To further remove the redundancy among them, we applied the same sequence identity 
criterion and arbitrarily selected 3,353 structures that have at least one chain not found in the same 
30% cluster as any chain in any other complex structure within these 8,544 structures. A maximum 
length of 1,480 residues was also applied during the selection to the total size of the oligomer (i.e., 
the residue count of all individual chains) to prevent GPU memory overflow, a limitation imposed 
by the memory capability of the GPUs available for our tests. 
The sequences and coordinates of the 3,353 assemblies were subsequently examined. We further 
require that, in a good target, each protein chain shares a protein-protein interface of at least 20 
residues with another chain of the complex. This requirement removed many complexes with short 
peptides and left 1,884 assembly structures, of which 47 entries with non-standard amino acids in 
their PDB SEQRES records were removed, as we used the sequences given by SEQRES as the 
input sequences to model prediction. The remaining 1,838 assemblies consist of 1,275 dimers and 
563 higher order oligomers. One entry in the oligomers failed to generate the input during our 
evaluation of AF-Multimer, and we removed it from further evaluation. These two final sets are 
called Dimer1275 and Oligomer562, respectively. Because the mapping of chains between model 
and experimental structure is an open issue for automated assessment of high-order oligomers, 
primarily due to the combinatorial growth of identical or homologous copies, we mainly focused 
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on the dimer set in this study. However, we provide an evaluation of the physicality of the predicted 
Oligomer562 models.  
In addition, AF-Multimer uses different template identification protocols between the multimer 
and monomer predictions. The multimer data pipeline uses a protocol that searches essentially all 
PDB structures up to an optional cutoff date (Apr. 30, 2018, in our benchmark scenario), but the 
monomer protocol searches only a subset of PDB structures (PDB70, representing single chains at 
70% sequence identity cutoff). All targets of Dimer1275 have identified four templates in the 
multimer protocol, but 82 targets have none or fewer than four templates identified in the monomer 
protocol that AF2Complex relies on for input generation. To alleviate this unfairness, we removed 
these 82 dimers, leading to the final Dimer1193 set for the benchmark tests. The union of 
Dimer1193 and Oligomer562 are named as Oligomer1755. 
E. coli sets. The sequence of E. coli strain K12 was downloaded from UniProt[59] (Proteome ID 
UP000000625). We used a positive and negative protein-protein interaction set curated 
previously[27, 32]. We first filtered out pairs whose total size is longer than 1,480 residues, which 
is a limit imposed by the 16 GB GPU memory per node on the Summit supercomputer. Filtering 
led to 701 pairs from the positive set. Because the original negative set is too large to run all, we 
randomly selected 6,849 pairs from them, which yielded roughly a 1:10 ratio between the positive 
and negative set. 
E. coli CcmI system modeling. Three rounds of modeling were performed for this system 
composed of eight proteins, CcmA, B, C, D, E, F, G and H. In the first round, based on the 
literature, we tested 22 combinations of these proteins. Among them, top models with high 
confidence interface-scores and literature corroborations were presented for three assemblies, 
CcmA2B2CDE, CcmEFH, and CcmFGH. All models were generated with the AF2 monomer DL 
models by applying up to 20 recycles. Application of the AF-Multimer DL models with 
AF2Complex did not yield better models with higher confident scores and are thus not presented. 
In the second round, we tested the interactions between various apocyt c peptides and the CcmFGH 
complex. A cytochrome c protein, NrfA of E. coli, was arbitrarily chosen for modeling. NrfA 
contains five CXXC motifs for covalent heme attachment[60]. We cropped peptides spanning the 
heme binding motifs, including 8 peptides with one CXXC motif and three with two motifs. The 
lengths of these apocyt c peptides range from 8 to 52 residues, mostly around 18 AAs. During 
modeling, an apocyt c substrate and CcmFGH were folded simultaneously by the DL models, in 
contrast to typical docking, whereby a substrate is placed into a putative binding site of a folded 
protein or complex structure. By simultaneously modeling both the receptor and the acceptor, one 
might obtain a better complex structure that requires large conformational changes due to 
interactions. Note that we did not re-generate the MSAs for each peptide substrate. Rather, we 
cropped out the input features for each peptide from the input features, including the MSAs, of the 
full NrfA sequence. A domain cropping option implemented in AF2Complex enables this practice, 
which is convenient and likely more accurate in comparison to regenerating MSAs using partial 
sequences, especially for short peptides. 
In the last round, we modeled heme b molecules in their putative binding sites of CcmC or CcmF 
of top models. Because AF2 does not currently support the incorporation of cofactors and other 
prosthetic groups into structural models, we ran the Rosetta relax application[61] using the ‘-
in:auto_setup_metals’ option to model heme-bound systems starting from the AF2C models. The 
molfile_to_params.py script was used to generate the required parameters for heme b. In some 
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cases, the positions of histidine residues were adjusted to place them in proper position for axial 
coordination prior to Rosetta refinement. 
Performance evaluation. Standard metrics were applied to the benchmark tests on the CP17 and 
E. coli sets, both consisting of a true positive and negative set. The predictions were labeled using 
the pre-defined classification and the numbers of true positives, false positives, true negatives, and 
false negatives were then designated as TP, FP, TN, and FN, respectively. Performance measures 
are defined as follows,  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

(4) 

We also employed the normalized AUC0.1, which is the area under the ROC curve up to an FPR 
of 0.1, divided by 0.1. ROC curves were plotted using ROCR [62]. 
Interface clash indicator. To characterize the clashes observed in the predicted computational 
models, we defined an interface clash indicator 𝜒𝜒 ≡ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the number of 
interface residues, and 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the number of interface residue-residue contacts. An interface 
residue-residue contact is defined if any heavy-atom of a residue of one chain is within 4.5 Å of 
any heavy-atom of a residue from another chain. The value of χ ranges from 0 to 2 with values 
close to zero indicating a significant number of clashes. For experimental structures, χ is typically 
between 0.6 and 1.2. The metric can be directly applied to un-relaxed models to detect severe 
clashes. In practice, this evaluation can help to save computing time on unphysical models that are 
unlikely to be fixed by the relaxation protocol of AF2. 
Statistical tests. To test the hypothesis that the model quality of one model is better than another 
one in terms of a scoring metric, e.g., the DockQ score, we used the Wilcoxon signed-rank test, a 
non-parametric statistical test, because the score distributions do not follow normal distributions. 
The tests were paired, as every method makes a prediction on the same set of targets. All tests are 
one-tailed. 
Computational costs. The development tests and predictions on CASP14 assembly targets were 
carried out locally using about 10 workstations each with four Nvidia RTX6000 GPUs, where each 
GPU has 24 GB memory. The benchmark tests on CP17 and E. coli sets were performed on the 
Summit supercomputer at Oak Ridge National Laboratory. A Singularity container was built to 
run AF2 on Summit[63, 64].  An AF2Complex run of ~7,000 pairs of proteins using 923 nodes 
required about 2 hours in wall clock time. Each node has 6 Nvidia 16 GB V100 GPUs. For an 
individual target of fewer than 1000 residues, models may be obtained within 20 minutes for each 
deep learning model using “super” mode, which is a preset of configurations used with 
AF2Complex for this study. 

Data availability  
The source code of AF2Complex is available at https://github.com/FreshAirTonight/af2complex. 
Benchmark data sets of CP17, Dimer1193, Oligomer562, and the full E. coli proteome, including 
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pre-generated input features to AF2Complex, and the top computational models of E. coli Ccm 
system I are available at Zenodo https://doi.org/ 10.5281/zenodo.6084186. 
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Supplementary Text 

After we finalized the first version (1.0) of AF2Complex, DeepMind released AF-Multimer 
(AlphaFold version 2.1.1)[1]. To assess and take advantage of the new deep learning (DL) 
models trained for predicting multimers, we adapted AF2Complex (version 1.2) to further 
support AF’s new multimer DL models with either paired MSAs or unpaired MSAs as the 
input. In the case of paired MSAs, they were generated using DeepMind’s data processing 
pipeline. However, in the model inference stage AF2Complex provides options to tweak 
runs according to users’ needs, such as unpaired MSAs and additional recycles rather than 
the default three recycles. We use “monomer” and “multimer” to differentiate these two 
sets of DL models of AF2 released in version 1.0.1 and 2.1.1, respectively. 

Using CASP14 target H1060v4 as an example, we show both the strengths and weaknesses 
of the multimer DL models. As shown in Fig. 2d of the main text, using an AF2 monomer 
model, AF2Complex predicts an elliptical model, rather than the expected C12 symmetric 
model[2]. Using the multimer models released with AF-Multimer, we obtained a complex 
model with C12 symmetry, displayed in Fig. S1a. The C12 symmetric model has very 
similar dimeric interfaces as those observed in the monomer elliptical model (Fig. S1b), 
but the cyclic symmetry is broken in the previous model and is maintained only in the new 
model. Moreover, only one of the five multimer DL models generated such a model by 
using unpaired MSAs. It appears that using unpaired MSAs may be the key for generating 
this good model, because runs with paired MSAs by following the AF-Multimer workflow 
return unphysical models with severe clashes, a phenomenon akin to “chain collapse” 
observed previously[3]. Paired MSAs may have contributed to the issue. We shall revisit 
this topic below. 

Fig. S1. Top AF2Complex model of CASP14 target H1060v4. Structural model of AF2Complex 
generated with (a) an AF2 monomer DL model and (b) an AF-Multimer DL model. But are 
obtained with unpaired MSAs. (c) The superimposition of one pairs of monomers from this model 
and the top model obtained with an AF2 monomer DL model. The two copies of the proteins are 
colored cyan/orange (multimer model) and blue/red (monomer model). Backbones are shown in 
the cartoon representation and the Cα atoms of aligned interface residues are shown as spheres. The 
superposition was carried out with the program iAlign [4]. 
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Improvement with AF-Multimer’s deep learning models. To provide a comprehensive 
benchmark test with AF-Multimer’s DL models, we curated the Dimer1193 data set of 440 
heterodimers and 753 homodimers from the PDB experimental structures that were 
released after Apr 30, 2018, the cutoff date of experimental structures used by AF-
Multimer DL model training (see Methods). In addition, each dimer has at least one protein 
chain that shares less than 30% sequence identity with any chain found in any assembly 
structure released before the cutoff date in the PDB. This requirement removes “easy” 
cases where the DL models already learned a target during their training sessions. 

Fig. S2. Comparison of AF-
Multimer and various 
AF2Complex strategies on 
the Dimer1193 set. 
Evaluation scores of the top 
1 ranked models for 440 
heterodimers (top panel) and 
753 homodimers (bottom) 
are scattered small circles 
and color-coded for different 
methods. Types of AF deep 
learning models used are 
denoted as “monomer” or 
“multimer”. MSA styles are 
indicated by “paired” or 
“unpaired”. The 
AF2Complex runs with 
paired MSAs used up to 20 
recycles instead of the 
default 3 cycles in the AF-
Multimer runs. Other runs 
also were carried out with up 
to 20 recycles. Black boxes 

and bars represent the second and third quartiles (25% to 75% ranked by the DockQ scores) and 
the medians of the distributions. Red stars represent the mean values. Numeric median and mean 
values are shown. The colored background panels indicate the regimes of high, medium, 
acceptable, and incorrect complex models. 

On the 440 heterodimers, we see clear improvement in terms of DockQ score[5] 
evaluations with the AF-Multimer DL models. The mean/median of AF2Complex using 
monomer DL models on the heterodimers is 0.446/0.513, which was significantly 
improved to 0.547/0.651 by AF-Multimer in its default setting with three recycles and 
paired MSAs (p-value < 2.2 × 10-16, Wilcoxon signed-rank test, paired, one-tailed, n = 440, 
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same test employed below). If we allow additional recycles up to 20 and use the same 
paired MSAs as in AF-Multimer, the numbers increase further to 0.557/0.673 ((p-value = 
0.11). By using unpaired MSAs, the mean/median elevate again to 0.561/0.687 (p-value = 
5×10-3). Finally, if we evaluate the top 1 ranked (according to the interface-score) models 
obtained with either monomer or multimer DL models and unpaired MSAs, we obtain the 
best performance at 0.568/0.695 (p-value = 6×10-4). In this latest strategy, about 77% of 
heterodimeric targets have their overall top ranked model at acceptable or better quality, 
68% at medium or better quality, and 31% at high quality. Correspondingly, the mean 
interface RMSDs of the assessed models according to DockQ evaluation are 0.79, 1.37, 
and 1.95 Å. By using unpaired MSAs, AF2Complex yields statistically significantly better 
complex models than AF-Multimer on the heterodimers. 

However, the improvement with the multimer DL models is relatively small with the 753 
homodimers. Using the monomer DL models, AF2Complex yields a mean/median of 
0.479/0.589, versus 0.491/0.608 by AF-multimer, and 0.504/0.627 by AF2Complex using 
monomer/multimer models and unpaired MSAs. The difference is statistically significant 
from AF2Complex monomer models to AF-Multimer (p-value = 9.8×10-7, Wilcoxon test, 
n = 753), but further improvement by AF2Complex is statistically insignificant according 
to the same Wilcoxon test. 

We also note that the predictions on the homodimers are somewhat worse than those of the 
heterodimers. On average, the mean DockQ score is about 0.05 lower between the two 
dimer sets with the same method. Two observations may explain the difference.  

First, although most homodimers exhibit the two-fold cyclic symmetry (C2), 56 (7%) of 
them are asymmetric and they invariable have a low model quality because the DL models 
usually yield symmetric models on a homodimer target. If we remove these asymmetric 
dimer targets, the mean of DockQ increase about 0.025.  

Second, a homodimer may have alternative interaction poses that come from higher order 
symmetry, e.g., dihedral symmetry D2 that have two distinct interfaces. We strived to 
remove such cases in the benchmark set by considering only the dimers that have a global 
symmetry of homodimer according to the PDB annotation, that is, they are not part of a 
higher order symmetry in the considered PDB records. However, some proteins may still 
form higher order complexes that are in separate PDB records or even absent in the PDB. 
If we remove 46 (6%) cases with DockQ score < 0.23 and high Interface-score > 0.6 (only 
8 (2%) such cases found in the heterodimer counterpart set), we obtain another 0.03 
increase in the mean of the DockQ scores. These cases could be alternative docking poses 
that are not shown in the targeted experimental structures.  
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For instance, the target 5XBT contains a homodimer in C2 symmetry, but the same protein 
also appears as a homotetramer in a separate PDB record (5XBW), which exhibits D2 
symmetry[6]. AF2Complex correctly predicted one interaction pose that appears in the D2 
form but not the one in the C2 form. When we modeled the homotetramer form of this 
target with the multimer DL models and unpaired MSAs, we obtained a high-quality 
tetramer model with a TM-score of 0.92 compared to the experimental structure.  

AF-Multimer may yield unphysical structural models for large oligomers. Despite 
clear improvement made possible by the multimer DL models, they come with a limitation 
in that they could generate unphysical models with many atomic clashes at protein-protein 
interfaces. This effect is illustrated in Fig. S3a, where structural models of a homodimer 
target from Dimer1193 set are shown. This target has a long, disordered central segment 
(~200 residues) missing in the crystal structure, where the N- and C-terminal segments are 
found to fold into single ribokinase domains and two of them form a homodimer[7]. With 
the full sequence as the input, AF-Multimer generates a model (top 1 ranked), whereby the 
central segments overlap with each other and the ribokinase domains. The clashes are 
dramatically reduced in the top model by AF2Complex, using the same multimer DL 
models but unpaired MSAs. The most physical computational model comes from monomer 
DL models and unpaired MSAs. In this model, the central segments largely swing far away 
from the folded ribokinase domains. All three computational models displayed have a very 
high DockQ-score of ~0.95, and the ribokinase domains superimposed near perfectly with 
the experimental structures (Fig. S3b). This result occurs because the clashed regions are 
missing in the experimental structures, and therefore, ignored in the model evaluation. 
However, the model obtained with AF-Multimer default settings is unphysical and 
misleading. 

To address this omission in model evaluation, we introduce a simple metric called the 
interface clash indicator χ, which is defined as the number of interface residues divided 
by the number of interface residue-residue contacts (see Methods). In the example above, 
the experimental structure has χ = 0.83, which is very close to χ = 0.81 for the monomer 
model, and 0.78 for the multimer model obtained with unpaired MSAs. By contrast, the 
AF-Multimer model has a χ value of 0.28, well below 0.5, which is the observed lower 
boundary of experimental structures. 

The clashed interfaces are more often observed in large oligomers than dimers with 
multimer DL models. Fig. S3b shows the statistics of predicted models and the 
experimental structures of corresponding targets from the Oligomer562 set, each target 
with 3 or more monomers. None of experimental structures in this set had a χ value less 
than 0.6. Extensively intertwined structures, such as those that occur through domain-
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Fig. S3. Analysis of residue clashes at protein-protein interface of predicted protein complex 
models. (a) An illustrative example from the Dimer1193 set is a pyridoxin/pyridoxal kinase (PdxK) 
from Plasmodium falciparum. An experimental structure (PDB code: 6SU9) revealed that the 
terminal domains of this target protein form a homodimer, but the central part of ~200 residues are 
missing in the crystal structure. The full dimer sequences were modeled by different methods and 
the top 1 ranked models are superimposed onto the experimental structure. The structural models 
are shown in the cartoon representation. (b) Histogram of the interface clash indicator on the 
Oligomer562 set. For each method, the overall top ranked models were analyzed. The regime where 
predicted structural models contains severe clashes are marked by a grey rectangle. Note that the 
AF2 relaxation step was not applied to these models. The relaxation can remove minor clashes 
caused by small side chain reorientations, but it cannot remove the clashes requiring significant 
backbone movements such as the example shown in (a).   

are like overwhelmed by clashing interface residues at χ < 0.6. The issue is somewhat 
alleviated if unpaired MSAs are used with the multimer models, reducing the percentage 
to 14%. The monomer DL models with unpaired input suffer this clash issue to a much-
reduced degree, with about 1.3% of models at χ < 0.6. Note that these clashes cannot be 
eliminated by the AF2 relaxation procedure, which is a molecular dynamics minimization 
step barely moving protein backbone. Such large backbone movement is needed to remove 
the clashes. However, the relaxation could remove some minor side chain clashes observed 
within structures with higher χ values.  

Overall, the multimer DL models can generate higher quality oligomer models than 
monomer DL models. However, they may also yield unphysical models with many clashes 
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at the interface, whereas the monomer DL models are much more physical. The issue may 
be alleviated by using unpaired MSAs, but not eliminated. We fully expect that DeepMind 
will address this issue with improved neural network models for multimeric complex 
prediction in the near future. 
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