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• Predictive models derived from machine learning analyses of serum metabolic profiles can accurately detect ovarian cancer.
• Only a minority of the most predictively informative metabolites is currently annotated (7%).
• Lipids predominate among the most predictively informative metabolites currently annotated.
• The frequency distribution of model-derived patient scores were used to develop a clinical tool for the diagnosis of OC.
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Objective. The identification/development of a machine learning-based classifier that utilizes metabolic
profiles of serum samples to accurately identify individuals with ovarian cancer.

Methods. Serum samples collected from 431 ovarian cancer patients and 133 normal women at four
geographic locations were analyzed by mass spectrometry. Reliable metabolites were identified using recursive
feature elimination coupledwith repeated cross-validation and used to develop a consensus classifier able to dis-
tinguish cancer from non-cancer. The probabilities assigned to individuals by the model were used to create a
clinical tool that assigns a likelihood that an individual patient sample is cancer or normal.

Results. Our consensus classification model is able to distinguish cancer from control samples with 93%
accuracy. The frequency distribution of individual patient scores was used to develop a clinical tool that assigns
a likelihood that an individual patient does or does not have cancer.

Conclusions. An integrative approach using metabolomic profiles and machine learning-based classifiers has
been employed to develop a clinical tool that assigns a probability that an individual patient does or does not
have ovarian cancer. This personalized/probabilistic approach to cancer diagnostics ismore clinically informative
and accurate than traditional binary (yes/no) tests and represents a promising new direction in the early detec-
tion of ovarian cancer.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Early cancer diagnosis is one of the most important contributing
factors to the successful treatment of the disease [1]. Early diagnosis is
especially challenging for cancers like ovarian cancer (OC) that can
progress rapidly, and yet display little to no clinical symptoms early in
their development [2]. The ideal cancer diagnostic should not only be
highly accurate, but additionally non-invasive and low cost to bewidely
.F. McDonald).
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available to the general public. Despite heroic efforts to develop such
cancer diagnostics over the last several decades, this goal has proven
to be frustratingly elusive [3]. A major reason for this is that, on themo-
lecular level, cancer is a highly heterogeneous disease not only between
different types of cancer but even among individualswith the same can-
cer type [4]. As a consequence, finding a single molecular biomarker or
set of biomarkers that are universally shared among individuals with
even the same type of cancer is extremely difficult.

In recent years, various computational methods, including
machine learning (ML), have been applied in efforts to identify patterns
embedded within large omics datasets (e.g., genomic/proteomic/
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metabolomic) that may constitute an accurate diagnostic of cancer [5,6]
and other diseases [7]. For example, perturbations of metabolic levels in
the blood and/or other bodyfluids have longbeen consideredpromising
indicators of cancer and other diseases [8,9] because metabolites
constitute end points of many, if not most, of the molecular processes
underlying biological functions. As such, metabolic profiles have been
proposed as a molecular phenotype of biological systems, reflective of
collective information encoded at the genome level and realized at the
transcriptome and proteome levels [10].

Despite the inherent advantages ofmetabolic patterns as biomarkers
of cancer and other diseases, extreme care is required in both the selec-
tion and analysis of metabolomic datasets. For example, potential tech-
nical inconsistencies in data acquisition (e.g., variation in sensitivity
between instruments/laboratories and/or analytic drift associated with
the same instrument over time) can easily compromise the reliability
of acquired datasets unless frequent standardization with control
samples is employed throughout the analytic process. In addition,
extra precaution is needed in both the computational analysis of meta-
bolic and other omics datasets and the interpretation of results. For
example, there are a variety of ML approaches to the analysis of omics
data, and each is associated with individual strengths and weaknesses
[11,12]. Despite these challenges, the use of metabolomic and other
omics profiles as early indicators of cancer is not insurmountable and
may provide clinicians with a powerful and highly accurate tool for
personalized cancer diagnosis when properly addressed.

We report here on the development of a ML-based approach for the
early detection of OC using metabolomic profiles in blood. Analyses
were carried out on serum samples collected from 431 OC patients
and 133 normal (donors with no known medical pathologies) at four
geographic locations in the United States and Canada. The utility of a
consensus classifier was evaluated using four independent sets of
metabolomic profiles. Combining the best predictions from each profile
using the consensus classifier resulted in a final set of predictions that
can distinguish cancer from control samples with high accuracy (PPV
93%).We illustrate how the frequency distribution of individual patient
scores can be used to develop a useful clinical tool that may be used to
assign a likelihood that an individual does or does not have OC.

2. Methods

Details of the extensive methods employed in this study are
presented in the Supplementary Material. Briefly, 431 serous papillary
OC and 133 normal serum samples were obtained from four geographic
locations (Atlanta, GA, Philadelphia, PA, Chapel Hill, NC, and Alberta,
Canada) and were transferred to Creative Proteomics laboratory (Shir-
ley, NY) for ultra-performance liquid chromatography, high-resolution
mass spectrometry (UPLC-MS) analysis. A pooled quality control sam-
ple was obtained by combining equal amounts of each of the individual
OC and control serum samples. Samples were individually processed
through two different columns and analyzed using two different ioniza-
tion modes resulting in four distinct datasets (HP: HILIC positive; HN:
HILIC negative; RN: C18 reversed phase negative; RP: C18 reversed
phase positive). Reliable features (metabolites) were identified using
recursive feature elimination (RFE) coupled with repeated cross-
validation (CV). The output from these processing steps for each of the
four datasets was an assignment of a relative ranking of features reflec-
tive of the relative frequencies of the features after repeated CV itera-
tions. A consensus classifier was constructed by aggregating the
results of five independent ML classifiers [logistic regression classifier
(LRC), random forest classifier (RFC), support vector machine (SVM),
k-nearest neighbor (KNN), and adaptive boosting (ADA)] to generate
predictive classification models. The probabilities assigned to individ-
uals by the consensusmodelwere utilized to create a background distri-
bution of probabilities that a given sample was cancer or normal.
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3. Results

3.1. Data acquisition

The data acquisition process for this study is summarized in Fig. 1A.
Serum samples were collected from 431 OC patients and 133 non-
cancerous/normal individuals (Supplementary Fig. S1).

Sampleswere characterized usingultra-performance liquid chroma-
tography coupled with tandem mass spectrometry (UPLC-MS/MS).
Each serum samplewas independently processed through two different
columns (HILIC and C18 reversed phase) and analyzed using two
different ionization modes (negative and positive) resulting in four
distinct datasets. Because of the large number of samples, meta-
bolomic analyses were conducted over two separate batches. To
detect and correct instrument drift within and between runs, a pooled
quality control (QC) sample was run following analysis of every ten
patient samples. A scatter plot of principle component analyses
performed on the preprocessed data confirmed that no significant
experimental variation was detected between batches after quality
control of the data (Fig. 1B).

3.2. Assessing the stability of metabolomic features

The overall goal of our study is the identification/development of a
ML classifier that utilizes metabolic profiles to accurately distinguish
individuals with or without OC. Toward this end, we independently
examined the predictive accuracy of five ML classifiers for each of the
four datasets: RFC, SVC, ADA, KNN, and LRC.

Prior to the independent evaluation of each of these classifiers, we
identified reliable features (metabolites) with recursive feature elimi-
nation (RFE) [13] coupled with repeated cross-validation (CV). The
output from these processing steps for each of the four datasets was
an assignment of a relative ranking of features reflective of the relative
frequencies of the features after repeated CV iterations, as well as their
relative contribution levels as determined by theGini importance scores
(see Methods in Supplementary Material for details).

Across all four datasets, we observed amoderate positive correlation
(HN: R = 0.26, p < 0.001; HP: R = 0.56, p < 0.001; RN: R = 0.39,
p < 0.001; RP: R = 0.50, p < 0.001) between the relative frequency of
features and their importance (Fig. 2). This trend is most apparent in
the RP dataset where the vast majority of features of high importance
were in high frequency. In contrast, the HP dataset displayed a number
of lower frequency features of high Gini importance (See Methods in
Supplementary Material for details).

Features were assigned weights, a combined metric of both relative
frequency and importance, then ranked and grouped into rank groups.
Features were then classified with respect to putative functions using
the human metabolome database (HMDB, https://hmdb.ca). Lipids
and lipid-like molecules were found to be widely distributed across
rank groups while most other putatively annotated classes of
metabolites were predominantly associated with lower rank features
(Supplementary Fig. S2). The vastmajority of the highly ranked features
remain unannotated. Indeed, only ∼7% of the complete set of features
identified in this study was associated with metabolite information
from HMDB.

3.3. Evaluation of classifier performance

Prior to the evaluation of the classifier performance, a neural net-
work based autoencoder was used to reduce the dimensionality of the
datasets while preserving informative representation of the original
(Supplementary Fig. S3). Using the compressed dataset, the ability of
each of the five classifiers (RFC, SVC, ADA, KNN, LRC) to correctly
identify cancer samples and non-cancer controls was independently

https://hmdb.ca


Fig. 1.Workflowdiagram illustrating data acquisition and preparation process.A) Serum samples from ovarian cancer patients and non-cancerous individuals are collected frommul-
tiple geolocations. They are analyzed using UPLC-MS/MS in an untargetedworkflow to characterize themetabolome of ovarian cancer patients. Normalization and filtering of the features
are performed following the best practices to obtain the preprocessed metabolomic profiles for downstream analyses. B) Scatter plot of principal component analysis performed on the
preprocessed data after accounting for systematic and random errors. QC samples (orange) are shown to mostly cluster together with no clear separation between the two batches, in-
dicating unwanted experimental variation has been eliminated.

D. Ban, S.N. Housley, L.V. Matyunina et al. Gynecologic Oncology 182 (2024) 168–175
evaluated using four metrics: 1) Positive predictive value (PPV, a.k.a.
precision), 2) negative predictive value (NPV), 3) F1-score (F1), and
4) Matthew's correlation coefficient (MCC). PPV is the number of true
positives divided by the number of true positives plus false positives
(potential range: 0–100%), while NPV is the number of true negatives
divided by the number of true negatives plus false negatives (potential
range: 0–100%). The F1-score, which symmetrically represents both
precision and recall in a singlemetric, is the harmonicmean of precision
and recall (a.k.a. sensitivity; potential range: 0–100%). MCC reflects the
correlation between the observed and predicted binary classifications
(potential range:−1 to+1). AnMCC of+1 represents a perfect predic-
tion, 0 no better than a random prediction and − 1 indicates total dis-
agreement between predictions and observations. MCC considers true
Fig. 2. The frequency and Gini importance values of features in each dataset. The x-axis an
computed by combining frequencies and importance values were represented by the sizes an
high frequency but relatively lower levels of importance. The HN dataset exhibited the smalle
HP datasets showed a similar pattern, with the HP dataset being particularly noteworthy due
dataset displayed the largest number of features with high levels of both frequency and impor
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and false positives and negatives and is generally regarded as a balanced
measure of predictive accuracy even if the classes are of very different
sizes [14]. The performance of each of thefive classifiers and the consen-
sus classifier based on repeated cross-validation is presented in Table 1
in order of descending PPV performance value for each dataset.

While the performance of the individual and consensus classifiers
varied across different datasets, the differences were minor. The HP
dataset displayed a slightly lower performance relative to the HN, RN,
and RP datasets. However, the overall performance was consistently
high across the four datasets (PPV ≥ 93%; NPV ≥ 87%; F1 ≥ 92%;
MCC ≥ 0.78; Fig. 3A).

The cumulative confusion matrix from the consensus classifier
(Fig. 3B) is generally consistent with these results demonstrating a
d y-axis correspond to feature frequency and importance value, respectively. The weights
d opacity of the points. The analysis revealed that across all datasets, many features had
st range of importance values, while most features were observed frequently. The RN and
to a subset of features displaying lower frequencies but higher importance values. The RP
tance values.



Table 1
Performance evaluation metrics for individual and consensus classifier.

Dataset Classifier PPV NPV F1 MCC Dataset Classifier PPV NPV F1 MCC

HN

SVC 97% 88% 95% 0.86

RN

Consensus 97% 90% 95% 0.86
Consensus 96% 89% 95% 0.85 SVC 97% 88% 95% 0.86
KNN 96% 88% 94% 0.83 LRC 97% 88% 95% 0.85
LRC 95% 89% 94% 0.83 ADA 96% 91% 95% 0.85
ADA 95% 90% 94% 0.83 KNN 95% 90% 94% 0.84
RFC 95% 88% 93% 0.82 RFC 95% 92% 94% 0.84

HP

Consensus 95% 89% 94% 0.82

RP

Consensus 96% 92% 95% 0.87
SVC 95% 88% 93% 0.82 SVC 96% 91% 95% 0.85
KNN 94% 88% 93% 0.79 KNN 95% 90% 94% 0.84
LRC 94% 87% 92% 0.78 LRC 95% 90% 94% 0.83
ADA 93% 91% 93% 0.8 ADA 95% 93% 94% 0.84
RFC 93% 88% 92% 0.78 RFC 94% 92% 93% 0.81
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relatively low misclassification rate of false negatives (∼2 to 3%) and
slightly higher rate of false positives (∼11 to17%).

3.4. Utility of class probabilities as background distributions

The results of the repeated stratifiedk-fold cross-validation scores can
be used to assign amean “voting score” (adjusted to fall within a− 2 to 2
range) that signifies the certainty of either a cancerous or non-cancerous
classification. These probabilities were averaged for each sample and the
distributions for each of the four datasets are displayed in Fig. 4A. The
results highlight the classifier's ability to clearly distinguish between
cancerous and non-cancerous samples in all four datasets.

By combining results from the four datasets and selecting the best
average score among them, we observed a notable improvement in
classifying both cancer and normal samples. This underscores that
each dataset brings its unique contribution to the accurate prediction
of cancer or non-cancer status (Fig. 4B). A striking 97% of the cancer
samples scored within the 1.0–2.0 range, with no (0%) misclassification
of non-cancerous samples (Supplementary Table S1). In contrast, 83% of
the non-cancerous/normal samples were found to fall within the −2.0
to −1.0 score range indicating that our consensus classifier is better at
predicting cancer than non-cancer.

To determine if age had an impact on classification performance, we
independently computed scores for individuals greater and lesser than
Fig. 3. Comparisonof consensus classifier performance.A) The performance characteristics of
HP dataset, the models for the remaining datasets showed similar levels of performance. B) Cu
servations despite the false positives (FP) and false negatives (FN).
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50 years of age The results demonstrate no significant impact of age
(Supplementary Fig. S4).

When binary classification results for the cancer samples are
subdivided into early-stage (Stage I/II) and late-stage (Stage III/IV) cancer
groups, the classifier still demonstrates high accuracy. It not only identifies
late-stage cancer samples effectively but also classifies early-stage samples
accurately. This holds true when considering both individual scores
(Fig. 4C) and best scores (Fig. 4D). Using the best scores, the classifier's
predictive accuracy reaches 98% for early-stage samples and 92.7% for
late-stage cancers for score range 1.5–2 (Supplementary Table S1).

Adoption of our proposed workflow in a clinical setting would
enable women to undergo serum profiling at a clinic to predict their
cancer status. For example, consider the scenarios presented in Fig. 5.
Scenario (X) represents a situation in which an individual's serum pro-
file fallswithin a score range thatmakes cancer highly unlikely. In such a
case, the individual may only require yearly monitoring. In scenario (Z),
the detection is more problematic due to a relatively small number of
samples in this score range and a comparable number of cancerous
and non-cancerous patients. In such cases, a patient may be referred
for more additional and/or more frequent screening. Scenario
(Y) depicts a situation where an individual's score lies in a range
where a majority (94%) of patients has been diagnosed with cancer. In
such a case, the patient would likely be referred for immediate
advanced screening/treatment.
themodelswere graphically represented through precision-recall (PR) curves. Besides the
mulative confusion matrices, also compiled from repeated CV, further reinforced these ob-



Fig. 4. Evidence for the classifier's ability to clearly distinguish between cancerous and non-cancerous samples. A) The bar charts exhibit the distributions of voting scores that have
been converted from class probabilities and ranged from−2 to 2 to improve visual clarity. The scores represent averages obtained from repeated stratified k-fold cross-validation (CV) for
each sample. Clear differentiation can be observed between the scores of cancer (red) and normal (blue) samples across all four datasets. The peaks in the distributions indicate themost
frequently occurring score range for the samples. B) Similar to theprevious bar chart, thisfigure illustrates the best average score across the four datasets demonstrating a notable improve-
ment in classifying both cancer and normal classes. C) The bar chart illustrates the distribution of samples across various score ranges. This revealed that early- and late-stage samples
clearly distinguish themselves from the normal samples. D) In an analogous manner to Fig. 4B, selecting the best score improves the final score for the scores at the stage-level. (For in-
terpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

Although the incidence of OC is relatively low (2.5% of all malignan-
cies in women [15]), it is among the most lethal of all cancers due to its
high mortality rate. The reason for this is largely attributable to the fact
that the disease is not typically diagnosed until the advanced (post-
metastatic) stages of development (Stage III/IV) when effective
treatment is difficult. For example, the most common sub-type of OC,
serous papillary (65% of OC patients), is typically not diagnosed until
Stage III/IV when the 5-year survival rate is only 31%. In contrast, if the
disease is identified and treated early at less advanced stages of devel-
opment (Stage I/II), the 5-year survival rate is 93%. These statistics
dramatically underscore the dire need for an early diagnostic test for
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OC and other cancers where early-stage clinical symptoms are virtually
non-existent.

The traditional approach for the identification of non-invasive
biomarkers of cancer has been the screening of blood (or other body
fluids) in search of significant changes in the presence/levels of
molecules (typically proteins) associated with the disease [16]. A
well-known example of such a diagnostic is the PSA (prostate specific
antigen) biomarker for prostate cancer [17].

The OC biomarker candidate, CA125 (a.k.a., mucin 16/ MUC16) [18]
wasfirst introduced in 1996 [19]. Although an elevated level of CA125 is
detected in ∼90% of late stage (III/IV) OC patients, it is elevated in only
∼50% of early-stage patients making it a poor biomarker of early-stage
disease with a PPV of only ∼30% [20]. In 2003, a second candidate



Fig. 5. Diagram visualizing the potential adoption of the proposedworkflow in a clinical setting. Given the absence of approved screeningmethods for ovarian cancer, this approach
enableswomen to undergo serumprofiling at a clinic to predict their cancer status. This could result in three possible scenarios: an individual's serum profile (X) falls within a score range
wheremisdiagnosis is unlikely, enabling a confident ruling out of a cancer diagnosis. An individual's score (Y) falls within a rangewhere 94% of otherswith this score have been diagnosed
with cancer. Lastly, determining the cancer status of an individual (Z)may be challenging, as there are only a few sampleswithin this score range and it is in themiddle of the distribution.
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biomarker for OC, HE4 (human epididymis protein), was introduced
[21]. While HE4 was an improvement over CA125 in having a reported
PPV of ∼58%, it is still not sufficiently accurate to serve as a diagnostic
test. Combining the results of the HE4 and CA125 together did not
significantly improve PPV. However, the combination did lead to the de-
velopment of a logistic regression model called ROMA (risk of malig-
nancy algorithm) that was approved by FDA in 2011 as a method to
classify patients with a pelvic mass into those with high vs. low risk of
having OC [20].

By the early 2000s, it was becoming progressively clear that, on the
molecular level at least, cancer was a muchmore complex disease than
originally envisioned [4]. This realization was supported by findings in-
dicating the existence of a multitude of disrupted molecular pathways
(and underlyingmutations) capable of leading to even the same cancer
type. Such molecular level heterogeneity among individual cancer
patientsmade the likelihood of identifying one or two biomarkers capa-
ble of accurately diagnosing all individuals with even the same type of
cancer highly unlikely. As a consequence, the search for more accurate
ways to diagnose cancer became focused on exploring larger combina-
tions of biomarkers that might better capture the molecular heteroge-
neity underlying the disease [22–25].

In the case of OC, there were a number of multi-biomarker diagnos-
tic tests developed in the early 2000s [26–28]. However, none of these
early efforts were sufficiently validated to acquire FDA approval. In
2009, an assay (trade name OVA1) was proposed that incorporated
levels of five serum proteins combined with proprietary software to
generate high or low probability that an ovarian mass was a malignant
tumor [29].While the testwas approvedbyFDAasa clinical aid indeter-
mining if a patient should be referred for further analysis, the test's low
PPV (31%) [30] eliminated it from consideration as an effective OC diag-
nostic. Amore recent version of the OVA1 test (initially known as OVA2
but now trademarked as OVERA) uses a slightly different set of proteins
uponwhich to generate its predictions. Although an improvement over
OVA1, OVERA continues to be associated with a relatively low PPV
(∼40%) [31], thereby again excluding it as a reliable OC diagnostic.

With the expanded availability of omics technologies and associated
datasets (e.g., genomic, transcriptomic, proteomic, metabolomic) in re-
cent years, a new approach to diagnostics began to emerge [32]. The ap-
plication of various AI (artificial intelligence) approaches, most notably
machine learning, to the analysis of large omics datasets of diseased and
non-diseased individuals opened the possibility of the identification of
patterns by which these categories could be distinguished. Predictive
models built upon such classificationsmight then constitute a new gen-
eration of diagnostic tests.
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While this basic concept is straightforward, its application is cer-
tainly not. There are multiple approaches to ML, and each is associated
with individual strengths and weaknesses [11,12]. In addition, the out-
put fromML analyses of omics datasets is heavily dependent upon both
the quality and type of data being analyzed. For example, classifiers that
are based exclusively on ML analysis of DNA sequence datasets may be
appropriate if the onset and progression of the disease in question is
exclusively attributable to genetic mutations. Certainly, there is a signif-
icant genetic component to cancer, but other environmental (e.g., diet,
lifestyle, microbiome, etc.) and molecular (e.g., epigenetic/gene
expression changes, gene-gene/protein-protein interactions, etc.) fac-
tors are also known to play significant roles. Indeed, it has been
proposed that the accurate characterization of a complex disease like
cancer will ultimately require simultaneous analyses of multi-omics
datasets [33]. While this may well be the case, the development of
computational methodologies sufficiently complex to accurately char-
acterize multi-omics datasets is only in its infancy [34,35].

In lieu of an approach that simultaneously analyzes multi-omics
datasets, we chose a currently available alternative, i.e., working with
a dataset that reflects biological changes occurring on multiple levels.
Metabolic profiles are widely viewed as a molecular phenotype reflec-
tive of underlying collective information encoded at the genome level
and realized at the transcriptome and proteome levels. As such, meta-
bolic profiles have long been considered promising indicators of cancer
and other complex diseases [8,9].

To help ensure the quality of our metabolic data, individual normal
and OC patient samples were collected from four geographically
divergent locations and analyzed using ultra-performance liquid
chromatography coupled with tandem mass spectrometry (UPLC-
MS/MS-positive and negative modes and each sample independently
pre-processed through two columns) generating four distinct datasets
(HN: HILIC negative; HP: HILIC positive; RN: C18 reversed phase
negative; RP: C18 reversed phase positive). To guard against
instrumental drift between runs, the same control samples were
analyzed following every ten biological samples. Principle
component analyses of data generated from our MS analyses across
different batches and times demonstrated little experimental variation
between runs.

Each of our four datasets was analyzed separately to determine if
any particular dataset contained more relevant information than any
other. We found little difference in the accuracy of predictions
computed using each dataset individually. When we combined the
best average score from each of the four datasets, we observed an
improvement in the classification of both cancer and normal samples.
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This suggests that each of the four datasets contribute uniquely to the
accurate prediction of cancer status.

Computationally, we evaluated the performance of five independent
ML classifiers. A consensus classifier that generates average predictive
probabilities from the probabilities of each of the individual classifiers
gave the best overall performance with a PPV of 93%. While predictive
accuracy of our consensus classifier was not significantly impacted by
age, accuracy was found to be slightly better for early- relative to late-
stage patients. Late-stage patients displayed greater heterogeneity in
molecular profiles than early-stage patients. While the reason for this
dichotomy is currently unknown, the preliminary findings suggest
that OCs may become more metabolically heterogeneous as they prog-
ress/metastasize.

In this regard, it may be relevant to note that the terms “early stage”
vs. “late stage”when applied to OC do not necessarily imply a temporal
progression. Amore accurate terminologymight be “pre-metastatic” vs.
“post-metastatic”. Indeed, it is now widely accepted that ovarian
cancers should properly be classified into thosewith lowmetastatic po-
tential (Type 1) vs. those with high metastatic potential (Type 2) [36].
Thus, while OCs currently classified as “late-stage” are, by definition,
“post-metastatic”, it is possible that at least some “late-stage” OCs may
have arisen and progressed to an advanced stage of development
more rapidly than at least some Type 1 “early-stage” samples. It is be-
cause of this ambiguity in classification that we chose to develop our
models using a mixture of early- and late-stage samples.

Our model's accuracy in predicting women with OC is slightly
greater than its accuracy in predicting women without the disease.
The reason for this is currently unknown but may, at least in part, be
due to the fact that the model may be detecting disease in women
prior to clinical symptoms and clinical diagnosis. Time course studies
are currently being instituted to test this hypothesis.

The high PPV (93%) associated with our consensus classifier
supports the notion that ML analysis of omics data, and of metabolomic
data in particular, is an extremely promising approach for the future di-
agnosis of ovarian and possibly other cancers as well. Such analyses will
likely lead to amore probabilistic approach to cancer diagnosis that will
serve to personalize the processmuch as genomic profiling of individual
patient tumors is personalizing cancer treatment (i.e., precision cancer
medicine).

Despite these highly favorable prospects, it is important to keep in
mind the limitations of ML analyses of omics data. For example, the
PPV associated with even the same ML based predictive model can be
highly sensitive to the size and composition of the datasets employed
in building and testing the models. For example, in an earlier pilot
study of the metabolic profiles of a relatively small number (46) of OC
patient samples collected from one of the same areas sampled in our
current study (Northside Hospital, Atlanta), the authors generated a
predictive model with a putative accuracy of 100% [37]. The relative re-
duction in accuracy associated with our current model relative to this
earlier study coupled with the fact that none of the top ranked features
in the earlier study ranked within the top 100 features in our current
study (Supplementary Table 2) underscores the impact of datasets on
ML/metabolomic based predictive models. Future refinements in the
development of metabolomic (and likely all omics) based ML models
will need to address the issue of how many samples over what geo-
graphic area are needed to reflect the full spectrum of diversity in OC
(and other cancer types).

To exemplify how the type of results generated in our study might,
in the future, translate into a clinically useful tool, we grouped the
quantity and percentage of our samples into score ranges. We envision
a clinical tool in which the scores of individual patients can be mapped
across such a distribution providing a likelihood that an individual
patient does or does not have cancer (Fig. 5). Such information could
serve as a significant aid in determining the need for treatment or
continued monitoring.
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In summary, our results confirm the overall potential of an integra-
tive approach using metabolomic profiles and ML-based classifiers for
the detection of OC. The accuracy of these classifiers is highly
dependent upon both the quality and quantity of the data upon
which models are built. We found little difference in the accuracy of
predictions generated using alternative ML classifiers, although the
consensus classifier generated the most accurate predictions. Applica-
tion of results generated from our consensus classifier illustrated how
the frequency distribution of individual patient scores can be used to
develop a useful clinical tool that assigns a likelihood that an
individual does or does not have OC. We believe this personalized/
probabilistic approach to cancer diagnostics is more robust and
clinically informative than the more traditional binary (yes/no) tests
and may represent a promising new direction in the early detection
of OC and perhaps other cancer types as well.
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