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Abstract

Protein function annotation and drug discovery often involve finding small

molecule binders. In the early stages of drug discovery, virtual ligand screening

(VLS) is frequently applied to identify possible hits before experimental testing.

While our recent ligand homology modeling (LHM)-machine learning VLS

method FRAGSITE outperformed approaches that combined traditional dock-

ing to generate protein–ligand poses and deep learning scoring functions to

rank ligands, a more robust approach that could identify a more diverse set of

binding ligands is needed. Here, we describe FRAGSITE2 that shows signifi-

cant improvement on protein targets lacking known small molecule binders

and no confident LHM identified template ligands when benchmarked on two

commonly used VLS datasets: For both the DUD-E set and DEKOIS2.0 set and

ligands having a Tanimoto coefficient (TC) < 0.7 to the template ligands, the

1% enrichment factor (EF1%) of FRAGSITE2 is significantly better than those

for FINDSITEcomb2.0, an earlier LHM algorithm. For the DUD-E set, FRAG-

SITE2 also shows better ROC enrichment factor and AUPR (area under the

precision-recall curve) than the deep learning DenseFS scoring function. Com-

parison with the RF-score-VS on the 76 target subset of DEKOIS2.0 and a

TC < 0.99 to training DUD-E ligands, FRAGSITE2 has double the EF1%. Its

boosted tree regression method provides for more robust performance than a

deep learning multiple layer perceptron method. When compared with the

pretrained language model for protein target features, FRAGSITE2 also shows

much better performance. Thus, FRAGSITE2 is a promising approach that can

discover novel hits for protein targets. FRAGSITE2's web service is freely avail-

able to academic users at http://sites.gatech.edu/cssb/FRAGSITE2.
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1 | INTRODUCTION

Virtual ligand screening (VLS) that uses computational
tools to discover small molecules that might bind a pro-
tein target, not only has applications in drug discovery

(Cases & Mestres, 2009; Kroemer, 2007; Reddy
et al., 2007), but also in protein function analysis
(Brylinski & Skolnick, 2010; Konc & Janežič, 2014). Tra-
ditionally, there are two broad categories of VLS
methods: (a) structure-based docking methods use the
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high-resolution, three-dimensional (3D) structure of a
protein target and dock ligand structures to the target
protein (Allen et al., 2015; Jain, 2003; Kroemer, 2007;
Trott & Olson, 2010); they then evaluate and rank the
docked ligand structures using various scoring functions
(Friesner et al., 2004; Kroemer, 2007; Ragoza et al., 2017;
W�ojcikowski et al., 2017). The advantage of docking
methods is that they might discover novel binders to the
target, whereas their disadvantage is that they are com-
putationally expensive; (b) ligand-based methods use the
known ligands of a given protein target to predict new
binders based on the similarity to the physical–chemical
properties of known ligands that bind the given protein
target (Flower, 1998; Glen & Adams, 2006; Keiser
et al., 2007; Willett, 2006). The advantage of ligand-based
methods is that they are usually more accurate than
docking, but they cannot discover novel small molecule
binders that are chemically quite distinct from known
binders, and they are not able to screen proteins with no
known binders. To address these limitations, in our labo-
ratory, we developed a series of ligand homology model-
ing (LHM)-based methods. Our suite of methods
conceptually lies between the two traditional
methods (Brylinski & Skolnick, 2008; Brylinski &
Skolnick, 2009; Zhou et al., 2018, 2021; Zhou &
Skolnick, 2013). They use lower resolution as well as
high-resolution structures of protein targets to find simi-
lar binding pockets (template pockets) in the protein–
ligand complex structures found in the Protein Data
Bank (PDB; Bernstein et al., 1977); such pockets need not
come from evolutionarily related proteins. They then use
the corresponding ligands bound in the pockets of PDB
structures as template ligands. To further expand the set
of such template ligands, two additional databases:
ChEMBL (Gaulton et al., 2012) and DrugBank (Wishart
et al., 2006) for domain structure comparison (Zhou
et al., 2018; Zhou & Skolnick, 2013) were employed.
These template ligands are then used in a similar manner
as ligand-based methods. Thus, the FINDSITE suite of
methods has the advantage of having an accuracy compa-
rable to ligand-based methods for those proteins having
known binders, but importantly, they can be applied to
proteins without known binders and are also computa-
tionally much less expensive than docking methods that
not only require a high-resolution target structure, but
also the 3D structures of the screened compounds.

The recent development of deep learning methods
not only advanced the coverage of high-resolution struc-
tures of the human proteome and other species, for
example, by AlphaFold (AlQuraishi, 2019; Jumper
et al., 2021), but also improved the accuracy of scoring
functions for docking methods (Ragoza et al., 2017;
Wallach et al., 2015), for example, DenseFS is currently

the best performing scoring function for VLS (Crampon
et al., 2022; Imrie et al., 2018; Singh et al., 2023). Other
algorithms, like the latest version of ConPLex (Singh
et al., 2023), are trained and tested on databases of bind-
ing affinity or pairwise classification involving many pro-
teins. Scoring functions trained on protein–ligand
pairwise affinities (e.g., BindingDB; Liu et al., 2007) or
classification (e.g., BIOSNAP: https://snap.stanford.edu/
biodata/), do not work for VLS. For example, the RF-
score trained on the BindingDB affinity dataset has to be
retrained on the DUD-E set (W�ojcikowski et al., 2017);
that is, they are not transferable to protein families lack-
ing any known small molecule binders. The latest gener-
ative language model of ConPLex trained on BIOSNAP—
a protein–drug interaction network database also has to
include the decoys of DUD-E set to train their model
to better classify the actives from decoys of the testing
DUD-E subset (Singh et al., 2023). Without the inclusion
of decoys from the protein target of interest in their train-
ing, RF-score or ConPLex performs poorly in discriminat-
ing actives/drugs from decoys for a given protein target
(Singh et al., 2023; W�ojcikowski et al., 2017).

However, how good ConPLex is for VLS compared
with other VLS scoring functions is unknown as it does
not report the results of conventional measures such as
the enrichment factor, AUPR (area under the precision-
recall curve) or AUROC (area under the ROC curve). The
new scoring function DenseFS (Imrie et al., 2018)
coupled with traditional AutoDock Vina (Trott &
Olson, 2010) and trained on the DUD-E set (Mysinger
et al., 2012) has close overall performance for the DUD-E
set as FRAGSITE when the sequence cutoff is set to 80%
between training and testing proteins. It has an AUROC
and ROC 1% enrichment factor (ROCEF1%: the enrich-
ment at a 1% false positive rate, which is a different met-
ric from the enrichment factor of the top 1% ranked
molecules) of 0.92 and 48.0, respectively, whereas
FRAGSITE (Zhou et al., 2021) has scores of 0.91 and
61.5. However, the performance of a DenseFS trained
family-specific model and its prediction for unrelated or
remote family proteins is uncertain. In practice, DenseFS
is limited to proteins belonging to the four families in its
training set. Furthermore, most docking methods rely on
predefined binding pockets to sample reliable binding
poses (Allen et al., 2015; Trott & Olson, 2010). Similar to
family-specific training, this limits the protein coverage
of the method since the majority of proteins do not have
the structures of protein–ligand complexes. Another con-
cern with deep learning on docked poses is that errors
generated by docking pass to the scoring function models
(unlike AlphaFold for protein structure prediction that
learns from experimental structures (AlQuraishi, 2019;
Jumper et al., 2021)). The trained scoring function could
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rank wrongly posed ligands higher. When the same
ligand is posed correctly by more accurate docking
methods or by different random generators, the scoring
function could incorrectly rank the ligand. Furthermore,
the computational expense might preclude large-scale
applications of docking-related scoring functions. In con-
trast, the FINDSITE and FRAGSITE suite of methods
cover 97% of human protein sequences, with similar cov-
erage for other species, and all can be set up as web
servers (Zhou et al., 2018, 2021; Zhou & Skolnick, 2013).

Although FRAGSITE (Zhou et al., 2021) outperforms
the state-of-the-art deep learning based scoring function
approaches, e.g. DenseFS (Imrie et al., 2018) in terms of
ROC enrichment (ROCEF1%: 61.5 vs. 48.0), the main
drawback of the current FINDSITE suite of methods,
including FRAGSITE, is that since they all used template
ligands to search for new binders, they are not able to dis-
cover novel binders that are chemically very dissimilar
from the template ligands. To overcome this disadvan-
tage, we utilize the information from the template
pockets rather than the template ligands to develop
FRAGSITE2. FRAGSITE2 is more closely related to struc-
ture-based methods, but without the need for high-
resolution target structures, 3D structures of the ligands,
and docked ligand poses. By constructing feature vectors
using pocket information in combination with screened
ligands, we apply a boosted regression tree machine
learning method as in FRAGSITE (Zhou et al., 2021) to
train the model on the DUD-E set (Mysinger et al., 2012)
and do a modified leave one out cross-validation
(LOOCV) test with a sequence cutoff of 80% (the training
protein targets have sequence identity <80% to the given
testing protein target) to fairly compare to other state-of-
the-art deep learning methods such as the DenseFS func-
tion (Imrie et al., 2018) and RF-score-VS (W�ojcikowski
et al., 2017). An independent test on the DEKOIS2.0 set
(Bauer et al., 2013) was also performed; we note here that
FRAGSITE2 was not retrained for the DEKOIS2.0 set. In
what follows, in addition to comparison to the state-of-the-
art VLS methods FINDSITEcomb2.0 and FRAGSITE, we
also compare the performance of FRAGSITE2 to the
state-of-the-art deep learning-based DenseFS scoring func-
tion (Imrie et al., 2018) on the DUD-E set and a typical
machine learning scoring function, RF-score-VS
(W�ojcikowski et al., 2017), for VLS on the DEKOIS2.0 set.
As to the latest generative language model of ConPLex
(Singh et al., 2023), since it was only tested on a 31 target
subset of the DUD-E set that was split from the 57 targets
classified into 4 protein families and evaluated only for
classification (separating actives from decoys) it does not
report the results of conventional measures such as the
enrichment factor, AUPR or AUROC; thus, we cannot
compare FRAGSITE2 with ConPLex (Singh et al., 2023).

2 | RESULTS

2.1 | Benchmarking on the DUD-E set

The DUD-E set (Mysinger et al., 2012) is commonly used
by VLS methods for benchmarking and training of
machine learning scoring functions (Crampon
et al., 2022). Although some of the machine learning
scoring functions have been trained on pairwise protein–
ligand binding affinity or classification (Crampon
et al., 2022), they are usually not good for VLS as demon-
strated by the RF-score-VS study of W�ojcikowski et al.
(2017). FRAGSITE2 also uses the DUD-E set for training
and cross-validation testing. Here, cross-validation is per-
formed by removing proteins having an amino sequence
identity >80% to the given testing target from training.
This is similar to the so-called “vertical split” scenario of
RF-score-VS in Ref. (W�ojcikowski et al., 2017). To test
the ability of a method to discover novel actives with
respect to template ligands (here, in benchmarking tests,
template ligands are from homologous proteins having a
sequence identity less than 80% to the given testing tar-
get; Zhou et al., 2018), we evaluate subsets of actives hav-
ing a Tanimoto coefficient (TC) less than cutoff as well as
with no cutoff.

Table 1 summarizes FRAGSITE2's results in compari-
son to FINDSITEcomb2.0 and FRAGSITE. In practice, one
can combine all three methods using the maximal preci-
sion for each screened ligand; we call this combined
method, FRAGSITEcomb in Table 1. We note that DUD-E
set has a decoy/active ratio of around 60 resulting in an
EF1% � 60 for the case of perfect ranking. Overall, with-
out a TC cutoff to template ligands, the ligand-based
methods FINDSITEcomb2.0 (EF1% = 37.20) and FRAG-
SITE (EF1% = 41.44) perform better than structure-based
FRAGSITE2 (EF1% = 32.72) in terms of enrichment at
the top 1% ranked list, whereas the combined approach
FRAGSITEcomb has the best EF1% of 41.69. However,
FRAGSITE2 still performs better than FINDSITEcomb2.0

and FRAGSITE for the number of targets having
EF1% > 1 (better than random selection). With no cutoff,
FRAGSITE2 has 99 targets with an EF1% > 1, whereas
FINDSITEcomb2.0 and FRAGSITE each have 95 and 97 tar-
gets, respectively. This trend continues across all TC cut-
offs. Most notably when the TC ≤ 0.8, FRAGSITE2 has a
better mean EF1% of 37.06 compared with 30.89 of FRAG-
SITE and 17.08 of FINDSITEcomb2.0. Note that the perfor-
mance of FRAGSITE2 is much less sensitive to which set
of ligands are included which is in contrast to the perfor-
mance of both FRAGSITE and FINDSITEcomb2.0. This
indicates that FRAGSITE2's performance is independent
of the actives' similarity to template ligands, a character-
istic well suited for discovering novel actives (see
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Figure 1). The combined approach, FRAGSITEcomb, is
the best performing method when TC ≥ 0.8. Compared
with the previous typical machine learning score, RF-
score-VS, with a mean EF1% � 12.5 in a vertical split sce-
nario on the DUD-E set (W�ojcikowski et al., 2017),
FRAGSITE2's EF1% = 32.72 is significantly better (see
Table 1, no cutoff).

Next, we analyze the diversity of actives within the
top 1% of the ranked order list. The mean number of clus-
ters of each method is given in Table 2. Except for the
case when no TC cutoff to template ligands is used,
FRAGSITE2 has a mean number of clusters greater than
those of FRAGSITE. The composite approach, FRAGSI-
TEcomb, performs best when TC ≥ 0.8. This indicates that
the higher EF1% of FRAGSITE than FRAGSITE2 when
no TC cutoff is applied (41.44 vs. 32.72) is due to more

similar actives within the top-ranked list. In terms of the
diversity of actives, they are very close (31.60 vs. 29.19).
Thus, FRAGSITE2 is better than FRAGSITE in discover-
ing diverse actives.

We next compared FRAGSITE2 to the state-of-the-art
deep learning based method DenseFS scoring function
(Imrie et al., 2018) using the AUPR (Davis &
Goadrich, 2006) as the relevant metric. The results for
mean AUPRs are given in Table 3. Notably, ligand
homology-based methods FINDSITEcomb2.0 and FRAG-
SITE are the best performing single (noncombined)
methods with AUPRs of 0.508 and 0.591, respectively,
compared with DenseU's (a version of DenseFS without
family-specific training) 0.368 and DenseFS's 0.443.
FRAGSITE2's 0.465 is better than those of DenseU's and
DenseFS's. FRAGSITE2's ROCEF1% = 49.11 is slightly

FIGURE 1 Dependence of

enrichment factor at the top 1% of

screened molecules EF1% on the

Tanimoto coefficient (TC) cutoffs to

template ligands for the DUD-E set.

TABLE 1 Mean enrichment factor EF1% of different methods on the 102 target DUD-E set.

FINDSITEcomb2.0 FRAGSITE FRAGSITE2 FRAGSITEcomba

TC cutoff to
template ligands EF1%

No. of
EF1% > 1 EF1%

No. of
EF1% > 1 EF1%

No. of
EF1% > 1 EF1%

No. of
EF1% > 1

None 37.20 95 41.45 97 32.72 99 41.69 100

0.9 30.46 93 42.22 96 38.75 97 45.43 99

0.8 17.08 74 30.89 92 37.06 94 37.67 96

0.7 8.90 39 21.58 69 33.36 82 31.11 82

0.6 4.74 13 13.47 32 32.87 58 28.21 51

Note: Bold numbers are the best performing results.
Abbreviations: EF1%, 1% enrichment factor; TC, Tanimoto coefficient.
aCombined approach using the maximal predicted precision of screened molecules from FINDSITEcomb2.0(Zhou et al., 2018), FRAGSITE (Zhou et al., 2021),

and FRAGSITE2 (this work).
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better than DenseFS's 47.99. Thus, as a structure-based
approach, FRAGSITE2 outperforms the structure-based,
deep learning DenseU and DenseFS scoring functions.
The combined approach, FRAGSITEcomb, with an overall
AUPR = 0.606 and an ROCEF1% = 63.84, has superior
performance to the best performing single method.

2.2 | Testing on the DEKOIS2.0 dataset

The DEKOIS2.0 dataset (Bauer et al., 2013) was used to
benchmark FRAGSITE2 as an independent testing data-
set from the training DUD-E set. DEKOIS2.0 is based on
BindDB bioactivity data (Livyatan et al., 2015) and pro-
vides 81 structurally diverse benchmark sets for a wide
variety of different target classes. It has a decoy/active
ratio of 30; meaning the maximal possible EF1% is
30, which is smaller than 60 found for the DUD-E set. To
compare to other previous methods, we again use an 80%
sequence identity cutoff between testing the DEKOIS2.0
targets and the training DUD-E targets. Table 4 summa-
rizes the performance of FRAGSITE2 on the DEKOIS2.0
set in comparison to FINDSITEcomb2.0 and FRAGSITE,
and the combined approach, FRAGSITEcomb. Figure 2

shows the dependence of EF1% on the TC cutoff on the
DEKOIS2.0 set. Both Table 4 and Figure 2 show a similar
trend in results as was seen for the DUD-E set. With no
TC cutoff to template ligands, FRAGSITE2 has a close
EF1% (15.87) to that of FRAGSITE (17.72), and the num-
bers of targets with an EF1% > 1 are also close (70 vs. 72).
The combined approach, FRAGSITEcomb, has a slightly
better EF1% (18.30) compared with all three individual
methods and has a larger number of targets, 75, with an
EF1% > 1. With a TC cutoff = 0.7, both FRAGSITE2's
EF1% and the number of targets with EF1% > 1 are signifi-
cantly better than those of FRAGSITE's (23.63 vs. 11.66,
57 vs. 41, respectively).

We note that as the TC cutoff becomes smaller,
FRAGSITE2's mean EF1% increases. This is due to combi-
nation of three effects: (a) a possible performance change
for ligands more dissimilar to template ligands, which is
small for FRAGSITE2 because it does not sense this
information, but it could carry on information from the
training set that ligands dissimilar to template ligands
might be undertrained. This could be the reason that the
number of targets having EF1% > 1 decreases;
(b) increase in the value of EF1% when a smaller subset of
actives are evaluated (the decoy/active ratio increase
results in a larger upper bound); (c) for a TC cutoff ≤0.7,
some targets have no actives, thus, are not included in
evaluation. The mean numbers of active clusters within
the top 1% ranked list are given in Table 5. FRAGSITE2
has the best performance when the TC cutoffs to tem-
plate ligands are ≤0.8, whereas the combined approach is
best for a TC = 0.9 cutoff and no cutoff. Overall, FRAG-
SITE2's performance is better than FRAGSITE and
FINDSITEcomb2.0 in terms of the diversity of top-ranked
actives.

To compare to the RF-score-VS scoring function
(W�ojcikowski et al., 2017) on the same DEKOIS2.0 76 tar-
get subset, we also excluded four overlapping structures
between DUD-E and DEKOIS 2.0: A2A: “2p54,” HDAC2:
“3l3m,” PARP-1: “3eml,” PPARA: “3max,” and SIRT2
having no crystallized ligand. (For FRAGSITE2, the over-
lapped targets were naturally excluded by using the 80%

TABLE 2 Mean number of active

clusters within top 1% ranked list for

DUD-E set.

TC cutoff to
template ligands FINDSITEcomb2.0 FRAGSITE FRAGSITE2 FRAGSITEcomb

None 27.98 31.60 29.19 34.64

0.9 15.33 21.97 23.60 26.60

0.8 7.42 12.52 16.77 17.05

0.7 2.66 6.45 11.19 10.83

0.6 0.26 1.67 5.02 4.75

Note: TC = 0.8 cutoff was used in clustering. Bold numbers are the best performing results.
Abbreviation: TC, Tanimoto coefficient.

TABLE 3 Mean AUPR and ROCEF1% of methods on the

DUD-E set.

AUPR ROCEF1%

DenseUa 0.368 40.92

DenseFS 0.443 47.99

FINDSITEcomb2.0 0.508 52.67

FRAGSITE 0.591 61.54

FRAGSITE2 0.465 49.11

FRAGSITEcomb 0.606 63.84

Note: Bold numbers indicate best performing method.
Abbreviations: AUPR, area under the precision-recall curve; ROCEF1%, ROC

1% enrichment factor.
aDenseFS scoring function without family-specific training (Imrie
et al., 2018). DenseU and DenseFS results are from Tables S7and S9 of Ref.
(Imrie et al., 2018).
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sequence identity cutoff between training and testing tar-
gets, as it does not require any experimental binders of
the target protein). Furthermore, the evaluation was per-
formed only on actives and decoys having a TC < 0.99 to
any ligand/decoy in the training DUD-E set. For this

subset of targets and ligands, the performance of the RF-
Score-VS v2 and v3 were EF1% = 9.84 and EF1% = 7.81,
respectively (W�ojcikowski et al., 2017), whereas FRAG-
SITE2 achieves an EF1% = 20.18, more than double that
of the best RF-score-VS.

TABLE 4 Mean enrichment factor EF1% of methods on the 81 target DEKOIS2.0 set.

FINDSITEcomb2.0 FRAGSITE FRAGSITE2 FRAGSITEcomb

TC cutoff to
template ligands EF1%

No. of
EF1% > 1 EF1%

No. of
EF1% > 1 EF1%

No. of
EF1% > 1 EF1%

No. of
EF1% > 1

None 16.67 66 17.72 72 15.87 70 18.30 75

0.9 13.49 58 19.17 70 18.58 67 19.95 70

0.8 7.02 42 15.02 58 19.67 66 18.95 63

0.7 3.13 13 11.66 41 23.63 57 21.97 54

0.6 0.52 3 10.02 17 18.55 30 15.74 28

Note: Bold numbers are the best performing results.
Abbreviations: EF1%, 1% enrichment factor; TC, Tanimoto coefficient.

FIGURE 2 Dependence of

enrichment factor at the top 1% of

screened molecules EF1% on the

Tanimoto coefficient (TC) cutoffs to

template ligands for the DEKOIS2.0 set.

TABLE 5 Mean number of active

clusters within top 1% ranked list for

DEKOIS2.0 set.

TC cutoff to
template ligands FINDSITEcomb2.0 FRAGSITE FRAGSITE2 FRAGSITEcomb

None 4.46 5.09 4.68 5.25

0.9 2.25 3.95 4.01 4.25

0.8 0.98 2.85 3.46 3.37

0.7 0.22 1.76 2.47 2.30

0.6 0.0 0.67 0.99 0.91

Note: TC = 0.8 cutoff was used in clustering. Bold numbers are the best performing results.
Abbreviation: TC, Tanimoto coefficient.
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The above two testing results indicate that for actives
close to template ligands (or known ligands of the given
target), FRAGSITE2 performs comparably to the state-of-
the-art FRAGSITE which outperforms the recent best
performing family based deep learning scoring function,
DenseFS (Imrie et al., 2018). FRAGSITE2 doubled the
early (1%) enrichment factor of conventional machine
learning scoring function RF-score-VS. For actives
remote to template ligands/known ligands, FRAGSITE2
obviously performs better than FRAGSITE and FINDSI-
TEcomb2.0. In a practical scenario, the combined approach
that simply takes the maximal predicted precision of each
screened molecule from the three methods
(FINDSITEcomb2.0, FRAGSITE, FRAGSITE2) has a per-
formance close to that of the best possible performing
algorithm when TC > 0.8, otherwise, FRAGSITE2 alone
should be used.

2.3 | Comparison to alternative learning
method and protein features

Here, we examine an alternative learning method to
boosted tree regression and other protein features to tease
out the strengths/weaknesses of FRAGSITE2. The deep
neural network method of multiple layer perceptron
(MLP) regression MLPRegressor implemented in the
Scikit-learn kit (Pedregosa et al., 2011) was applied on
the same features as in FRAGSITE2 for the DUD-E set.
After empirically optimizing a number of hidden layers
and a number of hidden layer neurons, activation func-
tion, and maximal number of iterations (max_iter, others
are default), we found one hidden layer with 800 neurons,
tanh activation function, max_iter = 5000 gave the best
results of mean (EF1% = 33.77, ROCEF1% = 51.75,
AUPR = 0.464). They are very close to those of FRAG-
SITE2's: (32.72, 49.11, 0.465). Increasing max_iter to 5500
will result in over training and slightly decreasing in per-
formance to (32.78, 50.98, 0.452). Adding an additional
hidden layer, for example, a layer with 400 neurons, will
also decrease performance to (32.24, 49.77, 0.436). Even
though for the DUD-E set, MLP gives �3% better EF1%
than FRAGSITE2 does, it has worse EF1% performance
for the 81 target DEKOIS2.0 set (13.46 vs. 15.87). Thus,
FRAGSITE2's better performance than deep learning-
based methods (e.g., DenseFS for DUD-E set) is due to its
better features, not its learning method. In addition,
boosted tree regression is more robust than a deep net-
work on independent test set such as the DEKOIS2.0 set.

To further demonstrate our better pocket-based pro-
tein features, we tested alternative features for protein
targets of the DUD-E set from the pretrained protein lan-
guage model by deep learning (Elnaggar et al., 2022) as
were used in the ConPlex work (Singh et al., 2023) for

protein targets. The 1024 dimension embeddings of the
ProtBert model (used by ConPlex and shown to be
the best embedding for protein–ligand binding prediction
in that work) were used to replace the 20 dimension fea-
tures of FRAGSITE2's pocket-derived features for each
protein target of the DUD-E set. Exactly the same train-
ing procedure as in FRAGSITE2 was applied to these
1905 dimension features. This resulted in mean
(EF1% = 28.04, ROCEF1% = 40.66, AUPR = 0.387) that
are much worse than those of FRAGSITE2's. Thus,
FRAGSITE2's protein target features are much better
than if a deep learning pretrained protein language
model for protein–ligand/drug binding prediction is used.
This might be due to the fact that our pocket-based fea-
tures capture more specific ligand binding features than
the language embedding of whole protein sequence.

3 | DISCUSSION

Our results show that on the DUD-E set, for ligands hav-
ing a TC < 0.7 to template ligands, the 1% enrichment fac-
tor (EF1%) of FRAGSITE2 is 33.4 compared with 21.6 of
FRAGSITE and 8.9 of FINDSITEcomb2.0. On the 81 target
DEKOIS2.0 set with the same TC < 0.7 to template
ligands, FRAGSITE2 has an EF1% of 19.1, FRAGSITE has
an EF1% of 11.7 while FINDSITEcomb2.0 has an EF1% of 3.1.
Compared with the deep learning DenseFS scoring func-
tion (Imrie et al., 2018) with an AUPR of 0.443, FRAG-
SITE2 has a better AUPR of 0.465 and ROCEF1% of 49.1
versus 48.0 for the DUD-E set. Compared with the RF-
score-VS on a 76 target subset of DEKOIS2.0 and actives
and decoys with a TC < 0.99 to training DUD-E ligands,
FRAGSITE2 has an EF1% of 20.2, whereas RF-score-VS
has an EF1% of 9.8. Thus, FRAGSITE2 outperformed state-
of-the-art VLS methods, in particular for finding novel
binders that are chemically dissimilar (TC < 0.7) from
existing binders (template ligands) of a given target's
homologous proteins (or/and self). We further note that
the FRAGSITE2 web service is freely accessible to aca-
demic users at http://sites.gatech.edu/cssb/FRAGSITE2.

Although the ligand homology-based methods FIND-
SITEcomb2.0 and FRAGSITE, like other ligand-based
methods, in general, perform better than traditional
structure-based methods, they suffer from the limitation
that they tend to discover ligands that are similar to exist-
ing ones as demonstrated in Tables 2 and 5. At all TC cut-
off <1 values, the numbers of active clusters within the
top 1% ranked molecules are not better than those of
the structure-based FRAGSITE2 method. Instead, when
actives are chemically dissimilar from existing ligands,
structure-based FRAGSITE2 shows better performance as
assessed by ligand diversity. In practice, one can combine
the two kinds of methods using the predicted precision of
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each molecule in FRAGSITEcomb, which has better per-
formance in the TC > 0.8 range. Since many state-of-the-
art deep learning methods, for example, ConPLex (Singh
et al., 2023), are not fully benchmarked on conventional
VLS sets, FRAGSITE2 is not able to compare to them.
However, compared with the DenseFS function (Imrie
et al., 2018), FRAGSITE2 is better in terms of ranking
actives at the top as demonstrated by the AUPR measure
(0.465 vs. 0.443). We showed that FRAGSITE2's better
performance is due to its better protein target features
derived from pockets. Another advantage of FRAGSITE2
compared with other docking and deep learning-based
methods is that its computational cost is much less
expensive. It can be easily run on a single desktop or lap-
top computer or readily implemented as web server.

The reason that FRAGSITE2 has superior perfor-
mance independent of the actives' structure closeness to
known/homologous protein binders is that the training
and prediction features have not used the information
from known binding ligands. Instead, it uses only the
template pocket composition profile that encodes
the structure and sequence information of the target's
binding sites. Possible future improvements of FRAG-
SITE2 could involve a better representation of target
pocket/binding sites beyond using their amino acid com-
position. Finally, a possibly better description of ligand
fragments by decomposing the ligand into conservative

fragments that bind to a specific pocket conformation is
also currently under investigation.

4 | MATERIALS AND METHODS

The flowchart of FRAGSITE2 is shown in Figure 3.
FRAGSITE2 employs the FINDSITEfilt component of
FINDSITEcomb2.0 (Zhou et al., 2018) that only uses a PDB
protein–ligand complex for binding site prediction and
for deriving template ligands. In FINDSITEcomb2.0, a tem-
plate protein must have a TM-score (Zhang &
Skolnick, 2004) greater than 0.6 to the target protein's
structure and at least 80% of the template sequence must
be aligned to the target sequence. A sequence cutoff is
applied in benchmarking mode to exclude templates
whose sequence identity > the cutoff for selecting tem-
plate pockets. Then, template pockets are selected using
up to the top 75 pockets from the PDB ligand–protein
complex structures (Zhou et al., 2018).

In FRAGSITE2, the feature vector for a given target–
ligand pair is a concatenation of the 20 dimension amino
acid composition of the selected template pocket and the
881 dimension PubChem fingerprint (Kim et al., 2019)
computed by PaDEL-descriptor (Yap, 2011); this results
in a 901 dimension vector. Again, as in FRAGSITE, the
boosting regression tree machine learning method is

FIGURE 3 Flowchart of FRAGSITE2.
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applied for learning models from the training data and
generates a sequence of decision trees, each grown on the
residuals of all previous trees (Friedman, 2001; Roe
et al., 2006). Decision tree regression is implemented with
a maximal depth of eight. The scoring function is repre-
sented as boosting decision trees (Roe et al., 2006):

f Xð Þ¼
XN tree

m¼1

εTm Xð Þ, ð1Þ

where, Tm is a decision tree, ε is the shrinkage factor or
learning rate, N tree is the number of trees or iterations
and X is the feature vector defined in Equation (2). In
this work, the empirical parameters ε¼ 0:05 and
N tree ¼ 1500 are applied.

4.1 | Training and testing datasets

We used the DUD-E (Mysinger et al., 2012) ligand virtual
screening benchmark dataset for both training and test-
ing. We conducted a modified LOOCV by excluding all
targets having a sequence identity >80% to the given
tested protein target. We used the DUD-E (Mysinger
et al., 2012) ligand virtual screening benchmark dataset
for both training and testing. We conducted a modified
LOOCV by excluding all targets having a sequence iden-
tity >80% to the given tested protein target. This 80%
identity cutoff is used only for template pocket selection
and training target inclusion for given testing target for
fair comparison to other state-of-the-art methods such as
the DenseFS function (Imrie et al., 2018) and RF-
score-VS (W�ojcikowski et al., 2017) that used this cutoff
to separate training and testing targets. However, for pro-
tein target structure modeling, we applied a 30%
sequence cutoff to templates. In training the boosting tree
function (1) for ligand–protein binding, the objective
function value is assigned as: 1 if the molecule is a true
binder of the target (in the DUD-E benchmarking set;
Mysinger et al., 2012, the active ligands), and 0 if the mol-
ecule is not a binder (decoys in DUD-E). Since overall,
DUD-E has an active to decoy ratio around 0.016, we ran-
domly picked �10% decoys and used all actives in train-
ing resulting in around 160,000 protein–ligand pairs.

To avoid any bias in the DUD-E set that favors a
machine learning method with training and testing on

the same set, we also tested FRAGSITE2 on an indepen-
dent set from the training DUD-E set, DEKOIS2.0 (Bauer
et al., 2013). This set has 81 structurally diverse targets
with an actives to decoys ratio around 0.033 and is based
on BindDB bioactivity data (Livyatan et al., 2015). To
compare to previous work, we use an 80% instead of 30%
sequence identity cutoff between testing targets and
training DUD-E targets. We note that there are some
other VLS benchmarking sets, for example, MUV
(Rohrer & Baumann, 2009) and LIT-PCBA (Tran-Nguyen
et al., 2020). However, since the MUV set has a total of
only 17 targets and LIT-PCBA has 15 targets, they repre-
sent a very small number of protein families, and the
small number of targets make them statistically insuffi-
cient to distinguish between methods. The performance
of a few outliers could dominate the overall performance.

4.2 | Assessment

In modern drug discovery, the screened compound library
could be immense, for example, Stein et al. docked 150 mil-
lionmolecules to anMT1 crystal structure (Stein et al., 2020);
1% or even 0.01% of molecules are still too many for experi-
mental testing. Thus, instead of using the area under the
receiver operating characteristic curve (AUROC), we use the
more meaningful, interpretable enrichment factor at the top
x fraction (or 100x%) of the ranked list defined as.

EFx ¼Number of true positives within the top 100x%
Total number of true positives� x

: ð2Þ

To compare to the DenseFS score (Imrie et al., 2018),
for a cutoff independent evaluation, we prefer AUPR, the
area under the precision-recall curve (Davis &
Goadrich, 2006) to AUC (area under the ROC curve) and
the ROC 1% enrichment factor (ROCEF1%: enrichment at
1% false positive rate) that is slightly different from the
above EF1%. AUPR is a better measure than AUC to dis-
tinguish the ability of methods to rank positives in the
very top ranks when true positives are rare and only the
very top-ranked ones are tested as is the case in VLS
(Davis & Goadrich, 2006).

For practical applications, as with FINDSITEcomb2.0

and FRAGSITE, we also report the predicted precision
for a given machine learning score Sfrg:

precision Sfrg
� �¼ Number of actives with scores withinSfrg�ΔSfrg

Total number of molecules with scores withinSfrg�ΔSfrg
: ð3Þ
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The precision score is useful for judging if the predic-
tion is confident or not. To derive the predicted precision,
we merge all the LOOCV predictions for actives and
decoys of all targets from the DUD-E dataset (Mysinger
et al., 2012) and bin the score Sfrg from 0 to 1 using
ΔSfrg ¼ 0:05. The precision score is used for the combined
approach, FRAGSITEcomb, that simply takes the maximal
precision score from the three methods: FINDSITE-
comb2.0, FRAGSITE, and FRAGSITE2 to select a given
screened molecule.

To test the ability of methods to discover novel
binders from existing binders of self or close template
proteins, we also evaluate EFx for those actives that have
a TC less than a cutoff to the template ligands. All TC are
calculated by Open Babel (O'Boyle et al., 2011) with the
FP2 option which indexes small molecule fragments
based on linear segments of up to seven atoms (some-
what similar to the Daylight fingerprints;
Anonymous, 2007).
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