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Abstract
Motivation: Sphagnum-dominated peatlands store a substantial amount of terrestrial carbon. The genus is undersampled and under-studied. No
experimental crystal structure from any Sphagnum species exists in the Protein Data Bank and fewer than 200 Sphagnum-related genes have
structural models available in the AlphaFold Protein Structure Database. Tools and resources are needed to help bridge these gaps, and to enable
the analysis of other structural proteomes now made possible by accurate structure prediction.

Results: We present the predicted structural proteome (25 134 primary transcripts) of Sphagnum divinum computed using AlphaFold, structural
alignment results of all high-confidence models against an annotated nonredundant crystallographic database of over 90,000 structures, a
structure-based classification of putative Enzyme Commission (EC) numbers across this proteome, and the computational method to perform
this proteome-scale structure-based annotation.

Availability and implementation: All data and code are available in public repositories, detailed at https://github.com/BSDExabio/SAFA. The
structural models of the S. divinum proteome have been deposited in the ModelArchive repository at https://modelarchive.org/doi/10.5452/ma-
ornl-sphdiv.

1 Introduction

Sphagnum-dominated peatlands, threatened by warming
climates, convert and store about 25%–30% of global terres-
trial carbon, making them critically important atmospheric
carbon sinks (Healey et al. 2023). Genetic and phylogenomic
studies of the newly recognized Sphagnum magellanicum
complex, which contains Sphagnum species that are wide-
spread in global peatland ecosystems, have recently resolved
genomic divergence, suggesting these plants may be actively
speciating (Shaw et al. 2022). The newly sequenced genome
of the Sphagnum divinum species from this complex is of ref-
erence quality and represents an essential tool for ecological
and genomic research on peat mosses and peatland conserva-
tion (Weston et al. 2018, Shaw et al. 2022). However,
Sphagnum species remain an undersampled and under-
studied lineage of land plants, from both the evolutionary
(Shaw et al. 2022, Healey et al. 2023) and structural biology
standpoints. Protein structure can provide crucial information

about protein function, stability, molecular interactions,
effects of mutations, biochemical mechanisms, and many
other properties; however, within the Protein Data Bank
(PDB) (Berman et al. 2000), fewer than 40 total structures
from any bryophytes are found, with none from any
Sphagnum species.

Consistent breakthroughs in protein structure prediction
over the past decade culminated in extremely high accuracy
predictions obtained from the second version of AlphaFold
(Jumper et al. 2021) and produced the AlphaFold Protein
Structure Database (AlphaFold DB) (Varadi et al. 2022),
which covers predicted models of the proteins found in the
UniProt UniRef90 dataset (over 200 million proteins)
(Consortium 2023). The AlphaFold DB currently includes 48
proteome-scale datasets of predicted structures. Prior to this
development, proteome-scale structural analysis was unprece-
dented (Tunyasuvunakool et al. 2021). Since the S. divinum
genome is a recent result initially released in the JGI
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Phytozome catalog (Goodstein et al. 2012), AlphaFold DB
does not include models associated with this species. The use
of predicted structure to help understand protein function is
especially important in Sphagnum species, as gene characteri-
zation through transformation does not currently exist.

In recent studies of the response of S. divinum to environ-
mental stressors, complex interactions were found between
sex genes, autosomal genes, and environmental conditions
(Healey et al. 2023). Protein structural information is
expected to provide missing details in regard to understanding
pathways and mechanisms related to relevant encoded pro-
teins. Structural alignment may provide a more sensitive way
to detect remote homologs, while 3D molecular details can
help uncover biochemical information such as binding pock-
ets and catalytic residues. The challenge is to determine the
confidence in the assignment of function when structures are
similar, especially when alignments are performed across
kingdoms or phyla. Here, we refer to the assignment of spe-
cific biological functions, represented by classification ontolo-
gies, families, or indices such Enzyme Commission (EC)
numbers (Bairoch 2000) as functional annotation, to differen-
tiate it from annotation involving identification of protein
coding sequences. In the latter case, the automation of anno-
tating genes with functional metadata may be incorrect, and
errors can propagate when incorrect assignments are trans-
ferred from proteome to proteome (Rembeza and Engqvist
2021). Additional information that can support or refute
computational annotations is needed.

Here, we present the predicted structures of 25,134 proteins
from the S. divinum proteome (representing the majority of the
primary transcripts, except for long protein sequences with more
than 2,500 residues), computed using AlphaFold 2 with a dy-
namical recycling approach and an optimized clash-reducing re-
finement step (Gao et al. 2022). This structural proteome adds
to the existing collection of new organism-scale structural data-
sets such as the model-organism proteomes found in AlphaFold
DB. We use this structural proteome to develop a computational
approach for proteome-scale structure-based functional annota-
tion of enzymes: 3D structural alignment of all high-quality pre-
dicted models to the nonredundant set of experimentally
determined protein structures, followed by a consensus classifi-
cation and an analysis of conserved active sites and binding sites.
In developing this method, we have also produced an annotated
version of the PDB70 structural database that contains aligned
residue-level information on active sites and binding sites used in

our method. We have incorporated parallel programming tech-
niques in the implementation of this method to produce an effi-
cient and scalable pipeline. We apply this method to the high-
quality structural models of the S. divinum proteome, returning
new annotation information for a set of stress–response-related
proteins, for proteins with no sequence-based functional annota-
tions, and to complement the remainder of the proteins for
which some sequence-homology-based computational annota-
tion was previously derived. We highlight the novel findings that
this type of approach can produce with several important exam-
ples from the set of S. divinum stress-response proteins.

2 Materials and methods
2.1 Overview of the structure-based annotation

pipeline

Figure 1 depicts the schema of the structural alignment for
functional annotation (SAFA) workflow. First, predicted
structural models are generated. Both the predicted template
modeling score (pTM) and average predicted local distance
difference test (pLDDT) scores are used to judge the model
quality: if either the pTM > 0.7 or the pLDDT > 70, the
model is passed on to step 2 in Fig. 1, the structural alignment
against a library of annotated, experimental structures to
identify structural analogs. Finally, annotations from the
structural alignment hits are gathered, parsed, and suggested
as hypotheses for the modeled protein’s function, as shown in
Step 3 of Fig. 1. The methods utilized for this workflow are
described below and are more thoroughly covered in the
Supplementary Information (SI), Supplementary Section S2.

2.2 Proteome-scale structure prediction with

AlphaFold

Structure prediction for the set of primary transcripts of the S. di-
vinum genome (NCBI Taxonomy ID 128215, available on JGI
Phytozome) was performed using AlphaFold Monomer v2
(Jumper et al. 2021) on the Andes and Summit supercomputers
at the Oak Ridge Leadership Computing Facility, as described
previously (Gao et al. 2022). Of the 25,227 primary transcripts
of the S. divinum genome, 25,134 structures were predicted.
Sequences with more than 2,500 residues were not modeled due
to hardware limitations.

Figure 1. Schema of structure prediction, alignment, and hypothesis development for functional annotation. (1) For each of the 25,134 primary transcripts

in the S. divinum proteome, five structural models are inferred using AlphaFold2 with structures ranked using the pTM score. The top ranked structural

model is used in structural alignments (2) against a library of experimental structures (e.g. PDB70 structural library, reported here) to identify strong

structural analogs. Metadata and structural feature annotations from structural alignment hits are gathered and parsed (3) to provide a hypothesis as to

the functional annotation for the modeled protein, such as Enzyme Commission number (EC) and residue-level structural insights, using a relative

entropy-based classification which considers the ensemble of well-aligned structural matches.
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2.3 Annotated PDB70 structural library

Structures corresponding to PDB accession and chain IDs listed
in the PDB70 sequence database (dated 13 March 2022)
(Steinegger et al. 2019) were used for creating the annotated
structural library, totaling 91,032 single-chain protein struc-
tures. In addition to gathering the structures, we also collect the
annotation metadata from UniProt flat files associated with each
structure in the PDB70 structural library. For this study, residue-
specific annotations categorized as active site and binding site
features were retrieved using our annotation pipeline. EC
numbers were also gathered, when available.

2.4 Structural alignments

US-align2 was used to perform structural alignments between
S. divinum protein models and the PDB70 structural library
using the semi-nonsequential (sNS) alignment algorithm
(Zhang and Pyle 2022) with a parallel workflow.

2.5 Hypothesis development for annotation of

enzymes

Structures that strongly align to an inferred model are gath-
ered and considered as a set. The metadata data associated
with these structures is parsed to identify agreements in quali-
tative data (e.g. EC numbers) as well as structural features
such as ligand binding or active site residues using consensus
methods. The enzymatic annotation hypothesis is generated
in two steps, using an analysis of the EC numbers found in
the hits’ metadata: (i) the classification of the protein as an en-
zyme and (ii) a consensus classification resulting in the assign-
ment of either an EC number, whether a full four digit label
(e.g. 1.1.1.1) or a prefix (e.g. 1.�, 1.1.�, 1.1.1.�), or the label
“no consensus” to the protein. The active and binding site
residue-level feature metadata are then used to support the
EC number hypothesis by highlighting the important residues
in the predicted model that may play key roles in the proposed
enzymatic function.

2.5.1 Assigning EC numbers using relative entropy
To determine whether a structural model can be classified as
an enzyme, the EC numbers observed in the model’s set of
alignment hits are compared to the background distribution
of EC numbers observed in the full PDB70 structural library.
Specifically, the Kullback–Leibler divergence (DKL), also
called the relative entropy, is calculated as follows:

DKLðP k QÞ ¼
X
x2X

PðxÞ log 2
PðxÞ
QðxÞ

� �
(1)

which represents the information gain from the probability dis-
tribution, P, of the EC numbers from the model’s set of align-
ment hits relative to the background distribution, Q, of EC
numbers in the PDB70 structural library, where the set of EC
numbers observed in the library is the discrete sample space, X.
Further details about this metric and the statistical significance
test are found in Supplementary Section S2.4 in the SI.

In the second stage of the annotation process, the relative
entropy components (the terms within the summation in
Equation 1) associated with each observed EC number, x, are
considered, to determine which, if any, EC number should be
assigned to the model as the annotation label. A strict major-
ity consensus rule is applied: if one EC number’s relative en-
tropy component represents 50% or more of the total relative

entropy value, then that EC number is the primary enzyme
annotation.

2.5.2 Residue-level insights
The UniProt flat files may contain information at the residue-
level, highlighting a large variety of structural features. For
this work, focus is given to “BINDING” and “ACT_SITE”
feature labels. To highlight importance of specific residue
positions in the structural model as well as guide visualiza-
tions, the number of times a model’s residues are aligned to
residues in a PDB70 structure that are associated with either
type of feature element is counted; this counting metric is dis-
cussed as the “feature count.” The “conservation count”
quantifies the number of instances in which both model and
alignment target have the identical residue type at the struc-
turally aligned position. In this way, we can begin to localize
active or binding sites based on the ensemble of alignment
hits’ annotation information.

2.6 Sequence alignments

We benchmarked the structural alignment method against
established sequence-based methods designed for finding re-
mote structural homologs. Further details and discussion are
found in Supplementary Sections S2.6 and S4.

2.7 Transcriptomic response to heat shock

experiments

New gene expression analysis experiments were performed to
validate the transcriptomic responses of Sphmag01G194900,
Sphmag02G160700, and Sphmag13G047200 to heat shock,
which were first reported in Healey et al. (2023). Further
details are found in Supplementary Section S2.7 of the SI.

2.8 Data availability

All data and code are available in public repositories, detailed
at https://github.com/BSDExabio/SAFA. The structural mod-
els of the S. divinum proteome have been deposited in the
ModelArchive repository at https://modelarchive.org/doi/10.
5452/ma-ornl-sphdiv.

3 Results

As previously mentioned, no experimental structures for
Sphagnum species exist in the PDB. The AlphaFold DB holds
5007 models across all Sphagnum species, whether the species
is named or currently unclassified. These models represent
structures of only 143 unique genes, as counted by “gene
name” annotations in the associated UniProtKB flat files (struc-
ture list parsed on 16 March 2023). To put this number into
context, S. divinum encodes 25,227 primary transcripts; the
143 unique, nonhomologous proteins represented in
AlphaFold DB only account for 0.5% of the encoded prote-
ome. To further analyze the S. divinum proteome, we have
modeled the structures of a majority of the primary transcripts
and used the structural alignment pipeline, illustrated in Fig. 1,
to identify analogous, annotated protein structures. Structural
alignment results are then used to develop hypotheses for pro-
tein function as well as support results obtained from experi-
ments and other computational annotation methods.

3.1 Proteome-scale structure predictions

Supplementary Figure S1 shows the distribution of average
pLDDT scores of S. divinum models alongside distributions
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from AlphaFold DB’s reference proteomes of Oryza sativa
(rice), Zea mays (corn), Arabidopsis thaliana (thale cress),
Glycine max (soybean), Mus musculus (mouse), and Homo sa-
piens (human). In this context, the S. divinum model quality
distribution mirrors those of the reference proteomes, with
roughly 57% of predicted structures being well-modeled by
AlphaFold, using the average pLDDT score cutoff of 70 as sug-
gested on the AlphaFold DB website. For S. divinum and O.
sativa, there is increased density in the lower-confidence, aver-
age pLDDT score region than for the other proteomes. These
low confidence structural models observed in S. divinum may
represent incorrectly-annotated sections of the genome that
may not encode proteins, intrinsically disordered proteins
(IDPs) (Ruff and Pappu 2021, Akdel et al. 2022), or potential
weaknesses in the AlphaFold inference model. As alluded to
above, initial gene annotation methods may identify primary
transcripts in the genome that are not expressed in vivo.
Alternatively, IDPs serve important roles in plants, including in
response to drought stress (Balcerowicz 2020); these important
proteins will not be modeled well by AlphaFold. Finally, pau-
city of proteins originating from plants, and more specifically
bryophytes, in the AlphaFold training data may result in a bias
toward low confidence scores for predicted structures of pro-
teins from moss genomes.

Figure 2A compares the model quality distributions for the
average pLDDT and pTM metrics for the S. divinum prote-
ome structures. Median values are 73.12 and 0.62, respec-
tively. Using average pLDDT as the lone model quality score
can be misleading: the average pLDDT score can be a poor
descriptive statistic when large unstructured loops are given
equal weight as well-modeled structural domains. On the
other hand, the pTM score may quantify a higher confidence
result for models with a globular protein structure that are
plagued by poorly modeled termini or loop regions. When
available, both average pLDDT and pTM scores should be
considered. For the S. divinum proteins, there are 14,410 pri-
mary transcript models that pass our model quality criteria of
pTM > 0.7 or average pLDDT > 70.

3.2 Structural alignment for functional annotation

The set of confident S. divinum structural models (those that sat-
isfy the model quality criteria) are forwarded to the structural

alignment step of the workflow, where each protein model is
aligned to all structures in the PDB70 structural library (91,032
structures), using the sNS method of US-align2. In total, this
equates to approximately 1.3 billion structure alignment calcula-
tions, the results of which are provided as a publicly available
dataset described further in Supplementary Section S1 of the SI.
Figure 2B shows the distribution of each model’s largest average
TM-score, which is the metric used as the criterion for alignment
ranking. The 5,969 models with their highest-ranking align-
ment’s average TM-score < 0.7 are not considered for develop-
ment of an annotation hypothesis (step 3 in Fig. 1; see panel C
of Fig. 2). However, these structures may still be of interest as
novel domain assemblies, potentially representing new structural
motifs not yet found or poorly represented in the existing experi-
mental data. For example, there are 266 models that have either
average pLDDT or pTM scores > 90 or 0.9, respectively, with
no structural alignment hits based on the 0.7 average TM-score
cutoff. Investigation of these high-confidence structural models
and many others may provide insights including the potential
discovery of new domain arrangements or new folds. The
remaining 8,421 models of S. divinum proteins have at least one
structural alignment hit in the PDB70 structural library, from
which we hypothesize annotations and residue-level insights can
be transferred to the model. Comparison of the structural
alignment method against a state-of-the-art sequence-based
alignment method is presented Supplementary Section S4 in
the SI.

3.2.1 Proteome-scale structure-based enzyme annotation
To develop annotation hypotheses for the 8,421 models that
align well to one or more structures in the PDB70 structural
library, the metadata pipeline is used to retrieve relevant qual-
itative information and all residue-level features found in the
metadata file from the UniProtKB entries corresponding to
the matching crystal structure(s). Here, we focus on identify-
ing enzymes and labeling those protein models with an appro-
priate EC number.

To initially develop an enzyme annotation for a protein, a sta-
tistical analysis is performed on the set of EC numbers gathered
from a model’s structural alignment hits to propose whether the
modeled protein is an enzyme or not. If the modeled protein is
hypothesized to be enzymatic, the second stage of the analysis

Figure 2. Proteome-scale distributions for S. divinum. (A) AlphaFold pTM and pLDDT model quality scores for all modeled S. divinum primary transcripts.

If either pTM > 0:7 or average pLDDT > 70, then the model is considered high-quality. (B) The distribution of high-quality structural models’ top-ranking

average TM-score value from alignments to the PDB70 structural library. (C) Breakdown of the structural alignment results into categories for models

without any strong alignment hits, with a non-EC number annotation hypothesis, or with an enzymatic annotation hypothesis. For the last category, the

stacked bar depicts the distribution of first digit EC numbers hypothesized for the respective category as well as the small number of cases where no

consensus EC number was obtained.
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uses a consensus classification to assign a primary EC number to
that model. As shown in Fig. 2C, 4,288 of the 8,421 models
with at least one structural alignment hit are hypothesized to not
be enzymes while the remaining 4,133 models pass the first stage
of the enzyme annotation analysis. The side bar of panel C pro-
vides the breakdown of models that have been annotated as
enzymes into the specific first-digit enzyme categories of the pri-
mary EC number annotations. Thirty-five models are seen to
have statistical significance for hypothesizing that the modeled
protein is an enzyme but do not get a primary EC number
assigned because no consensus is achieved. The 4,133 models
hypothesized to be enzymes represent 16.4% of all primary
transcripts in the S. divinum proteome. This proportion of
enzymes encoded in a species genome mirrors those of other
eukaryotes, which, on average, have enzymes comprising 18%
of their total proteome (Arakaki et al. 2006). These annotations
and their respective aligned structures and statistics are made
available for public use and further described in the SI.

Residue-level metadata is also considered to support the hy-
pothesized EC number annotation. The feature and conserva-
tion count metrics highlight residues in the alignment hits’
structures that are associated with enzymatic activities, whether
as the catalytically active residue or facilitating the binding of
cofactors and substrates. A model’s residues that are strongly
aligned with these feature residues from alignment hits are then
hypothesized to have analogous functional relevance. Further
consideration and comparison of EC number annotations devel-
oped from the structural alignment workflow and those initially
reported in the JGI data portal for S. divinum is presented in
Supplementary Section S3 in the SI.

3.3 Use of the structure-based EC annotation

pipeline on proteins associated with stress

response

Recent studies on S. divinum response to stress have identified
several thousand proteins that are implicated in complex
stress-response pathways (Healey et al. 2023). Ongoing inves-
tigations, including experiments on transcriptomic response
to heat shock, are part of a campaign to understand these
pathways. A set of 3,596 proteins were earmarked as being of
special interest. Of these, 1,104 had sufficiently high predicted
model scores to be passed to the annotation portion of the
pipeline, 329 of which had at least one high quality alignment
hits. Eighty-three of these proteins were matched with relative
entropy and consensus scores sufficient for transfer of EC
annotations according to thresholds defined by our method.

In the next sections, we focus specifically on three proteins
from these studies where the results from our pipeline provide
novel insights, demonstrating different applications of the
method for uncovering clues about protein function. We also
report results from gene expression experiments that confirm
these proteins’ strong transcriptomic response to heat stress.

3.3.1 Example 1: hypothesized cytochrome P450
The first example of the structural alignment for functional an-
notation workflow is the primary transcript, Sphmag13G
047200. Expression studies have shown this protein to be signif-
icantly repressed in S. divinum plants under high temperatures,
with –1.2 log2FC in Healey et al. (2023) and –1.6 in the current
experimental results reported here.

The structural model of Sphmag13G047200 is depicted in
Supplementary Fig.e S2A, colored by the residue-level
pLDDT scores in a similar manner to that used in the

AlphaFold DB. The structure has pTM and average pLDDT
scores of 0.89 and 89, respectively, indicating a very high con-
fidence model. Alignment against the PDB70 structural li-
brary returns 309 hits that surpass our average TM-score
threshold of 0.7. In Supplementary Fig. S2B, the top ranked
alignment is depicted where the model (purple) and 7CB9
(green; originating organism: S. miltiorrhiza) have an average
TM-score of 0.88 and an aligned residue percent sequence
identity of 33.5%.

Panels (C) and (D) of Supplementary Fig. S2 visualize the
transfer of residue-level feature elements from the ensemble of
alignment hits to the residues of the Sphmag13G047200
model. A single residue is highlighted by both the feature and
conservation counts: Cys463 is aligned to feature elements a
total of 226 times, with 224 of these instances having a cyste-
ine residue conserved in the alignment hits. These 226
residue-level features are all categorized as “BINDING” with
the associated ligand being “HEME”, as depicted in panel
(B), where the Cys residue directly coordinates the Fe cation
of the heme cofactor. Other residues in Sphmag13G047200
are highlighted by the feature counts metric, yet none to the
extent of Cys463 and none with high conservation counts, in-
dicating relative sequence and structural plasticity of the bind-
ing site residues in the set of 306 alignment hits, excluding the
essential Cys residue.

Figure 3 depicts the close-up of the essential Cys residue
and the putative heme-binding site in the Sphmag13G047200
model. Panel (A) depicts the solvent accessible surface around
the cysteine residue in the model structure, where this surface
represents a large, unoccupied volume within the core of the
protein. From the same perspective, the crystal structure of
7CB9 is shown in panel (B). The heme cofactor and natural
substrate, miltiradiene (a plant metabolite), are well resolved
in the crystal structure. With a focus on this binding site, the
alignment between 7CB9 and the Sphmag13G047200 model
is depicted in panel (C). Both the heme cofactor and substrate
from 7CB9 are positioned within the solvent accessible vol-
ume of the AlphaFold model. The model and crystal Cys resi-
due sidechains overlap.

From the 309 alignment hits, 169 EC numbers were gath-
ered where the prefixes 1.�, 1.14.�, and 1.14.14.� dominate
the set with 151, 137, and 83 counts respectively; panel (E) of
S2 depicts an EC number cloud to visualize these relative fre-
quencies. The total relative entropy for these 169 EC numbers
is 7.30 bits (P-value ¼ 2e� 234, z-score¼ 30), suggesting
strong confidence in the sampled EC numbers, yet no single,
full EC number achieves the strict majority consensus rule
needed for annotating the model with a full label. Instead, the
primary EC number annotation is 1.14.14.� as this is the first
EC label that achieves the majority consensus; this is seen in
the EC number logo shown in panel (E) of Supplementary
Fig. S2. The 1.14.14.� EC number is a category for P450
heme-thiolate enzymes that function as monooxygenases on a
broad range of possible substrates. The initial JGI annotation,
developed from sequence alignment alone, suggests that this
protein is homologous to TRANSPARENT TESTA 7 (TT7)
in A.thaliana, which contains a cytochrome P450 domain and
has flavonoid 30-hydroxylase (F30H) activity (EC 1.14.14.82).
TT7 is exceptionally well-characterized because it is a key
component of the anthocyanin pathway used to biosynthesize
flavonoid pigments that have profound impact on plant fit-
ness and relevance to human health (He and Giusti 2010).
However, assuming an identical substrate and function for
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this S. divinum protein may not be warranted, especially con-
sidering phylogenomic analyses found that seedless plants
lack orthologs of many downstream genes in the anthocyanin
biosynthetic pathway and suggested a paralogous relationship
between Sphmag13G047200 and TT7/F30H (Piatkowski
et al. 2020). In fact, cytochrome P450 enzymes are a large su-
perfamily of heme-containing monooxygenases with a broad
range of substrates and chemical mechanisms (Alexander
2021). Therefore, we hypothesize that the more general
1.14.14.� EC label developed from the model’s structural
alignment results is more accurate in regard to the current in-
formation we have for this protein. Additionally, the set of
structural alignment hits for Sphmag13G047200 provides
novel insights into the residue-level features that highlights
the biochemically relevant residue hypothesized to coordinate
a heme cofactor, increasing the supporting information for
our annotation.

3.3.2 Example 2: hypothesized pyridoxal 50-phosphate
synthase and homologous pseudoenzyme
Here, we consider two primary transcripts, Sphmag01G194900
and Sphmag02G160700, that encode proteins with respective
sequence lengths of 312 and 311 residues and a sequence iden-
tity of 88.3%. Results from experiments measuring transcrip-
tomic response to heat shock showed that Sphmag01G194900
and Sphmag02G160700 are both induced under heat stress,
with a log2FC of 5.96 and 5.92, respectively. This degree of se-
quence similarity and stress–response leads to the assignment of
these two proteins as paralogs originating from gene duplication
(see Healey et al. (2023) for further discussion of the evolution-
ary history of S. divinum).

Figure 4A and B depicts the high-confidence structural mod-
els for these proteins. The pTM (average pLDDT) scores of
Sphmag01G194900 and Sphmag02G160700 models are 0.89
(91) and 0.88 (90.), respectively. Alignment of the two models
to one another, shown in Fig. 4C, returns an average TM-score
of 0.98, indicating that the predicted models have nearly identi-
cal structures. When aligned using HHblits against the PDB70
sequence library, queries for both Sphmag01G194900 and
Sphmag02G160700 return qualitatively identical results, differ-
ing only in ranking of the alignment hits. The sequence of
5LNR (chain D), a pyridoxal 50-phosphate (PLP) synthase
subunit (EC number: 4.3.3.6) from A.thaliana, is the first and
third ranked sequence alignment hit for Sphmag01G194900
and Sphmag02G160700 with e-values (probability values) of
4:3� 10�23 (99.7%) and 2:0� 10�18 (99.5%), respectively.

Structural alignment results for the two proteins mirror those
of the sequence alignments; both proteins have identical struc-
tural alignment hits with slight variations in the quantitative
metrics used for ranking. Only 14 structural alignment hits sur-
pass the average TM-score cutoff with the top ranking hit for
both proteins being chain G of 4WXY, a PLP synthase subunit
from G.kaustophilus; these alignments, shown in
Supplementary Figs S3 and S4, return the same average TM-
score of 0.94 with aligned residue sequence identities of 62.8%
and 60.1% for Sphmag01G194900 and Sphmag02G160700,
respectively. Ten of the hits have an associated EC number, all
of which are 4.3.3.6, resulting in a total relative entropy value
of 9.5 bits (P-value ¼ 7e� 8; z-score¼ 5.3). Therefore, both
proteins are labeled as enzymatic with 4.3.3.6 as the primary
annotation hypothesis. Having the same alignment hits, the EC
number logo and word cloud visualizations for these two pro-
teins are identical (shown in Supplementary Fig. S5).

Differentiation of the two proteins is only obtained when the
residue-level features are considered for this pair of proteins,
depicted in Fig. 4 as well as in Supplementary Figs S3 and S4.
Both proteins share six residues that are associated with binding
site features, based on the hits’ UniProtKB metadata: Asp41
(Glu42), Gly172 (Gly171), Arg184 (Arg183), Gly233 (Gly232),
Gly254 (Gly253), and Ser255 (Ser254) following the format of
Sphmag01G194900 (Sphmag02G160700). One structure posi-
tion in both models is labeled as an active site residue: Arg100
(Lys99). The conservation counts metric highlights the differen-
ces between the two proteins even further (Fig. 4D and E). The
respective feature counts visualizations are provided in
Supplementary Figs S3 and S4. For both panels, the catalytic res-
idue position is highlighted with a green background while an
adjacent binding site residue position is highlighted with purple.
In panel (D), Sphmag01G194900 has Arg100 in the structural
position associated with the catalytic residue, yet none of the
hits’ active site features have an arginine residue in the analogous
position. Conversely, Lys99 in Sphmag02G160700 is strongly
conserved in the same set of alignment hits, seen in panel (E). A
similar difference in conservation is seen in the binding site resi-
due adjacent to the catalytic position: in Sphmag01G194900, an
aspartate (Asp41) is highly conserved across the ten alignment
hits while Sphmag02G160700 has a glutamate (Glu42) in this
structure position. Figure 4F depicts the salt bridge that forms
between the residues in the adjacent and catalytic structure posi-
tions. In Sphmag01G194900, the short side chain of Asp41
accommodates the larger guanidinium group of Arg100 while,
in Sphmag02G160700, the reverse is seen for Glu42 and Lys99.

Figure 3. Putative heme-binding site in the model of Sphmag13G047200. (A) Protein-internal solvent accessible surface observed in the

Sphmag13G047200 model (purple). The strongly conserved cysteine residue is shown with a licorice representation. (B) The 7CB9 crystal structure

(green), focusing on the binding site of the heme cofactor and natural substrate (shown in licorice). (C) Structural alignment of the model with 7CB9,

where both cofactor and substrate are well positioned within the volume of the accessible surface. No atomic clashes are observed between model

atoms and the heme cofactor. Structural visualizations created using PyMOL (Schrödinger 2015).
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Consideration of the results of the full pipeline including
residue-level analysis shows that while Sphmag01G194900 and
Sphmag02G160700 proteins are strongly matched to PLP syn-
thase subunits (EC number 4.3.3.6), the former lacks the cata-
lytic Lys residue. Literature associated with PLP synthase
subunits from A.thaliana indicates the presence of three paralo-
gous subunits, two of which are cognate enzymes. The nonenzy-
matic protein in A.thaliana, labeled PDX1.2, has no innate
activity in the PLP biosynthesis pathway and has been labeled as
a pseudoenzyme (Tambasco-Studart et al. 2005, Moccand et al.
2014, Dell’Aglio et al. 2017, Robinson et al. 2019). In PDX1.2,
the residue at the catalytic position is an Arg, just as it is in
Sphmag01G194900. Therefore, the presence of Lys at the cata-
lytic residue position in Sphmag01G194900 suggests that this
PLP synthase paralog may be a pseudoenzyme with no innate
enzymatic activity while Sphmag02G160700 is hypothesized to
be a cognate pyridoxal 50-phosphate synthase (EC number
4.3.3.6). This example highlights how residue-level details can
be essential in distinguishing subtle differences in function even
when global structure is nearly identical. Interestingly, in
A.thaliana, the partnership between the PDX1.2 pseudoenzyme
and the two cognate enzymes is seen to enhance the production
of PLP (vitamin B6). Additionally, the expression of noncatalytic
PDX1.2 is upregulated by heat and other stress conditions. We
propose that a similar interplay between pseudoenzyme and cog-
nate enzymes may be present for S. divinum.

4 Discussion and conclusions

From a methodology perspective, there are several caveats to
be considered when using this workflow for functional anno-
tation. First, the use of multiple tiers of cutoffs, acting on

model quality and alignment quality aimed to limit the propa-
gation of uncertainty into the final annotation hypotheses.
The metrics and the numerical values used for cutoffs are sug-
gestions and could be adjusted; these are discussed in more
detail Supplementary Section S2 in the SI. Furthermore, there
are multiple possible reasons why a high-confidence structural
model may have few or no structural alignment hits. The lim-
ited representation of plant protein structures in the PDB
propagates this bias into the PDB70 structural library used
for this alignment analysis, potentially resulting in decreased
numbers of alignment hits for S. divinum models. The original
intent of the PDB70 sequence database was to be a represen-
tative set of sequences associated with structures in the PDB,
with redundant sequences removed by applying a 70% iden-
tity filter. Transforming this sequence database into the
PDB70 structural library does not fully appreciate the differ-
ences in 3D structures that redundant sequences may adopt.
Structural alignment algorithms are especially sensitive to
large scale structural differences such as shifts in domain ori-
entations. If multiple conformers of a protein are present in
the structural library, then it is possible that alignment hits
may be found to only a subset of these.

In regard to the development of annotations, models with
only a few structural alignment hits are inherently more diffi-
cult to annotate with the quantitative methods presented here,
where small sample sizes increase the difficulty of obtaining
statistical significance for annotating a protein with an EC
number. The strict majority consensus rule applied to assign-
ing a primary EC number annotation also leaves a small num-
ber of models in S. divinum with no annotation although
these models are labeled as enzymes. In these instances of
small-sample sizes or ambiguous annotations, further

Figure 4. Structure model and residue-level feature results for Sphmag01G194900 and Sphmag02G160700. (A) and (B) Model quality visualizations of the

two proteins, respectively. (C) Structural alignment of both models demonstrating strong structural homology between the two proteins (0.98 average

TM-score and 88% sequence identity). (D) and (E) Conservation counts for both proteins, with the catalytic and binding residue positions highlighted in

green and purple spheres, respectively. (F) Residue-level focus on these residues that form a salt bridge within the active site. The differences in residue

type at these two structure positions is the supporting evidence for our hypotheses that Sphmag02G160700 is the cognate PLP synthase while

Sphmag01G194900 is a pseudoenzyme. Structural visualizations created using VMD (Humphrey et al. 1996).
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inspection of the structures and residue-level features may be
required to determine the most accurate annotation.

The predicted proteome of S. divinum, the alignment results
of this proteome against the annotated PDB70 structural li-
brary, the set of EC number annotations, and the accompany-
ing residue-level feature information will aid investigation
into S. divinum. Especially interesting are components of the
proteome that contribute to antimicrobial products that are
powerful antagonists to human pathogens (Opelt et al. 2007)
and those proteins that contribute to the unique physiology
supporting peatland carbon-sequestration under extreme en-
vironmental conditions. Beyond furthering studies of the
Sphagnum complex, we anticipate that the datasets and soft-
ware provided here will be used to drive analysis of other
organism-scale structure prediction and annotation ventures.
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