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Chapter 1: General Introduction
0. Introductory Remarks

A fascinating aspect of the study of polyelectrolytes is the inter-
play between their chainlike nature and jonic character. On the one
hand, we are interested in the electrochemical properties of polyelectro-
lyte solutions; e.g. the influence the polyion exerts on the osmotic and
activity coefficients of the simple salt molecules. On the other hand,
the charge density of the po]yﬁer greatly affects the expansion of the
polyion and all related physical properties that depend on chain exten-
sion. Obviously, the two classes of problems are quite intertwined. The
interaction of the polyelectrolyte with its ion atmosphere results in a
modification of segment-segment repulsions and concomitant alteration of
the coil's expansion. Conversely, both the geometry and charge of the
polyion determine its effect on the mobile ions. A1l studies of the
equilibrium properties must address themselves to the dual nature of
polyelectrolyte solutions; our work, in particular, 1is no exception.

A considefab]e simplification in the calculation of polyelectrolyte
properties results if the geometry of the polyion can be specified. For-
tunately, a wide class of polyelectrolytes may be approximated, either
locally or even globally, as low dieléctric, salt excluding cylinders.
Assuming the polyelectrolye is a very long cylinder, we explore, in
chapter two, a question of importance in polyelectrolyte theory: Pre-
cisely what is the influence of the low dielectric constant backbone on
the interaction energy between a charge on a polymer and another jon?
More generally, we treat various discrete and continuum charge distribu-
tion models to obtain insight into the effects of the dielectric cylinder.

For some polyelectrolytes such as DNA, a long low dielectric cylinder



is a quite reasonable representation of their actual conformation. How-
ever, if one considers semiflexible, random coil polyelectrolytes such

as carboxymethylcellulose, while the global conformation is not a cylinder
it seems quite likely that there are quasilinear stretches within a given
contour length of the molecule. The preceding is highly suggestive that
the wormlike polymer model of Kratky and Porod should be applicable to
ionic as well as uncharged polymers. In chapter three, we calculate the
electrostatic persistence length, Pel’ and colligative properties of an
unperturbed, stiff wormlike polyelectrolyte. An important and not unex-.
pected qualitative result emerges from our study:if the ionic strength

is sufficiently low, Pe] may be quite large; in other words, the poly-
electrolyte is locally quite rodlike.

Certainly one of the most annoying failures of equilibrium poly-
electrolyte theories is their inability to predict the functional depen-
dence of the expansion factors, a3, and second virial coefficients, AZ’
on molecular weight and simple salt concentration. This is a tantalizing
problem, and in chapter four we present a poSsib]e guide to the resolu-
tion of it. As indicated previously, at low ionic lengths, a polyelec-
trolyte is locally rodlike. It, therefore, seems reasonable to treat
the interacting segments as uniformly charged rods rather than "points”.
If the charge density is employed as an adjustable parameter, reasonably
close agreement with experiment for a3 and A2 are obtained over a con-
siderable range of degrees of ionization and ionic strength.

A further word is necessary before commencing with the body of the
text: We have made extensive use of appendices. Where appropriate, the
reader is urged to consult them if additional mathematical details or

consideration of somewhat more general cases is desired.



Chapter 2 Screened Coulomb Interactions on a Dielectric Cylinder with

Applications to Manning's Limiting Laws

I. Introduction

Although linear polyelectrolytes have been extensively studied for
many years, the influence of the low dielectric constant backbone on the
potential of mean force between a charge on the polymer and another ion
is not well understood. We have studied this potential on the basis of
~classical electrostatic theory, which is supplemented by Debye-Hlickel
screening. One would 1ike to know under what conditions, if any, the
backbone behaves as if it were electrostatically invisible.

We cannot hope to summarize the vast body of polyelectrolyte litera-
ture which in one way or another models the low dielectric constant
effect; rather a brief review emphésizing the ideas that influenced the
present work will be undertaken.

" An early consideration of the effect of a local dielectric constant

appears in the work of Kirkwood and Westheimer]’2

on the electrostatic
influence of substituents on the dissociation constants of organic acids.
The organic acid is treated as a spherical, and subsequently ellipsoidal,
low dielectric constant region within which an arbitrary discrete collec-
tion of charges is located. The molecule is assumed to be immersed in
salt-free, bulk solvent. Kirkwood and Westheimer exbress the electro-
static free energy in two parts: one part. represents the Coulomb inter-
action of charges immersed in an infinite medium of dié]ectric constant
characteristic of the molecule, and the other part gives boundary

corrections. Buff, Beveridge, et a13’4, have recently noted many related

problems, and devised several solutions for spherical boundaries.



A logical extension of the work of Kirkwood and Westheimer to poly-
.electrolyte systems was made by Harris and Rice.5 Each polyion is
modeled as a spherical region of low dielectric constant, D, within
which a fixed, discrete collection of charges reside. In addition, the
mobile ions are assumed to permeate the entire polyion domain. Rice and
Harris solve the linearized Poisson-Boltzmann equation and find the po-
tentiaf separates into two c]agses of terms: The first group is the
spherically symmetric screened coulomb potential with a dielectric con-
stant D. The second type of terms characterize the boundary effects.

While it may perhaps be appropriate to model some polyions as low
dielectric constant spherical domains, there exist polyelectrolytes, such
as short DNA, that are best approximated by cylinders. Additionally, the
representation of the polyion backbone as a low dielectric constant
cylinder may provide a more realfstic description of the actual physical
situation. |

H1116 has solved the linearized Poisson-Boltzmann equation in
cylindrical coordinates for an isolated, uniformly charged cylinder
immersed in bulk solvent. The electrostatic free energy, W, of such a

cylinder is

W- ﬂ. Wy (Xa) + ln(a\/b)f (17)
Dl Xa. KAX“X

where: Z is the charge per unit length of the cylinder. K’] is the
screening length. 02 is the bh]k dielectric constant. L is the length
of the cylinder. Ko(x)‘and K](x) are modified cylindrical Bessel functions

of the second kind, a is the distance closest approach and b is the radius



of the cylinder. It is of interest to observe that W is independent of
“the internal dielectric constant, D], of the cylinder. There is, how-
evér, no reason to assume a priori that the potential for a more realistic
_ charge distribution will remain independent of the interior dielectric
constant. Indeed, the latter turns out to have large effects on the
potential of discrete charge distributions.

For discussions of charge condensation, we refer to the ]iterature?']4.
Evidence exists that the linea}ized Poisson-Boltzmann equation describes
the electrostatic potential outside the layer of condensed ions, and our
use of that equation may therefore be consistent with condensation. In
sections II to IV, we are concerned with a solution of the lincarized
equation and not with its domain of application. Only in section V do
we employ condensation in the calculation of the colligative properties
of colligative polyelectrolytes. | |

In section II, we obtain the formal solution,wT, to the linearized
Poisson-Boltzmann equation for a boint source charge located on or out-
side a dielectric cylinder. The cylinder is supposed impermeable to
the salt solution in which it is immersed and to have a dielectric D]
different from the bulk value DZ' Soiution of this problem is equivalent
to the determination of the interaction energy between two charges one
of which is outside or on the cylinder. To obtain insight into the
long range behavior of Yps We analytically calculate 2] between two
charges spatially far apart but near or on the cylinder. Finally, when
the axial distance between two colinear charges on the surface of the
cylinder is small, ¥r is equivalent to the potential between two charges

on a planar boundary separating two different dielectric media.

In section III, numerical results are given for the special case that



both charges are on the surface of the cylinder, either on the same
or opposite sides, and are separated by an axial distance Z.

Section IV examines the potential, GT’ arising from a point charge
' located inside the low dielectric constant cylinder. The method of
attack is similar to that of section II. In general one finds GT is
quite complicated. A considerable simplification in GT arises if we
assume there is no salt excluding region within the dielectric cylinder
or equivalently if we assert a salt free solution is present. These
situations are investigated in some detail. Analogous to the work of

Harris and Rice®

» we find that GT can be expressed as the sum of the
screened coulomb potential arising from a point charge in solvent of
dielectric constant D], and boundary effects. At the close of section IV,
we consider the potential between two charges far apart from éach other
but within the low dielectric cylinder.

In section V, helical charge distributions are considered. The
solution to this problem is relevant fo the calculation of colligative
properties, and possibly also to the question of structural stability.

As a first approximation, it seems reasonable to view the helical
polyion as a thin helical stripe of charge embedded on the surface of
a low dielectric, mobile ion free cylinder. o helices are represented
by a single helical stripe of charge: DNA type double helices are modeled
by two helical stripes of charge 180° out of phase with each other. When
the pitch of the helix is infinite, the helix becomes a line of charge
embedded on the surface of a low dielectric cylinder. Such a model is
appropriate for linear, non-helical po]ye]ectro]yte58 and is therefore
examined.

The difference between the electrostatic free energy, Foxcess of the



uniform charge distribution and the helical stripe is found to be rather
small for either the o helix or for DNA, but increases with increasing
pitch and increasing salt concentration. Possibly the difference might
be significant for DNA at high salt concentrations. Furthermore, the
severe effect of the dielectric cylinder on the interaction between two
point charges has a different sign depending on whether the charges are
on the same or opposite sides of the cylinder, and there is evidently
a major cancellation for a helical distribution.

As the deviations from ideality of polyelectrolyte colligative pro-
perties depend on (aFexcess/aK)T’v, we determine this quantity for the
a helix, line of charge and DNA double helix. In each case, we delineate
the conditions under which the ]ing of charge.in bulk solvent model is
appropriate and when corrections become necessary. Finally, we formulate
extended Manning limiting laws for the osmotic and activity coefficients

of ‘a helical and DNA polyelectrolytes.



II. Charge Outside or On The Cylinder: Formal Theory

In this section, we present a general treatment of the potential,
Yrs due to a point charge located on or outside an infinitely long, low
" dielectric constant, salt-excluding cylinder immersed in a 1:1 aqueous
salt solution. If the éharge were situated in a homogeneous bulk medium,

wT would be given by the spherically symmetric, screened coulomb poten-

tial ¢DH -
Xl 'tj‘
Yo ()= 9 ¢ (11-1)
D, | £-x;1

,qj is the charge of the ionic species at rj giving rise to the potential,
02 is the bulk solvent dielectric constant and K2 = (BanCSNA)/(IOOODZkBT)
q is the protonic charge, kB is Boltzmann's constant and T is the absolute
temperature. CS is the 1:1 salt concentration in moles/liter, and NA is
Avogadro's number. However, due to the presence of the cylinder, two
effects on Y are expected: First of all, there should be an increase in
Yt relative to YDH because there is a low dielectric constant region near
the point charge. Moreover, since simple salt is excluded from that por-
tion of space occupied by the cylinder, an. additional increase in 2
results. Finally, if the charge were moved from on the cylinder into

the bulk solution, 2 should decrease. When both r and r. are infinitely

J

far from the cylinder YT=VpR-



We begin by employing Poisson's equation which relates the poten-

tial y;. to the charge density, p
T

Ve Prp)= -Hmpto (11-2)
— o

D is the dielectric constant of the medium in which charges having total

charge density p are immersed. Now, p is composed of three terms

§= $ 8-+ .

py and p_ refer to the charge density of the mobile positive and negative

salt ions respectively.

g.,. =9 yo exp L '“oq)/hgf] g_: —%go CXP[:“’%q)/kB-[] (11-3b)

o is the equilibrium salt concentration in ions per unit volume. In
addition, p' is the charge density resulting from the point charged fixed

at r' and is given by

g‘: %8(£-£') (I1I-3c)

We shall treat the linearized version of Eq. II-2. Employing
Eq. II-3a-c in Eq. II-2 and linearizing the exponential terms, the

linearized Poisson-Boltzmann equation of Debye-Hlckel is obtained,

| (Vz’ %Z) k,)-r = "’fl% 8(!:-‘,‘:) (11-4)
D



Hence, Yt is the Green's function of the operator v2-k2.

By incorporating the effect of the salt excluding, low dielectric

cylinder of radius a, we must solve

Vit - - 4mq Sce-r')  rea (11-5)
Dy

(r is the distance in cylindrical coordinates from the principal axis

of the cylinder)

(V- X2) ‘PT = "f_ﬂ:fosm-!:') r7Q (11-5b)
. >,

Eq. II-5a mefe]y states that within the cylinder there is a mobile ion-
free, homogeneous medium of dielectric constant D]. By Eq. II-5b, out-
side the cylinder, mobile ions are present in a medium of dielectric
constant DZ‘ Thus, we want to determine Y which satisfies Eq.II-5a and
5b subject to the appropriate boundary conditions. |

Before determining Yrs let us briefly review the solution to the

homogeneous Debye-Huckel equation in cylindrical coordinates, i.e.,

r-lgra—é + V-zazi + ‘aZé _ xZ §: @) (11-6)
or Ir E T

Setting o(r,0,z) = R(r)Q(e)Z(z) and requiring that ¢ remains finite as

z+wand ¢(r,6,z) = o(r,6 + 27,z) it readily follows that

.
Iihe (11-7a)

Q (8): €



tifz
'Z(-L): e (II-7b)

RGP = AT OF) 4 BK(AF) (11-7¢)

n is an integer. In addition, the In and Kn are the modified Bessel

- functions of the first and second kind respectively, and

:lz:: le + )SZL

- The Green's function, Yrs is the potential due to a point charge
located at f' = (r',6',2') and satisfies Eq. II-5a and II-5b;
Y = wT(r,r',e,e'z,z'). We consider here the case of a point charge
outside the cylinder; that is r'; a

Now,

§cz-2')- T” §d9.c:os£(z -7') - (zﬂ)"(AQ inze)
(11-8)

7 inle-e*)
be-6")- (;zrr' , €

hz-20

Whereupon, it is possible to express -4nqs(r-r') as

-4Tg §Cr-p')s fbé SAQ exp[z{f(z—z)m(w)}]&r-r) (11-9)
T r



Furthermore, Y1 is expanded in terms of the separated solutions of

Eq. II-7a-c
40 40 _ |
\P.‘., é @Si,‘ R (XT) expﬁiinew.'aﬂ (11-10)
where -
. 028 vea (1-1m)
X = |

22+ X* 1 f rza

i.e., salt is excluded from the space occupied by the cylinder. Substi-

tuting Eq. II-9 and II-10 into Eq. II-4 with II-5a and 5b, it follows that

5 g iTno+e]
1 SinEh ¢ 4% - hn2 )R e -
e -0 dr? dr r2
o 1 (11-12)
% (40 8ee-r) expl( fati-z')m(afe')}]
T heed -0 g

where for convenience we have written Rn(A'r) as R .

By equating the coefficients of exp[i(ne+2z)] on both sides of Eq. II-12,



we obtain,

" ! ol
&R, ARh -O R, 48 ' TEO) )
drz r2 —Blr)r
Here
- D # re (11-14)
(v) = |
Dz l'r Y'7,CL
The Rn(A'r) must satisfy
AT () rea (11-153)
R = BT, )+ C K, () acrey (11-15)
E K, () Lt - (H-1se)

A,B,C,E are constants to be determined from the boundary conditions of
the problem. Eq. II-15a insures that the potential due to a point charge
.at r's r' za remains finite at r equal to zero. Eq. II-15c guarantees
that the potential goes to zero as r goes to infinity.

The following boundary conditions allow determination of A,B,C, and

AT, ()= BT Oa) 4 CK () (11-16)

e e e e e



From Eq. II-15-b for r=r'-¢, x'=ar' and in the limit e»0
[} - ] 1 - ’
R, (xV= BT (¥)+ C K (x) (11-21)
Similarly, at r=r'+e, in the limit es0
W V1 .
Rh(x)_ E Kh(x) | (11-22)

Inserting Eq. II-21 and Eq. II-22 into Eq. II-20

~ilne’stz']

X' ?E K;(x')- Blh/(x') -C Kv:(x‘)}: -9¢ (11-23)

the prime on .In and Kn denotes the derivative with respect to x evaluated
at x=x'. Consequently, we have four equations in four unknowns, the ex-
plicit calculation of A,B,C and E is found in Appendix A. |

Since all the properties we shall subsequently calculate depend on
12 for r 2 a, we explicitly present our results for the potential out-

side or on the cylinder. The rsa case is given in Appendix A.

For r za

-t -ifne'+22']
Rh().r') z (ITDZ\%{ I, (M) K (%) +M, K (8¢) Kh(Ar}}C (11-24a)



~ilne'te ']
Rhflr): i E_h(zr)e (11-240)
D,

where by Eq. A-4

M, = DI T, (a)Tnlla) - QZlI,',(Aa\Ih(ﬂa) (11-25)
DA K. () T (fa) - D, £ T, (a) ¥, (ha)

r< is the minimum of (r,r').

r> is the maximum of (r,r'). )

Note that Mn incorporates the boundary effects, i.e., the salt exclusion
by the cylinder and the discontinuity in dielectric constant at r=a.

Placing Eq. II-24b into Eq. II-10, we find for all values of D] and
D,

+P 40

q)]_ = 9 ﬂ $a 8 (w) exP[i‘iQ(z—i'Hh(e—e')ﬂ (11-26)
L 2
Tl-Dz Nz-w

which can be rewritten as



Yr= 34 §§dflcosﬂcz-z') [T K iar ) ai TnARK (5 )coneoe)]
™,
(11- 27)

+ Sdﬂcosm-z TR0 tiyan )M, + 2% K 00K OeIM cosn(o-e’)]}

We now demonstrate in a heuristic way that

%It o
¢ =9 sngCOSJZ(z-z)[L(,\Q)kO(,\ o) + (11-28)
p, fe-2'l W, 0

2 f‘ Ih(Mz) K26 cosn(e-¢) | }

A formal proof is found in Appendix B. 'Define

(fg_ a %CQcositz -2) [ T0) (A%) ¢ 2.5 Ihu\raK (A )coSh(B-B]Z (11-29)

If we set 2= and D;=D,, the salt excluding, dielectric cylinder has been
removed. Evaluating Eq. II-25 with %=1 and D]=Dz, one can readily demon-
strate that Mn=0 for all n. Whereupon, wT(Mn=0)=wS. Moreover, in the
absence of the dielectric cylinder, wT(Mn=O) must be spherically

symmetric, i.e., Vg satisfies



rA 2 .
(V- ¥ )‘V5= -4 q - (11-30)
D2
everywhere. This is precisely the Debye-Hlckel equation for a point

charge in bulk solvent. Consequently,

-Xlg- v
P,

b x-v) (11-31)

Substituting Eq. II-31 into Eq. II-27 for r':,a,rza, and for any

value of D],Dz,r and r', we have

_ -—XL":-!;" 0 ’
Tihe): g e +29, Glaste2) MK + (11-32)
D2 -2V mp, )

"iq, ng cos{(2-2 ){f‘ M K (»‘) W, O Ycos n(a—a‘)]
M,

In Eq. II-32 the potential due to a point charge on or outside a
salt excluding, dielectric cylinder is the sum of two types of terms:
(1) the spherically symmetric, screened coulomb potential given by a
point charge immersed in bulk solvent of dielectric constant D,, (2) a
term incorporating boundary effects caused by the presence of a mobile
ion free, dielectric cylinder. Since the boundary term is quite compli-
cated, we shall restrict our investigation to various 1imiting cases of
Eq. II-32.

Analytically accessible limiting cases of Eq. II-32 are lim Z-Z'+w



and (r=r'=a,e=0', Z-7')+(a,0,0). We proceed to demonstrate that in the
former case 2 reduces to the Debye-Hlckel form and that the latter situ-
ation is equivalent to two charges on a planar dividing surface between
two regions of different dielectric constant.

Let

(11-33a)

XN
qu?- 9, gdgcosﬂ(z-z‘) Mo KfAF) K (ar)
mp, ©
o0 R
+ Hg, Sodﬂcosﬂcz-z')[é M 1€, () ‘vﬂvgm‘)cosma-e')j
TrD’L A

In the 1limit that Z-Z'+«, (large Z-Z' relative to a), only the small
2 component of the integrand in Eq. II-33 contributes to ¢b. By assum-
ing Kr> <<1 and examining the asymptotic behavior of Eq. II-33, we show

in Appendix C that if D] << 02

Koo
I €2 q) €7 (x4 23 (2b 1 cosers)- b?) (11-33)

L

with b=a®/r_and Z_ = Z-2'. Hence, it follows from Eq. I1-32 that

Ktw  yze
lim “PT :q9e T, i)_@—- (xﬁ;&)(_\.z_‘..z_bz) (I1-33c)

TR
» P2 2 202:225

X2 .
t%e ?)@Z})(&Cos(e'e’)(abrcr\’“)

e — e,

ah, 2%



The contribution of vy to 2 is of the same order of magnitude as the
contribution of the radial variation of Vs to 78

In general, it is evident that the dominant contribution to vy at
large Z-Z' is the screened coulomb potential betweén two colinear
charges immersed in bulk solvent. A detailed discussion of the radial
variation of ¥t is found in Apgendix C; variations in wT due to wband
the radial components of bg can be neglected in the Z-Z'>>a limit. We
note in passing that Eq. III-9 is valid when K=0, i.e. salt free solu-
tions. Moreover, intuitively our conclusions are quite reasonable.
When Ka>>1, the range of the electrostatic interaction is large rela-
tive to the thickness of the low dielectric, salt excluding cylinder.
Consequently, the perturbation of the lines of flux at large separations
between the point and test charge due to the dielectric salt free
cylinder should be quite small.

We now proceed to calculate wT in the limit that

(z-2', r=r'=a, 6=0')+(0,a,0). Rewriting Eq. II-27 as

Z‘VT: %ﬁn{ Ho + 2?: H, coshce-_e')}
) T hz|
(11-34a)

with



X
Ho= 2 Sdeoste-2) by,

h,= - K,(a) T, (L)

10,20 KO T, (fa) - ) 0a K, 0a) T (00
Setting Z'=0, 0'=0, and K=0 and defining y=2Z

o0
iz Sdycosyh, (42

h (yz) = - K ) Ty(yin)

Yl2 % b, K 42T, (42 - D, ty) MBI

(11-34b)

(11-34c¢)

(11-35)

(11-36)



Here, we have defined a, the cylindrical radius, as.the unit of length.

For large n and to lowest order'15

L nY
I, (nx)= (amwn)*e
Cx)™

- ¥
T /(nx)= (awnyie” (ex)™
X

-nY¥

K, (nx) = J_f e

(14 x2)

-n¥ ,
Kh'( hx) = -—JE e (14x)"
N X

Y= NItx* + [n[ __X ]

(I11-37a)

(11-37b)

(11-37¢)

(11-37d)

(1I-37e)



Let w = (y/z)n°1, then employing Equations II-37 in Eq. II-36

hy = 0 1+ w?)'z
Dyt D,

(11-38)

Note that Eq. II-38 is a reasonable approximation to hn for any value
~of w provided that n is large. The approximation is best for large w;
i.e. small z.

Placing Eq. II-38 into Eq. II-35

Hy, = ingos( wNnz)

(I1-39a)
DitD, ( 1+ Wz) 2
Hn = ZHK,nz) (I11-39b)
(Dl*pz)

Consider

tir= 34 §H°+ 2.%:0 Hhcosne}
T Nzt

(1I-40a)



In the 1imit that Z-0 and =0

o0

m 29 ~ -
T T H%idhl-lh (11-40b)

lm ’Z»Q’T ~ tfaD @n%?. Ko(h17§

- b
Evaluating the integral we find
lim % ‘PT ~ a4 - (11-40d)
Z-.’O D|+D2

Thus, when K=0, vy is equivalent to the potential between two charges
on a planar dividing surface between two different dielectric media.]6 In
fact, we demonstrate in Appendix D, that Eq. II-40c is valid independent
of the value of K. Intuitively, our results for small Z appear quite
reasonable. In the limit that Z-+0, one would expect wT to be independent
of K due to ineffective charge screening. It also seems plausible that

for small distances on the surface of the cylinder, the cylinder appears

planar.



ITII. Numerical Resu]té for Charges on the Cylinder

Since the major goal of this section is additional insight into the
effects of the dielectric cylinder, rather than’any specific applications,
we have specialized our numerical work to a few special cases. The two
charges under consideration, test and source charges, are located on the
surface of the cylinder at r=r'=1 and are either on the same side of the
cylinder at ©=0, or opposite sides at ©=180°. The value of K is zero or
unity; that is, the Debye screening length is either infinite or one
cylinder radius. To maximize the low dielectric effect, D] and D2 were
taken as 2 and 80 respectively.

We begin by surveying the practical calculation of the potential
from Equations II-34 to II-36. Throughout this section a unit source
and test charge are assumed.

First of all, the coefficients of 2 H must be obtained for large n.

™

Values for large n are required only for small Z and are derived from

the uniform asymptotic expansions in Appendix D. The g_Hn are given by
T

-hiZl
M= 2% [-Ko(nz)- (04-Dp) (:r_r)(l—hlzl)ﬁ J (111-1)
,1D, ) D 1D, ' 8n

as1

The details of the derivation of this formula from the original integral
over 2 in Eq. II-34b show that the leading terms in the expansion origin-

ate from large values of % and that they are consequently independent of K.



For small z and n not too large, direct numerical integration of
the integral expression for g_Hn in Eq. II-34b is practical. For large
z a contour deformation of tge path of integration is desirable. The path
originally runs along the real axis, and deformation of it to run along
the two sides of the positive imaginary axis gives exponential convergence
of the integrand for large z. In justification of this deformation, we
note first that the Bessel functions themselves are andlytic throughout
the 2 plane. The square root functions that define A and A,
Ay = (12 + Kcz));'2 Ky>0
in .terms of 2 have branchcuts along the imaginary axis, but the real parts
of A and A, are never negative. Asymptotic forms for the Bessel functions
in the right half of the A or Ao planes indicate adequate convergence at
infinity for the Hn integrand, and the only uncertainty remaining is
whether the latter has any poles. We present a formal proof in Appendix E
that asserts the absence of poles. A numerical proof of their absence lies
in the agreement between the two expressions for Hn in the region of inter-
mediate z (ca. z=0.5), where both are practical.

As is explicity demonstrated in Appendix E, the result of contour
deformation, appropriate transformation of the Bessel functions from real

to imaginary arguments, and considerable rearrangement is

o0
. -RI1Zl
ﬂ,th: alz| gdge iBC—AEf
™ x C+e?

(111-2)



where

A =3 (R)(Sr) s = (R2-k)V2; =

ni
—

B = -J (R)Y (Sr)
C = Dyd, (R)SJ '(S) - D]Jn(S)RJn'(R)
E =-D,J, (R)SY ' (S) + DY (S)RI *(R)

BC-AE - 2D, [an(R)]2 roaz]

Ly
Equation III-2 also requires certain precautions in the numerical inte-
gration, because of the rapid variation of the integrand in the vicinity
of the zerées of Jn(R). For small z the integrand converges slowly, the
integral must be extended to large z, and a great many zeroes require
special treatment.

Our procedure was to use Eq. III-2 for n up to ten, and to supple-
ment these values with asymptotic form, Eq. 1II-1 when necessary for the
smaller values of -Z.

Numerical results are shown in Figures 1 and 2 for the ratio of the
actual interaction potential 2 to the Debye-Huckel potential as a func-
tion of Z for the two values of K and 8. The divergence of this ratio
from unity indicates the effect of a dielectric discontinuity (D]=2 and
DZ=80) and salt exclusion (Ko=0).

The results for charges on opposite sides of the cylinder are quite



Figure 1. The divergence of the rat1o ¥ /"'DH from unity indicates the
-effect of a dielectric discontinuity and salt exclusion. We_ plot wT/wDH
versus/ ? The 6-0° case is given with k=0, @ and k=1 ¢
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- Figure 2. The 6=180° case is given for y./yp, vs Z with K=0, @ >
and k=1, yf ,



contrary to our naive expectations that the interaction would be greatly
increased by the presence of a low dielectri¢ constant region between
the charges. On the contrary, the interaction is greatly decreased! We
note that these results would not be changed by any small shift of the
- charges toward the interior of the cylinder, or toward the bulk solvent,
because the potential is continuous across the.dividing surface.
A rationalization along the following lines is probably acceptable.
The lines of force from a charge avoid passing through the cylinder. If
they passed through the interaction would indeed be increased over its
value in bulk solution. Rather the lines of force avoid the cylinder,
and travel through the solution to a charge on the opposite side of the
cylinder. The greater distance 1eéds to a decreased flux density from
spreading of the lines of flux, and from their termination on counterions.
If the two charges are close together on the same side of the cylinder,
the lines of force bunch up somewhat, and thereby increase the inter-

action.



IV. Charge Inside a Cylindrical Low Dielectric Region

Suppose a point charge is fixed in a cylindrically symmetric, low
dielectric constant medium at the center of which a salt excluding
cylinder is located. We shall, in this section, briefly sketch the deri-
vation of some limits of the potential arising from such a point charge.
The mathematical approach is the same as section II, consequently, por-
tions of the mathmatical details will be omitted.

The potential GT(r r') due to point charge at (r',e',2') is given by

o @ (Cneiz]
G lr,m)= % ddte R (X'¥) (1v-1)

h-'-oo

R I, (0r) ' rea
Ry, (M) = BI AN CK O asver

DI +EH (A7) rigvec

F K. () cer

(1v-2)



with 12 = 22+K2 and
b= D rec
: (1v-3)
Dz rzc

The radius of the salt excluding cylinder is a. Physically, Eq. IV-2
abd IV-3 represent the fact that for rgc, the medium has dielectric con-
stant D]. When r<a, the medium is also salt excluding. As explicitly
| demonstrated in Appendix F, by requiring continuity in Rn(A'r) at a,r'
and ¢ and by matching the normal component of the displacement vectors,

mrafréc

Ry (Ar) = 4 I’M,,Qn\"{o T OITOe) K (A5 T el )
D,
(1v-4)
i ?.b“'Mh Qn)% MhQnIn(AQ) KM) + Mnkh(m Khm?g fez)
D,

-if ne'+lz]
fe'z):- e



for r>c

-1
R (xr)=q,(1-Mn Q) 3 By Ll 2 'L:()c)\(h(,\r)} fto12)
™D, K )

t UMY {4, L) Kn O Myt gy
My, K (2) |

(1v-5)

t QUMY TN T + My, Kn(mKhm')} $i82)
o,
~ where r_ is minimum of (r,r')

r, is maximum of (r,r')

Mn = AT, (L) 'I.;‘(M\ -1 1 (ta) T,,(a) (1V-6)
L K a) Tila)- A K, ) Ty (fa)

Qo= (0-0,) K OO)K, ()
Da T ) Ki(3e) - D, T, () K, (3¢)

(1v-7)

Several observations are appropriate at this time. If we set



r'=c, c=a, it is demonstrated in Appendix G that GT(r,r'=a)=wT(r,r'=a)
where 2 is given by Eq. II-32. In addition, if we define a=0, i.e.,

there is no salt excluding region and let ¢+, all Qn=0, and it follows

that

T _Xie-x'|
G.:\-(!:’r: CL"—’O,C=<”)= Cbe -

D‘ g’ r,‘\

\
~
-
1.

L

Otherwise stated, we recover the result for a point charge immersed in
bulk solvent with dielectric constant D]. |

In general, Eq. IV-4-7 are quite complicated and do not separate
simply into a term incorporating the boundary effects plus the screened
coulomb potential. A considerable simplification results if we assume
there is no salt excluding region, or equivalently if we assert a salt-
free (K=0) solution is present. For these particular situations, all Mn
given by Eq. IV-6 are zero; we shall concentrate strictly on these cases
in what follows.

When r<c and all Mn=0’ it can be shown from Eq. IV-1 and IV-4 that

.)(lg.n" &0
G:r = qe ¢ 29 odo,casa(z«z'){@,,lo(xf) T,0e)]
blc-el (1v-9)

o0 R
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If r2¢c and Mn=o for all n, it follows from Eq. IV-1 and IV-5 that

G Xl b )
T %€~ » g, ng cosQ(z—ﬂ(f},, T, Ty () KO(M)]
bls-st Ty, Ka(re)
_ (1v-10)
o o -
‘V"it-)o god.ﬂcoth%—i')[f: cosnio-e") Kh(.xr) I:_QM) Ih(,\r')Qn

Notice that Eq. IV-9 and IV-10 hold for all values of D], D, and r. See
Appendix H for eXph‘cit evaluation of Eq. V-9 and 10 in the 1lim Z-Z's>>c,
where as usual we assume D]«D2 and Kr><<1. However, since we are mainly
concerned with the potential in the vicinity of the charge we display the

r<c results. The reader is referred to Appendix H for further details.

For rsc
Y ~Kz0 K20
‘\u:’ 6"\'2'—' Cbe + ?Q e ()<+2 )(‘.z“..z 2. r"r'z)
257N Dy 200 gp,‘ E3 8 ~1
X200 (1v-11)
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At this juncture, it is important to emphasize that _the range of
interaction, K" is large relative to the thickness of the low dielectric
constant region. Moreover, because Dz>>D], the Tines of flux will
essentially see bulk D2 plus a perturbation given by the second collection
of terms on the rhs of Eq. IV-11. This concludes the examination of GT,
the potential of a point charge inside a cylindrically symmetric, low

dielectric constant region.



V. Helical Array of Charges

In view of the quite large effect of a cylinder on the interaction
between point charges on its surface, especially at high salt concentra-
tion, we have examined the self-energy of helical distributions of charges.
Specifically, one of the questions put in this section is whether the
effect of varying salt concentration on the self-energy differs between
the helical array and a uniform charge distribution. The potential on
the surface, that is, the self-energy is independent of Dy for the uni-
form distribution.

Having determined the dependence of the self-energy on salt concen-
tration, we then consider the influence of the helical charge distribu-
tion on the colligative properties of the polyelectrolyte solution; our

7-9 For a

treatment will be in the spirit of Manning's Timiting laws.
and DNA Tike continuous helical stripes, our numerical work indicates
that the difference in electrostatic free energy between the helical and
continuous distributions is rather small. Thus, at this juncture, we
address ourselves to the range of applicability of the linearized
Poisson-Boltzmann equation. Guided by the results of the MacGillvray and

N'ink1ememn]2 13

and MacGillvray ~ on the potential of a uniformly charged
cylinder in bulk solvent, we shall assume that the functional form of the
excess electrostatic free energy is given by the linearized Poisson-Boltz-
mann equation and that the non-linearities manifest themselves as an
effective charge per unit length.

The charges in a helical array are located at discrete values of z
in the cylindrical polar coordinates (z,a,0'), where 0'=2rz /p, and p is
the pitch. For DNA p/a is about 3.45, and for an a-helix, p/a is about

0.68. As the pitch increases, a helical charge distribution goes over



to a line of charges parallel to the cylinder axis, and reaches the maxi-
mum degree of nonuniformity with respect to varying pitch.
The interaction ¥t between two charges separated by a distance z

along the cylinder axis is given in Eqs. II-32 or II-34a, and the poten-

tial ¥ is defined as the sum of such pair interactions:

!
‘P: ? (FT(X' Z:)) (v-1)

The sums could be handled straightforwardly with the aid of formulas
for 2} given in sections II and III, but it would be much easier if the
sums could be converted to integrals, and appropriate modifications of
Eq. V-1 will be made to permit this simplification. As the equation
stands, conversion to an integral would give the potential acting on a
charge contained in a continuous helix, and this potential is infinite.

We therefore add and subtract a comparison pqtentia] evaluated for vanish-

ing salt concentration, and write

11 = ASP + ?o (v-2)



(V-3)
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A‘Pa\jﬁ[‘PT(X,z;)— ¢ (0,2 ] e

If ¥° were simply the potential ¥ evaluated for K=0, the summand in

Eq. V-4 would converge at z=0, but would diverge at }arge z, and tﬁe
desired integral over z could not be extended to infinity. We therefore
define ¥° to be the potential for K=o, less the potential due to a uni-
formly charged cylinder at K=0. This subtraction will correspond to

the omission of an n=0 term in Eq. II-34a. We now have a definition of
AY which allows the sum to be replaced by an infinite integral.- The
reference potential ¥° is independent of salt concentration, and the
effect of varying K is contained entirely in A¥. The latter will separ-
ate naturally, in the continuous limit, into the potential of a continu-
ous charge distribution, and corrections that depend on the pitch.

Equation II-34a in the continuous limit gives

.'GJ

oo 42 0 , ']
AD- \:,,i: SﬁQ_gi(h"‘hn)exP[l{h W"P} (V=sa)
T o



where B is the charge density per unit length of axis.and

¢: e+ 2Z[p (V-5b)

A phase shift © has been included in order to accomodate the effect of a
double strand of charges on DNA. Either 6=0°, in which case the term

z=0 should be omitted, or 0=180°, in which case:all charges are to be

included in the sum.

A delta function may be recognized to give

- :
A ‘P: ZIP i ho + ai: Ak“cosne} (v-6a)
h=I

with

Aw = hp(amnjp) - h‘:‘(aﬂnlr) (V-6b)

ho- K, (Xa)
D, Xa K (Xa)

(v-6c)




Here the displayed argument of hn is.the value for 2. A super-
script zero indicates.that K=0; its absence indicates.that the actual
value of K should be used.

In the calculation of colligative properties, the quantity of
interest is the difference in reversible work done in charging up a heli-
cal distribution of charge in the presence and absence of salt, F

7 excess
and is related to Ay by

Sdz &P A @(@)

EXCeSS o
(v-7)

Substitution of Eq. V-6a into Eq. V-7 and integration over Z gives

o
Fexcess = 9 L { Kooa)  + sz_ﬂnillhhcosne

X¥a. K (%a)
(v-8)

The first term on the rhs of Eq. V-8 is the excess electrostatic free
energy of a uniformly charged cylinder of radius a. The second class of
terms contains corrections to the excess free energy due to deviations
in the helical charge distribution from a uniform one. When the pitch p
goes to zero,all Ahn=0 and we recover the uniformly charged cylinder
result.

The colligative properties of the polyelectrolye solution depend on



(a l:ext:ess) ,
K ) Ty

£ a2 .
(a;;c%j - -\ + 0w abaxaffs'thncosn%
T,V DA% K‘Z(Xa) a)?:,

(v-9a)

The first term, K'], arises from the interaction of a line of charge
immersed in bulk solvent with the mobile ions. The second term,

pA -1 . .
k(g(Ka)[K P(‘(Ka)] , contains corrections to (3 Faxcess

/8K)T y Tesulting
)
from the fact the helix is wrapped around a salt excluding cylinder. For

a fixed value of K, it is an increasing function of Ka. Increasing Ka

gives rise to a larger excluded salt effect and a concomitant increase

in Fexcess‘ The third class of terms are the corrections to Fexcess due
to deviations in the helical distribution for a uniform one. Included in
pFexcess

/’

> = 2XL[3 (4
P excess Ralts (Q_ fi:Ahncosne])
d X "= TV

)
(v-9b)



are the effects of mobile ion screening. Hence, pFexcess should be a
decreasing function of Ka.

In the o helical case, a=7.5A°, p=5.1A°, and 0=0°. The required
values of hn are easily computed from Eq. II-34c. Consultation of

table I verifies that to an excellent approximation

K
Fexcess = B°L fo(X%0) ; all Xa £ 2
D, Xa¥ ()

(v-10a)

and

S ——

AN AVARDYS Ra Ke(xa)

dFexcess = 92[. i-l + KI(KA)

)

(v-10b)

Thus, for an o continuous helical distribution of charge, the
excess electrostatic free energy is well approximated by that of a uni-
formly charged cylinder. Moreover, it is only in the Timit that Ka»o
that the helical distribution is adequately represented as a line of
charge.

In Figure 3, we plot -C*(Ka) as a function of Ka
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o 41rho

3.869E-01
2.882E-01
2.352E-01
2.004E-01
1.753E-01
1.562E-01
1.411E-01
1.288E-01
1.186E-01
1.099E-01
1.024E-01
9,594E-02
9.025E-02
8.521E-02
8.072E-02
7.668E-02
7.304E-02
6.973E-02
6.672E-02
6.396E-02

1

-8.475E-07
-3.389E-06
-7.622E-06
-1.354E-05
-2.115E-05
-3.042E-05
-4.136E-05
-5.396E-05
-6.819E-05
-8.406E-05

-1.015E-04

-1.206E-04
-1.413E-04
-1.635E-04
-1.872E-04
-2.125E-04
-2.392E-04
-2.674E-04
-2.971E-04
-3.282E-04

TABLE I *

4“Ahn/n

2

. 109E-07
.435E-07
.979E-07
.774E-06
.771E-06
.989E-06
.428E-06
.088E-06
.967E-06
.107E-05
.338E-05
.592E-05
.868E-05
.165E-05
.483E-05
.824E-05
.186E-05
.569E-05
.973E-05
.399E-05

3

-3.338E-08
-1.335E-07
-3.004E-07
-5.340E-07
-8.344E-07

~1.201E-06

-1.635E-06
-2.135E-06
-2.702E-06
-3.335E-06
-4.035E-06
-4.801E-06
-5.633E-06
-6.531E-06
-7.495E-06
-8.525E-06
-9.621E-06
-1.078E-05
-1.201E-05
-1.330E-05

* 4irAhn as a function of n and K for an a helix, P/a=.68

4

-1.420E-08
-5.679E-08
-1.278E-07
-2.271E-07
-3.549E-07
-5.110E-07
-6.955E-07
-9.083E-07
-1.149E-06
-1.419E-06
-1.717E-06
-2.043E-06
-2.397E-06
-2.780E-06
-3.190E-06
-3.629E-06
-4.097E-06
-4.592E-06
-5.115E-06

-5.667E-06

5
-7.304E-09

--2.,922E-08

-6.573E-08
-1.169E-07
-1.826E-07
-2.629E-07
-3.578E-07
-4.674E-07
-5.915E-07
-7.302E-07
-8.834E-07
-1.051E-06
-1.234E-06
-1.431E-06
-1.642E-06
-1.868E-06
-2.109E-06
-2.364E-06
-2.634E-06
-2.918E-06

6

-4.241E-09
-1.696E-08
-3.817E-08
-6.785E-08
-1.060E-07
-1.527E-07
-2.078E-07
-2.714E-07
-3.434E-07
-4,240E-07

. -5.130E-07

-6.104E-07
-7.164E-07
-8.308E-07
-9.536E-07
-1.085E-06
-1.225E-06
-1.373E-06
-1.530E-06
-1.695E-06



Figure 3. @ is the value of -C%(Ka) as a function of Ka if the
« helix were a line of charge. -C*(Ka) given by Eq. V-11b, O
is the corrected value incorporating the backbone effect on the colli-
gative properties. We have used p = 5.1A° and a = 7.5A°.
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"C“(KQ): DaX (aF::CCSS) (v-11a)
FL X Ty,

qu(XQ) = -+ Kj(Xa)
H*(xQ) -

(V-11b)

3

For Ka> _,15 or Csa 3.7x107°M, there are experimentally observable devia-

tions in colligative properties from the line of charge model.

7 and

It is straightforward to following Manning's original treatment
obtain the colligative properties of the a helical polyelectrolyte.
Corrections to Manning's theory will be presented after DNA double helical
polyelectrolytes are examined.

If pitch is set equal to infinity, the helix reduces to a line of
charge embedded on the surface of a low dielectric, salt excluding cylinder.
This model may be relevant to linear, non-helical polyelectrolytes such
as poly(acrylic-acid).

It follows from Appendix J that
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Hence, by Eq. V-7

lihe 2 0?
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As previously, the first term on the.rhs of Eq. V-13 is the free
energy associated with the reversible work done in.charging up a uniformly
charged cylinder. The second class of terms appears due to the angular
asymmetry in the lines of flux induced by the presence of the low
dielectric, mobile ion free cylinder.

Similar]y}

fine |
a\:ex:ess - @_"'_Liq ¥ s 2(%Ka) +2D,X [i'al?meZ{
dX b :
Tv '3 f, (X‘Q v (v-14)
Define
"C"("Jsa): -+ Kz(kd) + 2D, /3 [?Aheme]
"(Xa) (Q‘nx
||\/

(v-15)



In Figure 4, we plot -Cline(Ka) as a function of Ka. As expected

) « s gline
when Ka<<1, the dominant contribution to(?FexceSS'

3K
line of charge in bulk solvent. Provided that the cylinder's radius is

) arises from the
:T)V

very smallrelative to K, the mobile ions essentially interact with a Tine
of charge with a slight perturbation caused by the dielectric cylinder.
However, when Ka> .15 there are measurable deviations in -C]ine()(a)
from a 1ine of charge in bulk solvent model. In Table II, we present

the maximum salt concentration versus cylinder radius for which the line
of charge model in bulk solvent adequately characterizes the colligative
properties of an infinite pitch helix.

Note that -C]ine(Ka) is a decreasing function of Ka for a fixed
value of K. This may perhaps be rationalized by a qualitative argument
analogous to that for the two point charges (see the discussion at the
close of section III.) First of all, it is those terms which reflect the

angular asymmetry in the potential,

o
Dy ( 3 Y_é‘_m\f{"el
din X 13

Zexcess
3K

charge in bulk solvent result). As previously, we argue that the lines

that dominate the difference in(?F1i"e ‘) from -1. (The 1ine of
T)V

of flux will tend to avoid the cylinder, the avoidance increasing with
Jncreasing Ka. Whereupon, over a region of space opposite the line of

charge (0=180°), there is a decreased flux density from both the spread-



Figure 4. * is -C”"e(Ka) given by Eq. V-15-as a function of Ka for a

line of charge embedded on the surface of a low dielectric, D]= 2, cylinder.

-1, 4 , is the value if the 1ine of charge were immersed in bq]k solvent.
@ gives the uniformly charged cylinder contribution to -Ch"e(Ka).
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TABLE II

avs csmax
a in A° csmax in moles/liter
1.25 | 133
1.75 .069
3.0 J .023
13 .0012

* a versué the maximum salt concentration a line of charge in bulk sol-
vent adequately predicts the colligative properties of a helix of

infinite pitch.



ing of the lines of flux and.their termination on counterions. Con-
versely, in that portion of space near (0=0°).the line of charge, there
is an increase in flux density vis a vis the absence of the dielectric
cylinder. With respect to the line of charge in bulk solvent, thg net
effect appears to be a decrease in the reversible work required to charge
up a helix of infinite pitch. Thus, the reversible work decreases with
increasing asymmetry i.e., increasing Ka.

We continue this section with an examination of the colligative pro-
perties of é DNA type double helix. The charge distribution is modeled
as two helical stripes of charge, 180° out of phase with respect to each
other. The stripes of charge lie on the surface of a low dielectric, salt

excluding cylinder. Thus, by Eq. V-6a

AY = 3§ ho+ az:zfn,n(ncosmr)}

(v-16a)

B is the charge density per unit length of axis; in DNA the unit of length
of axis is 1.7A°. Clearly only the even n contribute to the sum in

Eq. V-16a.

DNA

NA 0
2y’ = 2p {homz',m,z“ {
h=

(v-16b)



We have computed the Ahzn from Eq: V-6b. .The corrections to the uniform
charge distribution are extremely small for Ka<1.0 as a brief consulta-

tion of Tables III and IV will verify.

Inserting Eq. V-16b into V-7 gives

DNA 1 PNA
Fexcess® B Sl Ho(% 4+ 4D, é_ Ahy, j
D [ ¥k xa) !
(V-17)
Hence,
DNA DIVA
a_Eexcess = - %—z} C (xa)
X TV D, % (v-18a)
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41rh0

.869E-01
.882E-01
.352E-01
.004E-01
.753E-01
.562E-01
.411E-01
.288E-01
.186E-01
.099E-01
.024E-01
.594E-02
.025E-02
.521E-02
.072E-02
.668E-02
.304E-02
.973E-02
.672E-02
6.396E-02
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41rAhn as a function

1

-6.523E-05
-2.596E-04
-5.791E-04
-1.017E-03
-1.566E-03
-2.215E-03
-2.954E-03
-3.770E-03
-4.652E-03
-5.588E-03

-6.568E-03

~7.580E-03
-8.615E-03
-9.664E-03
-1.072E-02
-1.178E-02

- =1.283E-02

-1.387E-02
~1.490E-02
-1.592E-02

of n and K for a DNA 1ike double

TABLE

41rAhn

2

.204E-06
.677E-05
.255E-05
.463E-04
.277E-04

.264E-04
.418E-04
.734E-04
.206E-04
.827E-04
.059E-03
.249E-03
.451E-03
.665E-03
.890E-03
.125E-03
.369E-03
.621E-03
.881E-03
.148E-03

n

ITI*

3

.843E-06
.136E-05
.555E-05
.535E-05
.074E-05
.017E-04
.380E-04
.798E-04
.268E-04
.790E-04
.362E-04
.984E-04
.654E-04
.371E-04
.133E-04
.939E-04
.787E-04
.676E-04
.603E-04
.057E-03

-1.
.897E-06
.101E-05
.956E-05
.053E-05
.392E-05
.969E-05
.784E-05
.834E-05
.212E-04
.463E-04
.737E-04
.033E-04
.351E-04
.690E-04
.051E-04
.433E-04
.834E-04
.256E-04
.697E-04

4
225E-06

helix, P/a = 3.45

5

.348E-07
.539E-06
.710E-06
.015E-05
.584E-05
.280E-05
. 100E-05
.045E-05
.114E-05
.305E-05
.618E-05
.052E-05
.061E-04
.228E-04
.407E-04
.597E-04
.799E-04
.012E-04
.236E-04
.471E-04

6

.704E-07
.482E-06
.333E-06
.923E-06
.250E-06
.331E-05
.811E-05
.364E-05
.989E-05
.687E-05
.457E-05
. 298E-05
.210E-05
.193E-05
.247E-05
.369E-05
.056E-04
. 182E-04
.315E-04
.454E-04



Ka

1.5
1.6
1.7
1.8
1.9
2.0

8_1

e faa
.38690
.28823
.23515
.20037
.17532
.15624
14112
.12881
.11856
.10987
.10242
.09594
.09025
.08521
.08072
.07668
.07304
.06973
.06672
.06396

TABLE IV

Ay

DNA

vs Ka

.38674
.28759
.23372
.19785
17144
.15073
.13375
.]1936>
.10685
.09574
.08573
.07658
.06812
.06025
.05286
.04589
.03928
.03299
.02699
.02124

O=x

.38701
.28869
.23618
.20217
.17810
.16016
.14634
. 13546
.12674
.11968
11391
.10916
.10523
.10197
.09925
.09697
.09507
.09346
.09212
.09098

average of
o+ w,1.e.
AY DNA

. 38688
.28814
.23495
.20001
17477
.15544
. 14005
.12741
.11679
10771
.09982
.09287
.08668
.08111
.07605
.07143
.06717
.06323
.05955
.05611



where

PNA 00

“C(xa)z -1+ KZxa) + LIDQ(J[”,"AHE%
Xa. K,050) dInX TV

(v-18b)

In figure 5 we plot -CDNA(Ka) as a function of Ka. Whenever Ka> .15 or

3

CS; 2.1x10"° M for DNA, appreciable corrections to the colligative pro-

perties as predicted by Manning are necessary. If Ka>.5, we find a con-

tribution to CDNA

(Ka) due to deviations in the double helical charge
distribution from cylindrical symmetry. Such effects are to be expected
when the screening length is of the order of-the pitch or smaller.
Futhermore, corrections to cylindrical symmetry must also depend on the
ratio of the pitch to the cylindrical radius. That is, for fixed KP,
whether or not the charge distribution appears uniform depends on how
tightly wound the helical stripes are. In the case of DNA double helix,
P/a is 3.45 and KP=1 when Ka=.3. Thus, corrections to the uniform charge
result are observed in CDNA(Ka). On the other hand, an a helix has a
pitch to radius ratio of .68, and KP=1 when Ka=1.5. It is therefore,
not surprising that for Ka<2 corrections to the uniform charge distribu-

tion are negligible in the a helical case.

This section is concluded with a brief presentation of some corrected



Figure 5. ® is the value of -CDNA(Ka)_ given by Eq. V-18b as a

function of Ka. ® is the contribution of the uniformly charged
cylinder to -CDNA(Ka). -1, A > is the value of DZK (aFexcess)
L\ sk /T

for a line of charge of equivalent charge density. The parameters of the
DNA helix were p = 34.5%, a = 10.0A°. '
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colligative properties for o helical and DNA type double helical charge
distributions. We shall employ Manning's notation7 and assume only
monovalent mobile ions are present.

Define

5 ¥
D.k.Th

b is the linear spacing along principal axis of the charges.

When &<1, the activity coefficients of the mobile ions are7

lrﬂfi = d Fexcess
o Ny TV s (V-19a)

Here "i"equal to 1 refers to counterion and 2 to coion, nj "is the number
density of mobile jons of species "i"; and 6= «, line or DNA refers to the
o helix, line of charge on the dielectric cylinder, and DNA double heli-

cal polyelectrolytes respectively.

Now
')
( aFe X(ess - C) FexCEﬁS ox
Ny dXK on( (V-19b)



Consequently, we can write if g<1

. . |
\n‘6£="% X(Xt+2) Cg(ka) T -
‘i J
(V-19¢)
Here C%*(Ka) is given by Eq. V-{ib, C]i"e(Ka) is given by Eq. V-15 and
CDNA(Ka) is obtained from Eq. V-18b.
X is the ratio of the concentration of counter ions from the polyelectro-
lyte Ngs to the concentration of counter ions from the simple salt, hs.

The mean activity coefficient Yf is:

\hXE = LU nt +Iny]
- 2 LTINS (v-20a)

)
In¥, = - £ ><()<+2Y'Cg(><a) ;&<

2 (v-20b)

The osmotic coefficient ¢6 is related to the mean activity coefficient

by

8 §
4): I+ Iny, (v-21a)



Employing Eq. V-20b, we have

$o - Ex oy Co) 8¢\

[l

2 (v-21b)

In the 1limit that N0, X and CG(Ka)+1. Denoting the salt free

osmotic coefficient by ¢g we have

o= -, <l
R

in agreement with Manning.

(v-22)
7

For £>1, we proceed in an identical fashion as Manning does7 to
find
e (Ee ) -5 coxa) |
| = X+ 1) exp (Xa ;5,;-7[ (V-23a)
(X+1) 2(E'x+2)
§
2”.‘Z.

= exp - Csfx'a) ] ; &1 (v-23b)
2 (€'x+2) |

' 2

X = ‘mjl (E'ne + ns) 5 571 (v-23c)
D;lhBT



-
1]

—Ji’i;"'x CS(K'a.) te'v vy 2 5 57|
(X+ 2) (V-24a)

(P?,:. (28" , L 9

(v-24b)

By analogy to simple electrolyte theory, it seems appropriate to
designate Equations V-19c to V-24b as extended Manning limiting laws.
It follows from Eq. V-21b, V-22, and Eq. V-24a and b, that the

so-called additivity ru1e7

)
¢ (netans)- CDgne + Ahg
(v-25)
holds only in the limit that Ka+o, i.e. CG(Ka)+1. This conclusion casts
further doubt on the interpretation of Eq. V-25) which states that a
fraction (1-¢p) of the counterions from fhe polyelectrolyte salt are
bound to the polyion. Strictly speaking Eq. V-25 is valid for helical
polyelectrolytes when they appear as a line of charge, in other words at
infinite dilution. However, as a matter of practical application, Eq.V-25

is a useful approximation whenever Ka<.15. This completes the discussion



‘of the helical array of .charges.



VI. Discussion of Results

The linearized Poisson-Boltzmann has been solved to obtain the
potential arising from a point charge in, on, or outside a dielectric
cylinder. The cylinder is assumed to exclude the salt solution in which
it is immersed, to have a dielectric constant:D], that may be different
from that of the solution, namely DZ’ and to be infinitely long.
Numerical results are given for the special case in which both the source
and test charge reside on the surface of a low dielectric cyiinden; they
are on either the same or opposite sides and are separated by an axial
distance Z. When the two charges are on the same side and colinear, the
potential is significantly increased, over a considerable distance, above
that if the charges were 1in bulk solvent. In the limit that Z»0, the
potential is eqﬁivalent to that of charges on a planar dividing surface
between twovdifferent dielectric constant regions. Placing the charges
on opposite sides of the cylinder gave results, which are, at first
glance, indeed surprising. The low dielectric cylinder decreases the
interaction energy between the charges! Moreover, the potential between
source and test charges spatially very far apart, but near the cylinder
is given by the screened coulomb potential characteristic of charges in
bulk solvent plus boundary corrections that are on the order of the
radial variation in the screened coulomb potential.

In the context of a continuous charge -model, we have extended
Manning's limiting laws to helical polyelectrolytes. The actual polyion
charge distribution is replaced by a thin, helical stripe(s) of'charge
on the surface of a mobile ion free, low dielectric cylinder. More ex-
plicitly, we treat a helical,DNA type double helical charge distributions,

and a helix of infinite pitch. A helix of infinite pitch is a line of



charge on the surface of the dielectric cylinder. When Ka>.15,
appreciable corrections to the colligative properties as predicted by a
line of charge model become necessary. In the spirit of simple salt solu-
tions, we denote the colligative properties calculated for the o and DNA
helices as extended Manning limiting laws.

Until now, a has been defined as the radius of the low dielectric
salt exc]udfng cylinder; no explicit relationship to the molecular geo-
metry of the linear, non-helical polyelectrolyte was discussed. As a
first approximation, it seems reasonable to associate a with the dis-
tance of closest approach to the backbone of the polyelectrolyte; i.e.,
van der Waals radius of the backbone plus mobile ion. We observe that
our theory can be straightforwardly extended to include the finite size
of the ions; for small K the corrections should be of minor consequence.
In addition, our qualitative results should remain unchanged.

At a fixed axial distance, our numerical results indicate that the
interaction energy of two charges on the surface of a dielectric cylinder
is quite angle dependent. When 6=0° and the magnitude of Z is less than
several cylindrical radii, the interaction energy increases greatly with
respect to that of charges in bulk solvent. At the other extreme, 6=180°,
the interaction energy decreases appreciably vis a vis charges in bulk
solution. One cannot but wonder if the angular dependence of the poten-
tial is perhaps at least partially responsible for the large expansions
observed in semiflexible polyelectrolytes. Let us, for a moment, view
the semiflexible polyelectrolyte as a locally cylindrically symmetric
dielectric region with its charges on the dielectric surface. Our

numerical results imply that the trans configuration of the backbone,



(6=180° between the charges) will be enhanced over and above that if the
low dielectric region were_ignored; In other words, .the chain expansion
should be larger than that predicted by a 1ine of charge model such as
is discussed in the next chapter. While the above is mere speculation,
further investigations into the low dielectric effect on polyelectrolyte
conformational statistics is clearly warranted.

We conclude our discussions with several observations on Manning's
counterion condensation theory:7'9 In his investigations, Manning re-
places the actual flexible, linear polyelectrolyte by an infinitely thin
line of charge. To the uninitiated and perhaps naive, ignoring the in-
fluence of the cylinder on the excess electrostatic free energy seems to
Ee an approximation of questionable validity. Such a query provided
part of the original motivation for this work. We therefore examined the
colligative properties of helical polyelectrolytes and found when
Ka3.15 a 1ine of charge model is inadequate. On the other hand, when the
screening length is large relative to a, the helical polyion appears as
a line of charge and Manning's original treatment is appropriate. Con-
sequently, we formulated a series of extended Manning limiting laws valid

for all values of Ka.



Chapter 3. The Wormlike Polyelectrolyte
VII. Introduction

In the previous chapter, the influence of a low dielectric cylinder
on the potential of various charge distributions was examined. We now
turn our attention to a particular limiting case of that discussion, the
line of charge in bulk solvent. While cognizant of its restricted range
of applicability, we shall treat the semiflexible, linear polyelectrolyte
as a structureless, charged spéﬁe curve, i.e. a wormlike polymer with a

22 (calculation of the equilibrium dimen-

continuous charge distribution.
sions and the colligative properties of a wormlike polyelectrolyte occu-
pies our attention throughout this chapter.

Polyelectrolyte excluded volume theories assume that the unperturbed
mean-square end-to-end distance <h02>, is independent of the supporting

23,24,25

electrolyte concentration, CS. The basis of this assumption comes

either from the use of Stockmayer-Fixman, S-F, plots, which give a slight

25

ionic strength dependence for the unperturbed dimensions,“~ even though

S-F plots assume <h02> is independent of solvent, or from direct measure-

ments in relatively high salt concentration theta solvents.27’28

. However,
for sufficiently low CS, one would intuitively expect that local electro-

static forces exert a significant influence on <h 2 The model of Rice

0
and Harris takes account of local electrostatic interactions by consider-
ing an equivalent Kuhn chain with charges concentrated at the midpoints
of the statistical elements; if nearest neighbor segment interactions are
assumed, the polymer behaves as a random chain. Thus, in the absence of
long range interactions, the somewhat artificial Rice-Harris model gives

unperturbed chain dimensions that depend in a complicated fashion on Cs‘

In section VIII, we calculate the electrostatic persistence length, Pe]’



of a charged, wormlike polymer which is sufficiently rigid that there
are no excluded volume effects. The total persistence length, PT’ is a
measure of chain stiffness and, qualitatively, can be regarded as the
distance along the polymer for which a given vector direction persists.

Hence, the more rigid a polymer is, the large is PT‘ We can relate,

: 2 30
Pe] to <h0 > by

<ho > = AL(R+P)- aLE,

(VII-1)
where L = contour length of the chain
P0 = persistence length in the absence of electrostatic forces,
(i.e. C> ),
PT = total persistende length.

Pe] is obtained for (i) a continuous, uniform charge distribution

without charge rearrangements due to bending and without fluctuations
due to thermal motion. We then consider two additional calculations
relating to Pe1: (ii) the continuous charge distribution with charge
rearrangements, but no f]uctuations3(iii) the continuous charge dis-
tribution with charge rearrangements and fluctuations. Cases (ii) and
(iii) are found to agree with the results of case (i), if the polymer is
assumed to be locally stiff; the exact definition of local stiffness will
be given in the body of the paper.

Having obtained a theoretical prediction for Pe], we compare our
results with experimental data on carboxymethylcellulose in section IX.

Reasonably good agreement between theory and experiment is demonstrated.



Pursuant to the calculation of Pe]’ the increase in electrostatic
free energy due to bending of the polymer is obtained. Whereupon, it

is straightforward to determine the total excess electrostatic free
3

excesss 1+-€-» the difference in reversible work required to

energy,

charge up the polymer in the presence and absence of salt. Clearly,
T

Fexcess
of a line of charge and (2) the excess bending electrostatic free energy

consists of two terms: (1) the excess:electrostatic free energy

averaged over all configurations of the molecule.
As in chapter 2, we then proceed to examine the colligative proper-
ties of the wormlike polyelectrolyte. In particular, Manning's assump-

7 that the dominant contribution to the colligative properties arises

tion
from the rod-l1ike configuration is investigated. Within the context and

limitations of our model, his supposition is found to be correct.



VIII. Calculation of the Electrostatic‘PersistenCe Length

VIIIA. General Formalism

Consider a charged space curve whose infititesmal elements interact
via a screened Coulomb potential. We wish to calculate the electrostatic
persistence length, Pe]. V, the increase in potential energy per unit
length due to electrostatic repulsions relative to the reference config-

uration of a straight rod, is given by30:

-

V= LeRe

o]
(VIII-1)

e = bending constant of the rod

Rc is the radius of curvature of the element of space curve at which V is

evaluated.

It then follows immediately from the worm model that30

L,
Che> — 20, = 20,2 2ecX)

L hﬁ:r (VIII-2)
kB is Boltzmann's constant.
Thus, we direct our attention to determinihg the explicit form of e=e(K)
in Equation VIII-2.

Let us choose the origin at an arbitrary point somewhere in the

middle of the space curve, and let us parameterize the space curve by s,

the contour length relative to the origin. If F(s) is the location of



a point on the space curve relative to the origin, then

f(s): -ccs)"; + 3(5)5 t h(s)f\
' (VIII-3)

where %, 3, E are unit vectors in the x, y, z directions respectively.
Define‘Eo(s) to be the location of the point in the straight rod reference

configuration. We shall choose the reference configuration to 1ie along

i so that we can write

‘E(s): 51

(VIII-4)
Now, the length of the space curve must remain invariant, i.e.,

b
S(b)= 2[ Fres)+ (3}5))1*'(%'(5)32] /;5
b '
sty = ¢ [(E9)?)]2ds I

for arbitrary b. The prime denotes differentiation with respect to s.

Hence,

(-f-‘ '(s)\z + (3'(53)2+ (‘r\'(s)\)z: (fo'(sﬂz-:. \

(VIII-6)



~

Setting f'(s) = 1 - &(s), where 8(s)350, we find on direct substitution

into Eq. VIII-6 and on solving the quadratic that results

= V- { (-C (3‘(5))z+ (h'(s))z]ih

(VIII-7)
We now introduce the concept of local stiffness; i.e., g'(s)2+h'(s)2<<1
(We see later this is equivalent to neglecting terms of order Rc'4)_
] 2 2
f (s)= |-8cs) = l”:"ﬁ (S'csﬂ +(h'esy) }
' (VIII-8)
Furthermore, the unit tangent vector E_(s) is given by
/ !
9‘((5): (‘(‘Cf’), 3(5)) L\'(S))
(VIII-9)

A general property of unit tangent vectors and their derivatives

follows from uﬁ(s)'y‘(s)z’l.

Us)- dUCEB) = {'es) f ") + 3‘{:53 3"cs\ + Weshes) = 0

Pm—

S

(VIII-10)



From Eq. VIII-8, it follows that

f '25) = - § 3'(5)3'253 + h(s) \n"cs)}

and Eq. VIII-10 becomes

] 3'(5)3"cs)+h'cs)\n"cs)} § ( 3'(5))7'+(h'(s))7'} =0

(VIII-11a)
This implies that
I . '
-?(5) =0 (VIII-11b)
Furthermore, the radius of curvature is related td%? by
o " =2 " o
RCCS) 6%. 3% = (hcsﬂ—r(gcs))
s 35 (VIII-12)

the last expression follows from Eq. VIII-1la.

A general property of g(s), h(s), h'(s), g'(s) is that they must
vanish at s=0; i.e., the reference and given configurations have the same
tangent vector at the origin. By expanding g(s), g'(s), h(s), h'(s) in

a Taylor series about s=0 and using Eq. VIII-12 we find



NOE ( 5- 53 | 3(0) 52 h'w) s‘")

6 2
Re @ BE! (VII1-13)

VIIIB. Continuous Charge Distribution with No Rearrangements or
Fluctuations

At this point, a brief discussion of the appropriate electrostatic

potential is necessary. According to MacGillvray and Winklemannlz, and

MacGi]]vray13’]4

if ¢ ='“q/(DkéTa) < 1, the Debye Huckel approximation to
the potential, YpH? for a line of charge is the asymptotic solution of

the nonlinear Poisson-Boltzmann equatfon. When £>1, the asymptotic solu-
tion to the Poisson-Boltzmann equation is_g']wnH. Note that the backbone

charge density o is still equal to ¢ Physically, the decrease in

o
potential may be interpreted as an increasing in clustering of mobile ions
near but not on the line of charge. For small deviations from cylindrical
symmetry, it seems reasonable that these qualitative conclusions remain
valid; we shall assume such is the case. As a matter of completeness,
however, when £>1, we shall also employ YpH to calculate Pe]'
Let V* = potential at origin, per unit charge, due to electrostatic
repulsion relative to the straight rod configuration. We shall neglect
intermolecular interactions and assume the polyelectrolyte is a polyacid.

The &<1 case is treated explicity.



L

1 L
V. & KBl Ms 2 IEe AHS
D [Fe| s 1Fe) S

(VIII-14)

where
0y = charge per unit length
g, = aq/a = aly
o« = degree of ionization
q = charge per monbmer unit
a = length of monomer unit

1 _ 1000Dk,T *%

i

2 2
4ne Nzicizi
e = protonic charge
c; = concentration of ionic species "i" in solution
- .th .
z; = valence of i~ species
D = solvent dielectric constant.

L] and L2 are the arc lengths of the curve from the origin to the ends.
We shall:assume a 1:1 supporting electrolyte is present. -

In what follows, we assume that the interaction is sufficiently
short-ranged that letting L.‘,L2 + » doesn't affect the result, i.e.,
K<<L.



5
1 0o & & VIII-15
D o | E¢s)) S ( |
Now,
) 7,
IFl= sS V- s *

. \ﬂ- % wt‘?czfo)~§ |

. (VIII-16)

The last step follows from Eq. VIII-12.

We expand |F(s)| and e'KlF(S)l in a Taylor series about s=0 to

terms of order 1/Rc2. (This is the local stiffness approXimation). Hence,

-
v

-X1F(s) XS

-l
€ =€ S+ S+ ﬁl ’f
I Fesy) AUREe) 24 R0
~ (VIII-17)
Substitution of Eq. VIII-17 into Eq. VI»II-15 yields
V. 6§42 RI]
. (VII1-18)

Therefore, the potential of an element of length d2 is



Vdl- V¥q - V¥,
{ ,_io(ao ! Go dL

or

V = °<.z rloz
8 %2D R %)

The factor of 1/2 is introduced to avoid overcounting; i.e., we wish to

(VIII-19)

consider the potential acting on each infinitesmal element only once.

Furthermore, we have substituted aro for Ty

Comparing Eq. VIII-19 with Eq. VIII-1, it is readily seen that

21

€- &%
HX*D
Substituting the value of e in EQ.VIII-20 into Eq. VIII-2 we find if &<1

(VIII-20)

~ theo
a-?e‘ - 0<z r'oz

2
% kBT b (VIII-21a)

for the uniformly charged rod without charge rearrangements due to beinding

and without fluctuations. In appendix K, we demonstrate that the result



for a discrete charge model without rearrangements or.fluctuations re-

duces to Eq. VIII-21 in the limit Ka+0.3]i Moreover, we note if &>1,

thes a
9\‘7@\ = & &,

’-_—___—_—_/

axzhéro

(VIII-21b)

In all that follows, we shall for convenience write ro as

r

0 q/a if &<l

Ty g'%q/a if g1

VIIIC. Continuous Charge Model with Charge:Rearrangements but No
Fluctuations

We now consider case (ii): the continuous charge distribution with
charge rearrangements, but no fluctuations. The.change in free energy
of the charged space curve relative to the straight rod configuration,
AG, can be decomposed into three parts: First;,:there is the term aris-
ing from the excess electrostatic interaction due to bending between
various parts of the polyelectrolyte. For definiteness, we shall assume
the polymer is a polyacid. Then, there is an entropic contribution aris-
ing from the mixing of occupied and unoccupied sites. A site is said to
be occupied if it has a net negative charge and unoccupied if the site
has no net charge. When the polymer is bent, the fraction of occupied
sites will perhaps change; this gives rise to the entropy of mixing term
and the third contribution to AG, the addition of hydrogen ions from the

solution to the polyelectrolyte which acts to reduce the repulsive force



" between segments.
Before presenting an expression for AG, we $hall derive an expression
for the entropy of mixing. Random miking is assumed.

For a discrete array of charges

= £ 5 £ . L
- - f - t t t
A‘Smlxmj RB% N' InXl +N§l" YZ N, l")(," NJl 'nxz}
(VIII-22)

Here i and f refer to the initial and final states. N1 is the net number

of sites occupied by a negative charge whose valence is determined by

the nature of the individual polyacid. N2 is.the.number of sites occupied

by H+ ions.
Xj= NJ
.‘-
Let N‘ Nz'

;
=0 Nf: w-0 ; and N = Opef

L L
(the straight rod configuration is the reference

configuration)

where o is the total number of sites per length.



. Thus

£ g
)(l:: fg 5 )e::. \- 67vd ; fz%eg = o
w

The continuous version of Eq. VIII-22 becomes

L
AS = -k %ds? i) « (0-6) (=0 +

V"\XIrga
L
k[ (45 Gep tnet 4 (w-a'mg)\nu—oc)ﬁ
° | (VI11-23)
Here we have parameterized the arc length from one:end of the worm.

Thus, AG is given by

NG TR CUsdss s Uiissn - gl
. _ngs 5%6(5)0'(5)U(ls-sl)—6',.ep§_ JZ
qw2p © 0 S
T L |
TSy 4 BT 5009 - 6 ) na]

(VIII-24)



" where

-X[s-s'|
(|5 s\) € i\s-s\ + \s-si ¢ Xls- 5\ }
JRZS)  QuRKS)

LT is the activity of the hydrogen ion in solution; i.e., at an infinite
distance from the po]ye]ectro]&te.

The last term in Eq. VIII-24 arises from the free energy contribution due
to H+ addition caused by the bending of the chain.

We shall now assume that the charge distribution varies slowly on

the scale of the range of the interaction, K'];' At least to lowest order,

o(s), o(s') are functionals of and change on the scale of the variation

'2. In the local stiffness approximation, Ré'z(s) is approximately

in RC
constant, and as in the derivation of case (i), we implicitly assume the

-1 -1

distance over which Rc is constant >K Hence, setting o(s)=a(s')

should be a valid approximation. Thus,

) 0 ls -s')

L LoL ~Kis-s'l
NG = K-gds Gch>g ds U(1s-s'l) - Sdsgds 6ref & GHS ”
,?wzb 0

L

~-TAS t BT So\s( 615) = Gep) 001

+
h’llxlh%

H

(VIII-25)
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(VIII-26)

s'' denotes the arc length from an origin defined at a point s along the
curve. Note that the lower limit of the integral in Eq. VIII-26 is really
not zero, but a; the real lower limit arises from consideration of the
discrete nature of the chain. The integral, I, may be large but it is
finite. Furthermore, thét the lower limits of the.other integrals in

VI1I-25 may be replaced by zero follows from our discussion in Appendix K.

Similarly,
L _Xls-s'l )
Hes) = _l_gacls e % is-s'l + Xls-s'l E
2 4RIy 24 RS)

His) = §9%? Rc"’(s)}"

2

For convenience we shall write Rc'z(s) as Rc' . Substituting the expres-

sions for I and H(s) into Eq. VIII-25 we obtain



NAG(o6) = ["o gds CeorHes) + \"o gdsI( Ge5) ~Grop)
WD 0 w2D o
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(VIII-27)

Now, AG is a functional of o(s); it can therefore be expanded about the

most probable value of o, G, as follows:

NG(6): AG(GH_L st BAG(O‘ a)a“ |

362
U: (vi1I-28)
2
Here 6——(2;- js the second functional derivative of G with respect to o.
So
The second term on the rhs of Eq. VIII-28 is related to charge fluctuations;

we shall consider it further under case (iii). Furthermore,

SAG/ =
56 G:=6

Thus, & can be calculated from

846 =

846 a&ﬂf?mmg ¢ RyTinayt +
g —

w*D

6=¢
(VI11-29)

Gt In(G/(w-8 = O



If we let RZ + 0, 5 = g p and it follows from Eq. VIII-29 that
T= a.303 RBTwPK"‘PP

Aot TP
PH - log(d/(l-d))

PK“P? z (VII1-30)

Let

§: Geel- AR

(VIII-31a)

where A is a constant to be determined.
Substituting Eq. VIII-31a.into Eq.- VIII-29 and expanding out Togarithmic

terms in & to order Rc'z, we find that

G = Oop - <20 -o) r2 .
4DX2RT§ (1-o0)2.303 pltage * 1

(VIII-31b)
Note that o Opaf 35 O 0 and o ~ 1 as would be intuitively expected.

Using Eq. VIII-31bin Eq. VIII-25 for o =G and taking the derivative

of AG(G) with respect to s, one finds to order Rc' , the local stiffness

approximation,

s Js 35

RBT (6 "G're_c) ‘ﬂ ClH* (VIII-32a)
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‘ Mixing (VIII-32c)
s HDX?§ 22303(1-=0 piv, ¥ \f
B.T(G - Gof)lnagt = 2363020 pH RZ 1,
B r‘e'r) N A 303:( (- ) PR o (VI11-324)
Hp X gz.;osu-mwa??ﬂ}
Substituting the explicit forms of %%--AT%%§mixing; KBT(ELcref)lnaH+ to
order R '2, into 246(6) ,
c as
WGG) = BTy
95 $X2D R*
(VIII-33)

Thus, the result of case (ii) is identical to the result of case (i) to

terms of order RC'Z.



VIIID. Continuous Charge Distribution with.Rearrangements and
Fluctuations
We now examine case (iii): the continuous charge model with charge
rearrangements and fluctuations. If we do not assume o(s) = os'),

Eq. VIII-28 can be rewritten as

AGe6Y= AG(F) + ASSasas 506 scss-ECs))(G(s’)-Ecs'))

8@(5)8615 -
(VIII-34)
It follows directjy from Eq. VIII-24 that
2 Xis-sh
5AG l - r‘oc ils s\+ls—5l +)ﬂ§:s'lz ?
GG'csv Soce) w2 D a4 ﬁczcs) QHRczcs)
6 =6
AW (=) (VIII-35)
So that
NGle)- AG(G)-= \—'o <. dsds'e %ls-s) 41s- st + Xls-s'l s'1* 2xer¥(s)
ap ° M Rczrso aLmZm

L
t BgTw (ds Vo)
2 -) 0 , (VI1I-36)



- where

X(S) = ?0'(5) -5(5)}
w

and AG(c) is approximated by the value obtained when o(s)=c(s'); i.e.,

L
ANG(F)-= ga(s o212
o $X?DRYs)

(VIII-37a)
Furthermore, we approximate
L L ' L -
XKis-s'l 2
S dsds' ¢ ¥aus) ~ ;agds TY¥Cs)
° | s-s'l b
(VIII-37b)
since this term is very short ranged.32 Hence,
Lok Xls-s'l
06(6)-AG(E)= EQ:L g g dsds'¥esvts) e { lo-s') # X1s-s'I2 f
D o

® 24RES)

L L
¥ 2lds¥Z 1 4 RaTw (¥%csyds
D ° axX(1-) 0

(VIII-38)



We now expand y(s) and ¢(r) = éKr(r+Kr2) in a truncated Fourier series

Y): f| G COS(QI‘US)

J° L

CJI Sin (QTL_LS)
L

L
Ci = ' ]
y= %S}ms) cos (&lfés)KS‘ E _12 ds X(s)sm(;;ﬂs>
L

Lw
d;(s): io QJ cos (ZTTJS[L)

Lo
- R ' - -
5}3. = Qofis ¢C°5@WJ5/L) o (V111-39)

If we assume L>> range of interaction of ¢(r), it follows that33’34

LUU

AG(6)-AG(E)= o L™ f (¢ +c‘:‘ (}?j
quR2 J=o

Lud

.L-% plw ("07"[}{2’ CJ +C :{
A { 2x01-a)

Futhermore, the excess electrostatic free energy due to bending, G,is
35

(VIII-40)

given by
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LW
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Evaluating the integrals and taking the logarithm of both sides, we find

Lw
G= AG(E) +kT 2 In(Z+ BR)
mz0 . m
~RgT Lw ln (4mk,T) | (v11-62)

where

L (\=d) D

@\m - L POZ ¢m
[

To obtain Gnet’ the net electrostatic free energy due to bending, we

2

must let Rc" -+ 0 and subtract that result from Eq. VIII-42. Hence,
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Here, the explicit expression for % has been.substituted.

Furthermore, the sum can be evaluated by'approkimating it as an inte-

gral. Then,

Wpet = ol + °<<l~°()f'oz(3><2mrr2w”-)5£:
dL %D Re 12D 2303 pg (-4 XPrinTt)

(VIII-44)

However, 1/K>>a = 1/w or w>>K so that

dfnet = T f oo Ty RIZ
2np 2 2
oL §MZDR, 3 D{;z.sosFrrqPPu—«)H}‘m w
(VIII-45)
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By comparing typical experimental data36'38 for the fluctuating term
with calculated values of a2r02/2K2kBTD, it is:readily seen that the

charge fluctuation contribution to Pe] is negligible.



IX. Comparison of Theoretical Electrostatic Persistence Length with

EXperiment

In the development of the wormlike polyelectrolyte model, it is
assumed that

(1) 1/K > a

(2a) excluded volume effects are negligible

(2b) the polyelectrolyte is locally stiff
Condition (1) can be relaxed by an explicit consideration of the discrete
charge nature of the chain (see Appendix K). However, the region where
Pel contributes significantly to PT is precisely that domain where (1) is
valid. Furthermore, condition (1) puts restraints on the range of ionic
strengths, I, where (2a) is applicable. For (2a):to hold in general, we
must examine the polyelectrolyte in low I, 6 solvents. Unfortunately,
the existing measurements are in 6 solvents at relatively high I; our

theory predicts a very slight dependence on I, as is observed.27’28

Hence,
we must choose a system at low I in which the polyelectrolyte is sufficiently
stiff that excluded volume effects are negligible anyway. Finally, since
light scattering gives an unambiguous determination of polyelectrolyte
dimensions, it is the method of choice.

One of the surprising results of our literature search to find
suitable data 1is the lack of light scattering measurements on polyelec-

trolytes at low ionic strength. Moreover, we were unable to find any light

scattering data on polyethylene imine hydrochloride PEI(HC]):29
cr
+
( c-c=N-)y
H



PEI(HC1) conforms perfectly to the charged worm model; it has no side
chains and all the charges are located on the polymer backbone. Clearly,
- more experimental work is required to fully test the applicability of the
proposed model.

On the basis of the above, we decided to compare the experimentally

39,40

determined dimensions of carboxymethylcellulose, CMC, in aqueous

NaCl solutions with those of our thebry in the following way: Schneider

exptl

and Doty determined b by 1ight scattering.

b* = <W7/\
(1X-1)
N is the degree of polymerization; the measurements were corrected for
polydispersity.
btheo is obtained from Eq. VII-1, IX-1, and L = Na by equating

———y 2
a P'r = b
A . (1X-2)

exptl Vs I-l‘ngxptl is

We then plot the experimentally determined b
related to the zero intercept of beth] by Eq. VIII-1 and IX-2. Employing
Eq. VIII-1 and VIII-21b and recognizing that £ = 1.53 for CMC, we have

theo\a expt| theo
(FPP = 2877 aPe\e

T (IX-3a)



where if MacGillvray's results are used]3.

H\eo
(%3-' £ Q-
AKERT ’\'DaL

(1X-3b)

On the other hand, if classical Débye Hlickel theory is assumed valid,

2 Pﬂieé =) = «* 92

7 X2 DRBTaf‘

(IX-3c)

As seen in Table V, Eq. IX-3c agrees quite well with ng’]‘Pt‘ , and
Eq. IX-3b gives somewhat poorer agreement. We are.thus left with the
dilemma that the Debye Hlickel potential gives results that accurately

predict 2P§¥pt1

and the supposedly "correct" potential does not.

Several explanations come to mind: first of all, the charges in CMC
reside on the side chains; it is possible, though unlikely, that the
charge density of the equivalent 1ine of charge is such that £<1. Con-
versely, £ may in fact be greater than one and we are observing a mani-
festation of the low dielectric backbone and salt exclusion effect on the
potential as discussed in section V. Moreover,.the presence of excluded
xpt theo i

volume effects would also serve to make 2P21 > ZPE]_

this possibility further, we suggest both experimental measurement of

To explore



TABLE V

Ptheo

80 is used

for the dielectric constant D.

Comparison of 2PeT with 2 el - *
-1 eXpt] theo theo
I
I b 2Py 2Pey Pere=1)  Per(e)
.5 2 40.2A° . . 3.03
.05 . 20 43.1A°> 360.7A° 27.9A° 30.4 19.8
.01 100 49.8R° 481.6A° 148.5A° 151.8 - 99.0
.005 200 58.1A° 655.4A° 335.6A° . 303.62 198.1
* For CMC a = 5.15A°, the degree of substitution was 1.15, o« = .96,
Mw = 4.4 x ]05 and £ = 1.53 (Schneider and Doty)39. Rice and Harris40
~give 2Po = 335A° in agreement with our value of 2P = 332.8. A value of



the dependence of b2 on N and the incorporation of <h6?>f:<h02(cs)> into

polyelectrolyte excluded volume theory. Thus, while we have established
that the contribution of electrostatic effects to P% may be sizeable, when
g>1 more work is necessary to test the range of validity of the proposed

model.



X. The Colligative Properties of a Wormlike Polyelectrolyte

In this section, we proceed to calculate the excess electrostatic
T

Fexces
fluence of bending on the colligative properties of our hypothetical

free energy, s,of a wormlike polyelectrolyte and examine the in-
polymer. Within the limitations of the model, it turns out that bending
contributes negligibly. As such, it is only necessary to explicity

consider the £<1 case.

T
excess

Let us divide F into two parts:

T Rod Bendfng
Al @ Xcess

F

excess — excess

(X-1)

Rod
excess

straight rod configuration. Proceeding in a manner. analogous to that in

F is the excess electrostatic free energy of the reference

section V, we find

Rod 2 42
Fexcess X DL ln X

(x-2)

ngggigg is the difference in reversible work, over and above that

of the reference configuration, required to charge up the polyelectrolyte

FGXCESS"'iS given by

backbone in the presence and absence of salt. bending. -



: L _A L
Bending -2
Fexcess= < gods LR, )~ <§&56@%27
rA

(X-3)

< > denotes the appropriate average over all configurations

eo(l() is the bending constant of the space curve in an ionic solution
with a Debye length 1.
50(0) is the bending constant of the wormlike polyelectrolyte in a salt
- free, K=0, solution.

Now,

Eo(X)= ECX) +

eoo

(X-4a)
where ¢ is the bending constant in the absence of :electrostatic inter-
actions, (K==),and e(K) is that portion of the bending constant arising
from electrostatic repulsions in a solution having screening length K'].

Provided that L>>K'] e(K) is given by Eq. VIII-20

€ CX) - o{z r’az'
hB T Y X"h;’ D . (X-4b)




In a similar fashion,

€,0)= E(0) + €0

We note as K+0 and for finite sized polymers, L will eventually be ]es$
than K and Eq. X-4b will be invalid. We can, however, get €(0) be rec-
ognizing that in the limit of infinite dilution, the polye]ectroTyte
assumes a rodlike configuration. It follows from Yamakawa that the bend-

ing constant becomes infinite30 or

lim. KE’:&T_] — 0

X920l 2 Ey(K)
(x-5)
It therefore follows from Eq. X-1, X-2 and X-3 that
T 2p2|
= =X

excess 3 ln X +

L b L

< (ds g0 R? ) - (gds E(6)R.* 7
T2 -1 (x-6)

€ (0) ijs to be treated in lim € (K)
K> 0

At this point the ensemble average over all configurations of the
chain must be calculated. An approximate'eva1uation will be undertaken
in the context of wormlike polymer theory. 30,41

Let (]ztl(L)) be the potential energy of a chain of contour length

L subject to the constraint that the unit tangent vector ({(L), at one



of the ends remains fixed.

U (uw) = Cis ¢

o=

(x-7)
¢ is either eo(K) or eo(O).
Now, Z(%(L),L) the configurational partition function with 2§ (L) fixed,

may be written a530

EluayL)= gdir_'} cxﬁ%}, :ls Re cs)§

-l P
p= (kT (x-8)

where the integration over {r} is carried out over.all possible configura-

tions of the chain consistent with the constraint that % (L) remains fixed

L

B< U;_ (w7 = Sdf‘” b0 Cdse e “exp - _{}QLAseREz]
ao

-]

Sdig;} exp £-% <-ds € R;z:l
a (o]

(X-9).



Setting Z(Zé(L),L) = 1, we note that

I
(X-10)
So that )
p<Uaoy=-p a2
| T % "‘;;”

An explicit expression for Z can be found in. the work of Yamakawa

A ———ty

() ®L
£ = ﬁ, (AL e P(Cose)%(l)
) Y 1

(x-12) .

The Pz(cose) are the Legendre Polynomials and (6,¢) is.the position of

Y (L) in spherical coordinates.
1™

@?— -L.. = L
ape QPT

(x-13)

PT is the total persistence length of the chain under. consideration.
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-@LUIULHD
4 ate by (ees e)
v (X-15)

Note that in the 1imit of a rigid rod,@L~0 and sl __(u)> = 0.
Moreover, if the polymer were infinitely long Eq. X-4b would be valid and

we could obtain B< er(O)(‘:Q’ by

< U (W)= Lim -ax?R 1oL fiod =0
eo(@) X 20 A2 Tyt (x-16)

where f(6) is the quantity in Eq. X-15 to the right of -@L. Similarly,

for a finite length rod, we have 1im ®L-0 and
K+o

fJ<U(Z{)7‘- im @®L{ey =0

Goco) J( 20

(x-17)



Since space is isotropic, the probability of observing a given value of

qu: (L) is %n. Consequently, Ue (K) the average value of< Tf((u 7 is
0 €.(K
(V)

~given by

p U = (du p <Utpy

€(%) A |
om0 . (X-18)
= r::]r g dp (dosine U7
W T _@L )
¢ U =-aL d‘Pgd@sme 2‘(/2)0240(21#)6 flcos®)
éo()() "ﬁ- 6 0 )
_@LED
Z,I @ee ® h1 (cos8) (X-19)
¢

Eq.(X-19) is formally exact; we can now make the physically reasonable

assumption that @L>>1 so we can expand the denominator of Eq. X-19 and

invert
0 LWL T @)
[ 2; (Q@f’) e P (cos ) ] = - f?;(;wﬂ)e P, (Cosp) f
, z 2
AT os

= E)C(?)

(x-20)



iT o0
. -®LOH)
F’ Uéol){) . @_‘_— gdesme(f: QQUNDLINE P reos e)] 356)

20 =0 £
- - 2@L (L) L41)
U - BL Sf?‘ ¢ 2040 (O € P c0s8) | sine de
eo i © &
0L (L)

U = @l 2(;m+n DU e
. EotK) 2ot

(x-21)

In Eq. X-21 we have used the fact that

LB
gode Sineé gflasb) E(CDSG_) = 6; -
(2 4+1)

We now examine X-21 to obtain an approximate expression in the
@ L>>1 limit. |

Consider

_wid)(i4])
Fow)= ? (Q4+)€E

’Z’ (x-22)



o — WL £+1)
-dF(w) = < (a0l €

dW =1
(X-23)

Converting the sum in Eq. X-22 to an integral, integrating with respect to

1

% and then differentiating with respect to w,.we find F'(w) = ~ /w2. Hence,

p\/ . @ '__ , (X-24a)
“N T et el

U - %) - (X-24b)
P 6, (‘_R.Ef"())— e + 2P
HL L
Similarly, by Eq. X-17, it follows for finite rods that
Peru» =0 (%-25)

Substituting Equations X-25 and X-24b into Eq. X-6 gives

- A0m2 2n 2
= - \
F LREInK 4 e b oM

1L 8X*R,TL

(X-26)



Whereupon, the excess electrostatic free energy of a polyelectrolyte

. " . - . 42
solution of -interactin
non eracting molecules, Fexcess’ is

’F-;'.'XCE‘BS = "&ne\’ﬂk + ‘EE [a?&w + a{zroz
VR, T Ve 4L sk T0L
] (X-27)

Here a .
(v

ne is the concentration of polyelectrolyte counterions and is given by

PN .
—p
'l

P is the number of charged groups per polyion, P ='&%

Np is the number of polyions in a solution of volume V.

We can rewrite Eq. X-27 as

Vk, T
° (X-28)

As discussed in section V, the relevant colligative properties in

g<1 case depend on

b[ﬁcxcess / Vf?BT’]

J X TV (X-29a)




By Eq. X-28

(B[Fexccssl\/hs‘ﬂ) - -%nei “_ X_ZL-Zf
K '

%
b TV '
(X-29b)
Let n; be concentration of species "i". 4i=1 is the counter ion; i=2,
the coion,
(2) = A
Milgyn,, A%
n
S (X-30a)
where
Az Hmq?
Dy T (X-30b)
and |
X% A(h‘-ﬂ‘lz): )Che»-l'ahs) (X-30¢)

P
Furthermore, n . is the simple salt concentration. Proceeding a 1a

Manning7, we have for g<I]

\n‘ﬁ-. (aﬁeneﬁ/vhai = -';h'e};{ i+ le_-’;'z]

. _ A X (X-31)
9 nt " %z*i



Observe that an increase in salt concentration results in a decreased

bending constant and a concomitant decrease in —F.excess’ Let us define

X = ne/ns', then by Eq. X-31

In¥; = - £X [ i+ siata B4l (x-32a)
2(%42) Y)2L*

In¥+ = In (‘Y,Y,_)”z

-ln\b'-f_: -_'é_)(_’["'.l ] E(\

2(x+2) “hie?L® (X-32b)
The osmotic coefficient ¢, is related to Inyx by R
b=tk ity = 1- 8% (4 1 ]
a(x¢2) Hx* (x-33)
Now the Donnan salt exclusion factor T is defined by

Nea 0

r arises from consideration of a system in Donnan equilibrium in which the

external compartment has a fixed salt concentration ns'.



It can be shown that43

Ma L g (aln‘&)
one‘hep (X-34b)

Placing Eq. X-32b into Eq. V-34b and using the definition of K in Eq. X-30c,

we obtain

& -‘%{ - é% (14 f{'};;![_?-)] (x-34c)
with K = 2an,.

For &>1, we can follow Manm‘ng7 and relate the various quantities
in Eq. X-31 to X-34c to their values when £=1 and I >¢™'r . Clearly, if
KL>>1 the contribution of bending to the limiting laws are negligible.

In conclusion, we have in the context of a worm model calculated
the approximate contribution of the excess bending electrostatic free
energy to some colligative properties. Within the range of validity
of our present treatment, such effects are negligible. Thus, provided
that L>>K'] and excluded volume effects are absent, we have demonstrated
the plausibility of Manning's fundamental assumption that bending
effects can be ignored in the calculation of polyelectrolyte colligative

properties.



Chapter 4. The Polyelectrolyte Excluded Volume Paradox

XI. Introduction

The expansion of polyelectrolyte chains due to repulsion between
backbone charges is much less than most theories predict. The evidence

and theories have been reviewed by Nagasawa, Takahashi, et a].23’44

It
'seems fair to conclude that those theories which do agree with experiment
do so only at high charge densities and at the. expense of ad hoc assump-
tions of uncertain merit. We certainly do not exclude from this comment

a contribution to one of us.45

What seems especially paradoxical is the
apparent failure of Debye-Hlckel theory to give even a qualitative explana-
tion of the degree of expansion as a function of salt concentratjon. We
propose to show here that the Debye-HlUckel theory actually works reason-
ably well, and that its apparent failure in the usual method of applica-
tion is due to other approximations made in conventional excluded volume
théory. Our focus is on the paradox, and there are many aspects of the
- problem that we treat superficially, especially the charge condensation
and internal conformations of a segment. So we still fall short of a
conclusive theory.

One aspect of a complete theory, in the context of a worm model, is
the variation of persistence length with ionic strength and linear charge
density (real or effective). This has been considered elsewhere by our-

selves and others.46'50

We allow this variation here only to the Timited
extent that the length of a segment is allowed to depend adjustably on
the charge density, but not on the ionic strength. A more careful treat-
ment is omitted for several reasons: (1) The qualitative failure of

Debye-Hlckel theory is so striking as to require consideration separate



from relatively minor corrections. (2) We are not content with the
current theory of electrostatic effects on the persistence length (in
regard to the applicability of the worm model, the effect of polymer

dielectric constant and salt exclusion on the charge interactions,sl

and
the nature of the effective charge correction.) (3) Within the ]imits'
of current theory, the effect of a variable persistence length on excluded
volume theory has already been analyzed clearly by 0dijk and Houwaart.50

Several calculations of the electrostatic potential of rods and
cylinders7’8’]2']4’52 indicate that the linearized Poission-Boltzmann equa-
tion gives the correct potential out in the solvent if an effective charge
density is used to describe the backbone. For fully charged native DNA
the effective charge may be only a fourth of the actual charge, but for
chain polymers the fraction wii] be higher, and for poly (acrylic acid)
a maximum decrease of one-half should be about right. And at a degree of
jonization of one-half the correction would vanish. But the failure of
the Debye-Hlickel interaction in excluded volume theory is still gross
and we therefore conclude, with Nagasawa and Takahashi,44 that something
has gone wrong in its application.

The simplest use of the Debye-Huckel interaction adequately shows
the problem. In this use the interaction is substituted into the theory
of uncharged polymers, for which the degree of expansion is a function
of z. This parameter will be considered fully below. For the present
it suffices to say that z is proportional to Jﬁ: where M is the molecular
weight, and to X, where X is the excluded volume that two segments of
the chain present to each other. Since the whole theory of the excluded
volume effect for nonelectrolytes, and especially its modern versions

based on scaling and renormalization, has considered the limits where M



is large and X is small, it is natural to suppose that a segment is a
single monomer unit, and that the interaction between two segments is
Just the screend Coulomb or Debye-Huckel interaction. For large Debye
screening lengths this at once makes X inversely proportionaJ to the
salt concentration C, and z « ¢FDC. But experiment indicates that z is
proportional to~[ﬁ7€? which is, of course, a qualitatively different
-sca]ing.

The observed proportionality of z to the:Debye length has motivated,
we presume certain plausible reca]cu]ation524 of X that in effect re-
-place the segment by a long cylinder of effective exclusion radius pro-
portional to the Debye length. This model may seem reasonable enough at
high charge densities, but requires ad hoc adjustments for low charge
densities. Moreover, the only work known to us that comes close to a
Justification of the model is Onsager's calculation of the osmotic second

3 And that work we

virial coefficient for charged collodial partic]es.5
find insufficient to our needs for several reasons! First, the electro-
static part of the calculation was based on the interaction between
infinite charged planes. Second, the modification made to that inter-
action to make it applicable to thin rods was ad hoc (but correct of
course!), and left unspecified a basic multiplicative constant for the
interaction energy. And third, the calculation yields no insight into
the apparent failure of Debye-Huckel theory for the excluded volume effect.
The present treatment begins with a division of the chain into seg-
ments which consist of many monomer units and with an excluded volume
potential that is simply the sum of all screened Coulomb:interactions
between backbone charges. The use of a large segment makes the applica-
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tion of conventional excluded volume theory™" somewhat questionable, be-



cause of the implied limits of large M and small X. Unfortunately, it
is not possible to observe these 1imits for any polyelectrolyte,as the
vaule of X computed for even a single pair of discrete charges may become
large. That is, X may become comparable to or larger than the cube of the
distance between adjacent backbone charges. Hence, an assumption of
excluded volume theory that a segment has negligible interaction with
its immediate meighbors and only interacts with segments distant along
the backbone is no longer valid. To salvage the validity of this assump-
tion, which seems quite essential in the two-parameter (or "scaled") ex-
cluded volume theory, we choose very large segmenté and hope that any new
problems thereby incurred are not too serious.  One of these problems is
that the enlarged segment has a conformational distribution that can
depend on the degree of ionization and salt concentration. Here we shall
simply make a bald simplification that has much precedence in polyelectro-
lyte theory. We take the segment to be, more or less, a stiff rod with
an adjustable length, and see whether lengths inferred from previous
thermodynamic applications of the same model can be transferred to the
current problem. In time, of course, this neglect of conformational
fluctuations could be remedied. However, it seemed reasonable to us to
deal first with the basic question concerning the Debye-Huckel theory.

In section XII the values of X and z are computgd for the given
model, and it is shown that the usual result, X=1/C, is recovered
exactly for very low charge densities. However, an application to experi-
ment in section XIII shows that the actual charge densities, even at a
degree of ionization of one tenth, are so large that the usual result is
inapplicable. Although the electrostatic potential at any point may be

small enough in practice to justify the Debye-Huckel approximation, the



total interaction between segments is too large to be linearized in the
calculation of X. Of course, for this remark to be meaningful it is
necessary, as in the rest of the calculation, that the segments are small
enough to be modeled as rods. A certain amount of bending would not be
serious, but even so,a few persistence lengths is all one would wish to
allow. In fact, we must use somewhat longer segments for chains with low
degrees of ijonization. Although it is never necessary to specify their
exact length, the must be a bit longer than the Debye length to justify

neglect of interactions between neighbors.



XII. The Segment Excluded Volume

The excluded volume parameter X is the effective volume of exclusion

that one segment presents to another, and has the general form

-V
X= S( \-¢ 70(_['
(XI1-1)
where v is the interaction potential in units of KT, r is the difference
between center of mass positions, and the ang]e‘braékets represent an

average over internal coordinates. The complete potential is conveniently

divided into contributions

V= V(_ +Va_ + Ve (XII-2)

from a core potential Ves @D attractive potential Vyo and a screened
Coulomb potential Vo The core potential is infinite or zero, and may

be used immediately to separate off a positive core. contribution Xc,

X = X, +§/< \—exF{— (Vq+\le)]7 dx

(X1I-3)
where the primed integral sign designates an integral:.over those values
of the relative coordinates that do not violate the ragion of exclusion.

An additional formal subdivision of X gives



X= X+ Xg t Xq

(XI11-4)
where
f Ve
Xe-.'. %<"'€ >(,{£
(XI11-5)
and
I -V% IRV
xa=§ <e ({‘76 a>>d£
- (X1I1-6)

In practice, Xe’ the purely electrostatic part of X, will swamp
other contributions at low salt concentrations unless the backbone charge
is very low. The attractive part Xa is formally dependent on salt con-
is dependent, but at the:short distances where v_ is

a
significant this dependence is not large, and Xa may be taken independent

centration, since Vo

of salt concentration in first approximation. Our work is consequently
restricted to a calculation of X..
XIIA. The Electrostatic Interaction

For the calculation of Ve and Xe a rather schematic model is adopted.
The segment is treated as a rigid rod of length L, and L is assumed to
be much larger than the Debye screening length. We may argue, following

53

Onsager,”~ that the results should also apply to flexible segments, if L



is taken to be somewhat less than the contour length, unless the flexi-
bility is so great or thg segments so long that several close contacts
between a given segment pair are allowed. But even if this possibility
is allowed by chain flexibility, we expect it to be excluded by energetic
factors except at lTow degrees of ionization I, and there the additional
‘contributions will be minimized by a coefficient 12. Consequently the

~ model may serve, at least as a rough approximation, for any I.

A uniform charge distribution along the axis of each segment, or

rod, gives

Ve = $§ Ulr;ydid;
(XII-Z)
where
U(r) = Qaao Y"‘edxr
' (XII-8)
‘In these expressions di and dj are elements of length measured along the
two rods, and a°=7.13GR for an aqueous solution at 25°C. B is the number
of electron charges per unit length, and has units (1ength)']. It is
convehient for the evaluation of the integra153 to set up a coordinate
system in which the first rod is oriented along the z-axis and centered
on the origin, and the second rod makes a polar angle 6 with the z axis.
The value of the other orientational angle turns out to be irrelevant.
The projection of the second rod on the xy plane will have length Lsine.
We define p to be the perpendicular distance from this projection to the

origin, and require |p|>d, where d is the diameter of either rod. How-



ever, it is helpful in visualization and consistent with. the model to
regard p as infinitesimal on the scale of L. If the perpendicular inter-
sects the projection outside its end points, the two rods are taken to

have negligible interaction. Then

Ve = 'Sjou(t F"'ﬂ-ﬁi—f-;%cos@]”") di dJ

(X11-9)
Extension of the limits to infinity is justified by the assumption that
L is much greater than the Debye length. Introduction of polar coordin-

ates for i and j and completion of the integrals gives

| \/6: 2 gszao(Xsme)"cng-lel}

(XII-10)
This is the result put forward by Onsager, except for a proportionality

constant previously left unspecified.53

XIIB. The Excluded Volume

For the computation of X there remains an integration over relative
center of mass coordinates and an average over the angle 6. The three
orthogonal displacements for the center of mass of rod 2 are taken along
the axis of p, along the z axis, and along a third orthogonal axis. The
latter two displacements are restricted to values that do not eliminate

the intersection defined above, and do not alter Vo within their allowed



range. Their integrals give factors L and Lsine, respectively. Then

00
Xe = 2L2<Smeg “‘_e——ve)o\‘) 7
d

The factor of two accounts for negative p; the average over & must be

(X11-11)

taken with weight sine.
The remaining integrations in Eq. XII-11 cannot be completed in

closed form. The simplest expression seems to be

Xe = (30h)Rep; 4= anpax’e™
(X11-12)
where
Tl Y/sine
.R((J): gde 5ih%e de x(1-¢7)
0 0
(X11-13)

or

112
R(ﬂ) = gode 5"129[E, ( g/ﬁme) + ln(g/s/ne) +Y]

(X11-14)



A numerical tabulation of R(y) is given in Table VI, and limiting

forms are easily obtained. For small y

’j—’,o (X1I-15)
and for large y the as.ymptotic-i’orm,'|5
R(y)~ (/) '(Inﬂ +Y-LtIn 2)
: (XII-16)

is accurate to within two percent for y>2, and to within one-half percent

for y>3.

XIIC. The Low Charge Limit

We now wish to verify that our results are consistent with conven-
tional ones for chains of very low charge density. Of course there is
no point in a direct comparison of values for Xe’ because the usual cal-
culation implies a somewhat different "segment" than used hére. However,

if a two parameter theory is to be used, corresponding values of

3
Z=(3 | nX
AT hy
(XI11-17)

can be compared. Here ho is the root mean square end toend distance, and



TABLE VI
Numerical Values of the Integral R(y) are Given and Compared with the

Asymptotic Formula for Large y

y ROy y R(y) R(y)
(asymptotic)
. .9633 1.5 .9795 .9235
.2 .9301 2.0 1.1754 1.1494
.3 .8996 2.5 1.3373 1.3247
.4 8714 3.0 1.4782 1.4679
6 .8205 3.5 - 1.5022 1.5890
.8 7757 4.0 1.6955 1.6938
1.0 7359 5.0 1.8696 1.8691




js to be considered an experimentally determined quantity. So the com-
parison of electrostatic contributions to z comes down.to nzxe. The same
quantity, along with z,.enters the theory of the osmotic second virial
coefficient.

In the usual calculation, reduced to its essentia]s, there are ng
small segments which can be identified with individual monomer units.

Each has excluded volume Xo calculated from

Xo = Pz,; do gr" e:)%:lv; - 4176{0(3:[)47’
(XI1-18)
where By is the charge on a segment. That is, one assumes, as was dis-
cussed in the Introduction, a weak potential and linearizes the Boltz-

mann expression. Comparison of nixo with n2

Xe under conditions of low
charge density, where R(y) can be replaced by y, shows that agreement is
found if noeo=nL8. Since each of these quantities is an expression for

the total charge, agreement is indeed found.



XIII. Comparison with Experiment
Disclaimers regarding the finality of this comparison have already
been entered in the Introduction. We repeat that our object is to

resolve the fundamental paradox, and not to deal with every ramification.

XIIIA. Intrinsic Viscosity
The intrinsic viscosity data of Noda et. a1.23 will serve to illus-

trate the theory. They analyzed their data on the basis of

NI = K v o8B BT

0
(XI1I-1)
where %, = 2.87x102], Ko is a constant related to ho bdt of no present
interest, and B is inferred from the data. The origin of this equation
will be quite briefly reviewed. It relies on the assumption that the

chain is non-draining, and on a semiempirical form for the expansion.

AL @oht <><3,,z ™

(XI11-2)

= [+ A
1 1 z
(XI1I-3)

where An is a coefficient inferred from an excluded volume perturbation

theory. To the somewhat questionable extent that Eqs. XIII-2 and XII1I-3



provide an adequate basis for an understanding of Eq. XIII-1, they imply,
together with the definition of z, Eq. XII-17, that the electrostatic
part of B is

Be': QXQ /m:" = H,n (3/3‘”')3’1)(6 /0,5‘ msa‘

7775 = M/h (XI1I-4)

where the value of a is to be inferred from An’ and mg is the molecular
weight of a segment. Noda et al chose An=1.55, on the basis of theo-
retical estimates available at the time for nonelectrolyte polymers. More
recent estimates54 put An in the vicinity of 1.1, for nonelectrolytes, and
as light scattering data on polyelectrolytes suggest a still smaller value,
we have used a=0.5, corresponding to An='775'

Equation XII-12 now gives

Be= (1*/mzx)R() = R e %

(XI11-5)
where m, is the molecular weight (i.e., the mass in Daltons), per unit
length. In what follows m, and 8 will be referred to a single monomer of

effective length ¢,

pP=I1/g (XI1I-6)

where my is the molecular weight of a monomer unit and I is the mean



number of elementary charges on a monomer unit, i.e., I is the degree
of ionization. An effective charge can be used if one wishes, but it
.would have little effect because of the logarithmic dependence on I

through most of the relevant range of y. Then

B = (_g_?:_ R(j) |

Xm3
(XIII-7)
wﬁere .
2 ~Xd 2
(j: (aﬂ'aol /ﬂzx)e ~ 126471 /,@z.r?
x'= 3043/
(XI1I-8)

-]
and & is expressed in A, C in mol/liter. The numerical expressions
involving C apply to a 1-1 salt, and imply the neglect of Kd.

Equation XIII-7 is compared with the data of Noda et a123

in Fig. 6.
A value m°=94g/mo] has been used, and the value of & has been allowed to
vary somewhat from its structural value of 2.513. For I=1 the value

chosen,.2=1.23, is close to the value inferred from titration and thermo-

dynamic studies.ss’56

We have used values, listed in the caption for
Fig. 6 down to 0.83 for I=0.1. The largest value of y occurs at I=1

and C=0.01 where ¥=947, R(y)/y=0.06. In other words, the actual segment
excluded volume is 0.6 percent of the Donnan value. For I=0.1 at C=0.01,
¥=4.58 and R(Y)/y=0.39.

The agreement between theory and experiment seems good enough to

Jjustify the fairly modest conclusion put forward in the Introduction, that



Figure 6. The scaled excluded volume parameter, B§=10268e, versus I/fE;,

where CS is the salt concentration in mol/liter. Points are experimental
results of Noda, et a],23 and the curves are theoretical. The values
of (I,Q), where I is the degree of jonization and l.is the effective
length of a monomer unit in Angstroms are, from bottom to top:

(0.103, 0.8), (0.2, 1.0), (0.4, 1.15), (0.6, 1.2), (1.0, 1.2).‘
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the Debye-Huckel approximation is reasonably adequate.for the study of

excluded volume probiems, instead of being‘paradoiically bad.

ITIIB. Osmotic Second Virial Coefficient

The osmotic second virial coefficient is given by theory30 as

A= (Nw\ﬂ?‘ X/éMl)h(i)

Nnv Ry) \n(:?:-)/x m%

where X has again been approximated by Xe’ the latter from Eq. XII-12 ,

(XI11-9)

and h(z) is a decreasing function of z that has bgen much studied but

is still, like « or o s not known exactly. However, for our present
purposes, we may refer to the discussion of Nagasawa and Takahashi,44
where it is shown that h(z) decreases rather rapidly from unity to

ca. 0.5 as z increases, and thereafter decreases quite slowly, or perhaps
even levels off, depending on which theoretical formula is used to fit

the data. We have simply put h(z)=0.5. The parametery is calculated

from Eq. XIII-8.

A comparison with the data of Orofino and F]ory57

for poly (acrylic
acid) is given in Table VII. The agreement between theory and experiment

is about as good as the intrinsic viscosity comparison.



TABLE VII

Experimental Osmotic Second Virial Coefficients from Orofino and F]ory57

Compared with Theoretical Results -

I c 10%a, 1 10%,
(exp) (theory)
.102 .10 5.95 .8 7.6
.335 .10 22.2 1.1 23.6
.344 .01 © 69.5 1.1 | 94.5
.947 1.00 10.0 1.2 10.4
.959 .10 43.9 1.2 40.3

.994 ' .01 196. 1.2 152.0




Appendix A Evaluation of Radial Coefficients

In this appendix, we determine A,B,C, and E subject to the boundary
conditions expressed in Eq. II-16, 17, 18 and 23.
From Eq. II-16, it readily follows that

A - g B Ih()«ﬂ t C Wn(mﬂ I—;(Qo,)
(A-1)

Substituting Eq. A-1 into Eq. II-17, we have

D, EB T,00) +C I 0aHT0 |- b, 2 [e,00 + cri0]
T,.(na) N

(A-2)

On rearranging,

C= M, B
(A-3)

where

Mh = D, 4 L, (Aa) Iy:(ﬁa) - Dak I“'(%a) 1,.(La)

DAL O) T, (a) = D€t Ona) T (L)

(A-4)



From Eq. II-18, it is apparent that

BT, (i) + (M, B-E)HT, (x)= 0

(A-5)
Substituting Eq. A-3 into Ed. 11-23, if x'=ar'
/o , ~i(ne'+i2]
XE br, ()~ BX Ir/,(x') - M BX Kr:(x): -q4e
- D
K
The relevant equations for B and E become
Blh( X') "'(Mn B" E) Kn(X') - 0
. / _itne'+22'] (A-7)
BX T k) 4 X (M B-E) K (%)= qe
m,
The determinate of the system of equations is
I,.0x') = (%)
' / /
=X (Ihkh" KnIn)
(A-8)
| / ' - ! PRI
¥ T/ X
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By Kraut, ° we have

X' § Tofn - K, Tp ] =)

From CramersRule, it follows that

_ifne +{2']
B= q W, (e
™,

: _iCne+(z']
E-MhB - abin(x‘)e |

™,

~ilne'+lz']
B =g § T 004 M, K,xfe

™0

Now if agrgr', by Eq. II-15b and A-3

R0 = BT 004 M8 K, (X)

(A-9a)

(A-9b)

(A-9c)

(A-10)



Thus, using Eq. A-9a we find for agrgr!

-ilne'+42']
R, ()= % 1T, 00+ M, Ko, () f €
TTQR
(A-11)
and if rzr' from Eq. II-15c
Rh(X):: E W\‘\(X)
(A-12)
Substituting Eq. A-9c into Eq. A-12 for ryr'
_ilne'+L?]
Ba¥)=9, § I, ) I o+ thhcx‘)thx)Ea
D, |
(A-13)

We can combine Eq. A-11 and A-13 be writing

Rh(?w): .?? f 1. (M) H*QQH Mn \'f‘h(Ma Kh(;\%)iét[he +{7']

1TQ&

(A-14)



Here r3a and
r. is the minimum of (r,r')

r, is the maximum of (r,r')

For completeness, we note that A given Eq. A-1 can be written using

Eq. A-3 and A-9a as

_ifnd +ﬂ?]
A= q §T1, <Aa,)mm+ My, 1T, 0a) 1, (hr)f e
- w0, T (la)
| (A-15)
if rsa, Eq. II-15a gives
Rh(ﬂ_r): A 'Lh(Qr)

(A-16)
Placing Eq. A-15 into Eq. A-16 for osr<a '

Rge)= ¢ T TR TUAROR My T o) b 0k (re )K i [neted2']
TI'D X (ﬁa\ .

(A-17)

This completes our calculation of Rn(x'r) for all values of r.



Appendix B: Proof q;_r Reduces to YpH in Absence of the Low Dielectric Cylinder

The solution to Eq. I1I-28

o
Y= 29 SOM s (Uz-21]§ L0 000,)

TR
* i IO Kh(kﬁ) oS h(e—o')f

hzy B-1
. (B-1)

corresponds to the Green's function of

A 2
(v - K ) \*15: ““‘{H’Cbg(r-r")

. - (B-2)

V2

in the absence of the dielectric cylinder. Consequ,ent]y,‘ we shall demon-
strate that the rhs of Eq. B-1 equals the screened coulomb potential,

i.e.,

(B-3)

In cylindrical coordinates, |r-r'| may be expressed as



Q / Q
\[‘-g": rZy 't arr'cos(e-0') + (Z-%)

(B-4)
. Defining, w2=r2+r'2-2rr?cos(e-e'),;it can be shown that,]9
o0
. \
‘To(‘/\W)’—' L O Koy + 3 2, I A \fnckg)cosnce-e')
hzi
(B-5)
Thus, substituting Ko(Aw) into Eq. B-1
- : o0
KP‘éM‘;‘;O)_: \ys = V’E%—— gdﬂ. s L(2-2) 1, (Ow) |
Let 2'=2K”)
» { [ I
Y= agX gdﬁ cosft k(-2 (1%1) xw)
D, °
(B-7)
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