-

;F

.ternational Journal of Modern Physics B Vol. 3, No. 1 (1989) 33-64
© World Scientific Publishing Company

PHENOMENOLOGICAL THEORY OF POLYMER MELT DYNAMICS

JEFFREY SKOLNICK*, ROBERT YARIS*

*Institute of Macromolecular Chemistry, Department of Chemistry
Washington University, St. Louis, MO 63130, USA

and

ANDRZEJ KOLINSKI
Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland

Received 16 July 1988

A particularly interesting problem in polymer physics is the mechanism by which an individual
polymer chain moves in a polymer melt or concentrated polymer solution. The first rather successful
model of polymer dynamics was the reptation model of de Gennes which asserts that due to the effect
of entanglements a polymer finds itself confined to a tube. Thus, the dominant long wavelength
motion of the chain should be slithering out the ends of the tube. In order to examine the validity of

’me reptation model, a series of dynamic Monte Carlo simulations were performed. Although the
1ulations are on chains sufficiently long that agreement with the experimentally observed scaling
th degree of polymerization n of the self diffusion constant and terminal relaxation time is
served, reptation does not appear to be the dominant mechanism of long distance motion. Rather

the motion is isotropic, with the slowdown from dilute solution behavior arising from the formation
of dynamic entanglements — rare long lived contacts where a given chain drags another chain
through the melt for times on the order of longest internal relaxation time. Motivated by the
simulations results, a phenomenological theory for the diffusive and viscoelastic behavior is
developed that is consistent with both simulations and experiment and which does not invoke
reptation. The major conclusions arising from the theoretical approach are described, and
comparison is made with experiment.

1. Introduction
¢

A long standing problem in polymer physics has been to develop a microscopic
_model for the dynamics of long chain polymer motion in melts and concentrated
solutions which reproduces the experimentally seen chain length dependence of
the macroscopic transport coefficients, in particular that of the diffusion constant
and the shear viscosity coefficient'-®. Both of these quantities are observed to
have universal power law dependencies on chain length — i.e. they exhibit
universal scaling. The scaling behavior of the center-of-mass, self-diffusion
behavior, D, in a dense solution or melt is™">

n*l’ < cf
D~{ g (1.1a)
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where 7 is the degree of polymerization of the polymer chain, i.e., the number of
monomer units per polymer chain, and n.’ is a critical degree of polymerization.
The scaling behavior of the zero frequency shear viscosity, #, is®'

n',n<n,
n= (1.1b)

e n>n,

with the critical degrees of polymerization of the crossover for viscosity and self
diffusion being unequal. Typically, 1.’ = 5 n..

The fact that the chain length dependence of diffusion and viscosity are
universal scaling laws is a double-edged sword. Due to the universality, one
explanation suffices for the whole class of polymers. Moreover, the explanation
cannot depend on the details of the polymeric system, since such details change as
one changes the polymer under consideration. Concomitantly, however, the
information content embodied in the scaling laws is low. Hence the scaling laws
themselves do not mandate the acceptance of any particular microscopic model
of polymer motion. The lack of at least approximate agreement with experiment
can be used to reject a particular microscopic model; however, a wide class of dis-
parate models can (and does) lead to similar scaling laws. %

Based on the changes in the scaling behavior of the melt as the polymer chain
length increases, additional factors come into play; presumably these involve
some aspect of interchain entanglements. The importance of these interchain
entanglements in understanding polymer melt dynamics can be most graphically
illustrated by the response of the melt to a sudden shear deformation®¢. For a
short time after the deformation, the melt behaves elastically, much like a true
rubber — which is a crosslinked collection of chains (i.e. the different chains in a
rubber are bonded together by chemical bonds). Ultimately, however, unlike a
rubber, as time goes on the polymer melt flows like a viscous liquid. Unfortu-
nately, the exact nature of the entanglements in a melt are not agreed upon or
fully understood. But based on all available experimental evidence, they appear
to be extremely rare, occurring on average on the order of several hundred
monomer units. Thus, the effects of interchain entanglements should be absent
for short chains but become increasingly more important as the chain length
increases.

The ultimate theory of polymer melt dynamics including entanglements must
by the very nature of the problem be a many-body (many-chain) theory.
However, for the purposes of comprehending, at least in an approximate way,
what is going on in this quite complicated system, it is useful to have an effective
single particle (chain) picture of the motion of a chain. This picture or model
must take account of the effects of the entanglements. Before presenting an
outline of our single particle picture of polymer chain dynamics, which is the
main purpose of this review, it is useful to at least briefly describe two other single
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Phenomenological Theory of Polymer Melt Dynamics 35

particle models which have been used to describe dense polymer systems: the
Rouse model'® which is used to describe short chain, unentangled systems, and
the reptation model which has been used to describe long chain, entangled
systems.'™
A Rouse chain is a simple bead and spring model of a polymer chain immersed
in a viscous fluid'>'®. Each monomer is represented by a bead, and each bead has
associated with it a friction constant. This friction constant represents the effects
of the interactions of the monomer with the surrounding fluid, be it a solvent or
other polymer chains. For homopolymers (polymers composed of only a single
type of monomer unit) all of the bead friction constants are the same. The
connectedness of the chain is enforced by having adjacent beads in the chain
joined together by Hooke’s law springs. Hydrodynamic interactions, or the
perturbation of the solvent velocity field at the position of one monomer due to
the presence of other monomers, can be neglected for polymer melts (but not for
polymers in dilute solution)'’. Remarkably, this simple effective single particle
model is a good zeroth-order representation of short (unentangled) polymer melts
and yields the short chain length scaling behavior of Egs. (1.1). In the Rouse
model, the mean-square displacement of the center of mass g., ~ 6Dt for all
times ¢. In the long chain limit, the mean square displacement of a single bead (or
single bead autocorrelation function) is
Y
' gDt vt <ty
(1.2)
glt)y~t, t>1g

where 7, is the terminal relaxation time of the decay of the end-to-end vector,
which is the longest internal relaxation time of the polymer chain. In the Rouse
model 1, ~ 1.

In the popular and reasonably successful reptation model of polymer melt
dynamics of de Gennes'? and Doi and Edwards’, it is assumed that the
entanglements with other polymer chains define a tube within which a given
polymer chain moves. In the original rendering of the model, the entanglements
and hence the tube remains essentially static for times on the order of t . Thus
the many-body problem of entangled chains has been reduced to a single-chain
problem — that of a chain confined to a tube. Hence, the dominant long distance
motion of a chain is parallel to the original chain contour defined at zero time, i.e.
it involves slithering out from the tube with lateral fluctuations being surpressed
by the tube. A schematic picture of this motion is depicted in Fig. 1. The end to
end vector can relax only by the chain randomly slithering out of its original (zero
time) confining tube; hence the longest relaxation time of the end-to-end vector is
frequently (in the context of the reptation model) called the tube renewal time.

The molecular weight dependence of the tube renewal time can easily be
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Fig. 1. Schematic representation of motion in a polymer melt as envisioned by the reptation model.

obtained by a simple scaling argument due to de Gennes’. If we assume that the
frictional forces retarding the motion of a chain down the tube are proportional
to the length of the chain, that is to #, we obtain that the mobility of the chain in
the tube is inversely proportional to the friction. Hence

u~n'. (1.3)

The diffusion coefficient of the chain within the tube D, (this is the diffusion
constant along the curvilinear coordinate defined by the tube and is not to be con-
fused with the measurable center of mass diffusion constant in the laboratory
coordinate system to be discussed below) is related to the mobility by an Einstein
relationship giving

Dype~p~n'. (1.4)
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Phenomenological Theory of Polymer Melt Dynamics 37

Since the time required for tube renewal is the time it takes for a chain to diffuse
down the tube for a distance of the order of its chain length L, which is clearly
proportional to 7, in the reptation model the terminal relaxation time is given by
the tube renewal time

Tp~ L2/Dype~ L*n~n*. (1.5)

Coupled with the assumption of a rubber-like elastic response at short times?, this
leads to

N~ Tp~n. (1.6)

This simple scaling argument for the reptation model can be continued to yield
the measurable center of mass diffusion time by recognizing that in a time 1 the
chain has diffused a distance L (~ n) along the curvilinear path defined by the
tube. However, this path is a highly contorted tortuous path when viewed in the
laboratory coordinate system. Assuming ideal (Gaussian) chain statistics, the
average distance diffused in the laboratory coordinate system in a time 7y is

Ry V5 nl% (1.7)

This leads to a translational diffusion coefficient (in the laboratory coordinate
system)

D~ = ned (1.8)

Thus this simple, single particle, reptation model yields results for the transport
properties Egs. (1.6) and (1.8), which are close to reproducing the experimental
results of Egs. (1.1).

For the reptation model, the behavior of the single bead autocorrelation
function is more complicated than for the Rouse model of a free chain (Eq. (1.2)).
For times short enough such that the mean square displacement of a bead, g(¢), is
less than the tube diameter, the system does not know there is a tube and behaves
like a free Rouse chain,

g(t) ~ t"*, g(1) < mean square tube diameter . (1.9a)
In the next regime the chain now feels the tube and equilibrates within the tube by
‘“defect diffusion™ along the tube. This process is essentially the motion of a free

Rouse one-dimensional chain confined to a Gaussian tube. Hence

g(t) ~ t"* | t < defect diffusion time . (1.9b)
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This 7' regime for g(7) has frequently been treated as a “signature” of reptation
and will be discussed further in Sect. 2. In the next time regime, after the chain
has equilibrated in the tube, its motion is characterized by the center of mass dif-

fusion of the whole chain along the path of the Gaussian tube until the tube
renewal time, hence

; > defect diffusion time
g(t)~t”',t{ s (1.9¢)

< tube renewal time

Finally, when ¢ is greater than the tube renewal time g(¢) exhibits free diffusion
behavior, i.e.

g(f) ~t, t> tube renewal time. (1.9d)

More recent developments in the reptation model relax the requirement that
the entanglements behave statically and allow the confining chains to also reptate
— thus all chains are treated in a self consistent manner'®'’, Allowances were
also made for a small amount of “tube leakage”>*". However, the confining tube
which supresses lateral fluctuations remains the feature which all reptation
treatments have in common. Thus, they all predict that if we could follow the
time trajectory of a chain in a melt, its long time motion (i.e. ¢ > defect diffusion
time but less than tube renewal time) would be predominantly parallel to its zero
time contour.

The molecular weight dependence of the macroscopic transport coefficients
can be employed to examine whether a particular realization of the dynamics is in
accord with experiment, but reproducing the correct scaling behavior by no
means guarantees that the particular assumptions of the model are correct. Many
different models in fact give rise to similar scaling behavior. Therefore, in order
to better understand the nature of the chain dynamics from a more fundamental
level, we undertook a series of large scale dynamic Monte Carlo simulations of
dense systems of long polymer chains®’. We view these simulations as an
experiment, albeit a computational rather than a physical experiment. A major
benefit of doing computational experiments is that one can ask the simulation
questions that real experimentalists do not at present know how to answer (or
even ask). In particular, we can look at the time trajectory of a chain’s motion in
order to see if in fact it is reptating. If we find that it is not reptating — as we did
— we can then look to see what the motion is and how we can describe it. We can
also look at the simulation to find features that allow for simplification of the the-
oretical description of the dynamics of polymer melt motion. Since our model of
polymer melt dynamics, which forms the main topic of this review, is founded on
these simulations in that the key assumptions of the model are justified by the
simulations, we include a brief summary of the main simulation results in Sect. 2
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of this review. For further details, we refer the reader to the original papers®' and
to a short review that has recently appeared”

The major focus of this review is the presentation of a phenomenological
model of melt dynamics that is in accord with all the major experimental and
simulation results®®. The fundamental premise is that entanglements are intrinsi-
cally dynamical in nature and arise from rare long lived contacts between pairs of
chains. In essence, a given chain drags another chain with it for times on the order
of the longest internal relaxation time of the system; subsequently, the entangle-
ment dissolves and others form. The outline of the remainder of this paper is as
follows: The development of the phenomenological theory is split into two parts:
a treatment of diffusion (Sect. 3), and a treatment of viscoelasticity (Sect. 4). This
review will only discuss the physical description of the model and present the
major results of the theory. For readers who desire to see the detailed
mathematical development, we refer to the original papers.?'~**

2. Results of Computer Simulations

Lattice dynamic Monte Carlo simulations were performed for homopolymeric
chains on a diamond lattice of degree of polymerization up to 216 over a range of
volume fraction of occupied sites, ¢, ranging from 0.0 (isolated chains) to 0.75'"°
and for homopolymeric chains on a cubic lattice at a fixed ¢ = 0.5 for chains

™ from n = 64 to 800%'° . We also studied the properties of a test chain having n, =
100 in a matrix of chains whose degree of polymerization ranged from n,, = 50
to 800 on a cubic lattice at ¢ = 0.5*'* . In all cases, excluded volume effects were
included by prohibiting the multiple occupancy of lattice sites. For a detailed
description of the local Monte Carlo moves see Ref. 21b for the diamond lattice
and Ref. 21c for the cubic lattice. The diamond and cubic lattice simulations
yield identical results for dynamic quantities when corrected for the difference in
the local persistence length (a chain of size n on a cubic lattice behaves
dynamically roughly like a chain of size n/2 on a diamond lattice).

Major Results

1. By suitably averaging the local dynamics of the chain to eliminate the effect
of irrelevant local fluctuations in conformation, we were able to determine a
“primitive path”, in the sense of Edwards**, for each individual chain in the
dense system of chains and also the time trajectory of each primitive path. Thus
we could study the time development of the primitive path to see how the chains
were moving in the melt. An example of the time evolution of a primitive path is
given in Fig. 2 where the zero time path is the thin line and the path at a later time
(less than the terminal relaxation time or tube renewal time of reptation theory) is
the thick line. Hence by reptation theory, at least, the central protion of the chain
would have to be slithering in the tube. Figure 2 shows no evidence that this is the
case (for other examples of the time development of the primitive path see Refs.
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Fig. 2. Representative snapshop projections of the equivalent path for a chain of n = 800 on a cubic
lattice polymer melt at ¢» = 0.5. The thin curve is the primitive path defined at zero time and the thick
curve defined by the overlapping circles (blobs) is the primitive path 1.2 X 10? steps later. The tri-
angle labels one chain end.

0 . 1 i 1
0 20 40 60
141073 ( 2:10~%)

Fig. 3. Plot of the ratio g, (£)/g;(1) vs.time X 107 (2 X 107*) for n = 216 (800) in the upper (lower)
curve. Both are at a density of ¢ = 0.5 on a cubic lattice.
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21b-d). Looking at pictures of the primitive path evolution can give one a
qualitative feel for the motion of a chain. However, in order to be really sure that
the chains were not reptating we sought a quantitative measure of their motion.
We remind the readers that the primitive path defines the curvilinear coordinate
system down which the chain would reptate if reptation were the dominant
motion. Thus, by taking the path of a given chain at some time, ¢ = 0, as a curvi-
linear coordinate, we could project the path at a latter time back on to the 7 = 0
primitive path and then determine whether the diffusive motion was predomi-
nantly parallel to the initial path (as would be required by the reptation model).
Let g; () be the mean square displacement down the original contour defined at
zero time (the reptation component) and g, (¢) be the mean square displacement
perpendicular to the contour defined at zero time. Figure 3 is a plot of g,/g; vs.
time for chains of n = 216 (solid diamonds) and 800 (open diamonds) beads,
each in a homopolymeric cubic lattice melt at ¢ = 0.50. If the reptation model
were correct, transverse motion would be suppressed, and g,/g, would be a
monotonically decreasing function of time. Instead, we see that after a short time
(the short time results are a local cooperative dynamics effect)?' ,9./g, 1s a
monotonically increasing function of time. This result is consistent with isotropic
chain motion. Identical results were found for the diamond lattice at other chain
lengths®'® , and for short probe chains in a melt of longer chains.”'®

As a check that our Monte Carlo moves were not somehow suppressing
longitudinal motion, we did the experiment of simulating a single mobile
chain?” in an environment of partially frozen chains, a situation where chains
are known to reptate.’®*° This was done on a diamond lattice for a single mobile
chain of n = 216 imbedded in a matrix of chains which are pinned every 18
beads, with all of the other beads free to move with the same dynamics as in the
melt simulation algorithm. The overall chain density ¢ is 0.5. In Fig. 4 we show
¢./g, as a function of time for a mobile chain in a partially frozen environment
and indeed it is a monotonically decreasing function of time, characteristic of
reptating chains in contrast to the case of completely mobile chains shown in Fig.
3 (similar results were observed for a mobile chain of n = 100). It should be men-
tioned that although in a partially frozen environment reptation definitely was
the dominant mode of diffusive motion an examination of the trajectories shows
that considerable tube leakage occurs.

Hence, we were forced to conclude that, at least for the range of chain lengths
we could simulate, reptation was not the dominant mode of diffusive motion,
and we should look for another explanation for the transport properties of
polymer melts.

2. The molecular weight dependence of the simulated homopolymeric melt
self diffusion constant is fit quite well by a function

D =dy/n (1 + n/n). (2.1)
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Fig. 4. Plot of the ratio of g, (£)/g(¢) vs. time X 107 for a single chain of n = 216ina partially fro-
zen matrix of other chains pinned every 18 beads and at an overall density of ¢ = 0.5 on a diamond
lattice.

Anticipating a result from the theory, d, should be interpreted as a monomeric
self-diffusion coefficient (i.e., the diffusion coefficient a monomer would have in
the absence of chain connectivity), and n, will be interpreted as an entanglement
length (the average number of monomers between entanglements). Hence, the
simulations clearly give the correct short chain experimental results D ~ 7'
when n << 7. and the correct long chain experimental results (D ~ #~>) when
n>> n, (see Eq. (1.1a)). Fitting Eq. (2.1) to the cubic lattice simulations gives
n, = 125, a number of the correct order of magnitude.

3. In order to obtain a better understanding of the nature of the entanglements
(static vs. dynamic) we looked at the time development of interchain contacts®.
Unfortunately, at present this is a quantity that is completely inaccessible from
experiment. Each chain is replaced by a non-overlapping pearl necklace model
where each pearl contains the number of monomer untis over which static
excluded volume effects are felt (i.e. the static excluded volume screening length).
We then searched for pairs of pearls, each on a different chain, such that the
pearls are in contact at time zero (more precisely, their centers are within a
specified distance of each other). By counting the fraction of such contacts that
still survive up to a later time fin an n = 216, ¢ = 0.5 cubic lattice melt, we deter-
mined that 64% of the contacts decay within 1% of 7y , 91% of the contacts have
decayed within 9% of ty , but the remaining 9% of the contacts live a time of the
order of 7y . Since 7y is the longest relaxation time for a polymer chain and is of
the order of the time scale for hydrodynamic properties such as diffusion and vis-
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cosity, it is only the long lived contacts, which we call dynamic entanglements,
which explicitly affect the hydrodynamic properties. The short lived contacts can
be disposed of by a standard separation of time scales argument and their effect
included in a monomeric friction term. If one evaluates the mean distance
between dynamic entanglements for a cubic lattice chain, it is 133 monomer
units. Note that this is essentially the same result obtained for n, (125) by fitting
Eq. (2.1) to the computed chain length dependence of the diffusion constant.

4. The product D tx/(S* ~ n®, where (S*) is the mean square radius of
gyration of the chain, and « = 0.2 + .05 for a diamond lattice*® and 0.1 + .05 for
a cubic lattice*'® . This result is similar to that seen experimentally nD/(S%) ~ n**
if 7 is assumed to be proportional to 7.>¢

5. The results of the simulations are not in agreement with either of the
standard simple single particle models of chain behavior, the reptation model
which has been used in the entangled regime, or the Rouse model which has been
used in the unentangled regime. However, for entangled systems, the simulation
results are closer to a Rouse chain than to a reptation model. Given the appeal of
an effective single particle picture, a generalization of the Rouse model appears to
be reasonable.

A question that must always be addressed in using the results of a simulation to
obtain insight about the dynamics of a polymer melt is whether the chains are
long enough and the density high enough to reasonably represent the relevant
physics. This question can be addressed in several ways. The first, and probably
most naive, answer is that the simulations reproduce the experimentally observed
results for the transport properties. The second way to address this question is by
describing static screening lengths and persistence lengths. However, this
somewhat begs the main question about dynamics. The most relevant question is
to ask how entangled are the simulated chains. In asking this question the density
and the chain length must be considered together, since obviously for a given
chain length by increasing the density one can increase the average number of en-
tanglements per chain (and similarly at a given density the number of entangle-
ments per chain depends on the chain length).

For our simulations on a cubic lattice at a density of ¢ = 0.5, we obtained a
mean distance between entanglements of 130 monomers units in three indepen-
dent ways. The first two were obtained by looking at the number of long lived
contacts and fitting the homopolymeric melt self-diffusion constant, as described
above. The third determination®'Y was by fitting the diffusion constant of a probe
chain of n, = 100 in a matrix of chains whose degree of polymerization ranged
from n,, = 50 to 800, all at ¢ = 0.5, to the theory discussed below in Sect. 3.
Since the average distance between entanglements is 130 monomer units, this
means that our longest simulated chains, # = 800 on a cubic lattice at a density of
¢ = 0.5 have an average of slightly over 6 entanglements per chain.

To get some physical feeling for this in terms of a real polymer, the
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experimentally obtained entanglement molecular weight for a polystyrene melt is
18,000 (a brief discussion of how this is obtained is given in Sect. 3). If we simply
scale the mean number of entanglements per chain to the experimental
entanglement molecular weight, our longest simulations of n = 800 at ¢ = 0.5
corresponds to a polystyrene melt with a molecular weight of just over 110,000.
While we are by no means claiming that our simulations have reached asymptotia
(a claim we have no idea how we could ever independently substantiate) they
clearly correspond to a quite respectable, entangled polymer melt well within the
range studied by experimentalists.

In this context, we should mention the very recent, massive, molecular
dynamics simulations of polymer melts by Kremer and coworkers®. They opted
for shorter chains, their longest being 150 monomers units, and a higher density,
0.85, in the standard reduced Lennard-Jones units (where the Lennard-Jones
potential distance parameters ¢ = 1), than we did. They provide two different
estimates of the entanglement length n, . The first n, ~ 110, obtained by fitting
their diffusion data, they reject as being too high. The second, obtained by fitting
the simulated single bead autocorrelation function to the reptation model, gave
n. =~ 35, a result the authors preferred. From their preferred value of the
entanglement length they obtain an average number of entanglements per chain
of slightly more than 4 for their longest simulated chains. This scales to a
molecular weight of just over 77,000 for polystyrene. N

Kremer and coworkers™ interpret the fact that they obtain a ¢"* regime of the |
single bead autocorrelation averaged over the five central beads of their longest
chain (n = 150) as evidence for the reptation model (see Eq. (1.9b)). They also
point out that when the autocorrelation function is averaged over the whole chain
a clean " regime is not observed due to the added mobility of the ends. In our
simulations we calculated the single bead autocorrelation function averaging
over all of the beads (thus including the more mobile end motion). For a chain of
800 beads we obtained a plateau value of 1***°**% (see Fig. 4 and Table 3 of Ref.
21c). If we only average over the central five beads we obtain a 1°* regime for the
autocorrelation function for both the n = 216 and the n = 800 chains. However
these chains were not shown to be reptating by the primitive path analysis
described above (see Fig. 3). Similarly, taking our analytic model of a chain with a
set of high frictional (slow moving) points described in Sect. 4 (which also
qualitatively agrees with the experimental results) we obtained a 7% regime for
the single bead autocorrelation function (averaged over all of the beads) for a
chain with 17 entanglements (see Table 3 of Ref. 24). Here again the analytic
model, by construction, does not reptate. Hence, we do not regard the presence of
a 1" regime in the single bead autocorrelation function as evidence for the
reptation model since it clearly can be, and has been, obtained in the absence of
reptation. In this regard it is similar to the n 2 scaling of diffusion, it is
permissive, but by no means compulsive, evidence for the physical correctness of
the reptation picture.
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Hence, in the absence of a primitive path analysis as described above, or some
other analysis of the computed trajectory, it still remains to be seen whether the
simulations of Kremer and coworkers®® do, or do not, support the reptation
model.

3. Diffusion

Our treatment of self diffusion in polymer melts is patterned after Hess’
generalized Rouse treatment which he used to justify reptation-like behavior®'.
Having the insight afforded by our simulations, we were able to make a physically
more realistic set of assumptions which leads to an analytic theory in agreement
with both experiments and the simulations. In particular, Hess assumed?' that the
forces are perpendicular to the chain axis, thus arriving at a reptation-like
diffusion. He further factored the motion (or more specifically the propagator of
the motion) into the product of a parallel (to the chain axis) and a perpendicular
component and weakly coupled the perpendicular and parallel modes. We, on the
other hand?, following closely our simulation results, which indicated that over
the relevant time scale the behavior of the chains is essentially Rouse-like, factor
the motion (the propagator) into a product of the center of mass motion and the
motion of the internal (Rouse-like) coordinates and allow for a weak coupling be-

tween them.
@ Starting from the Green-Kubo expression for the diffusion constant

D= % J-m dt (v(1) - v(0)) (3.1)

where (v(¢) - v(0)) is the velocity autocorrelation function, and using a Zwanzig-
Mori projection operator treatment yields

D=kBT/n[CD+f

o

oA (z)] _ (3.2)

Here {, is a generalized, concentration dependent Rouse-Zimm monomer
friction coefficient and A( is a dynamic friction term due to the interaction
between different polymer chains. By invoking the standard separation of time
scales argument, the effects of the short-lived interchain contacts can be averaged
over, thereby yielding a renormalized Rouse-Zimm monomer friction constant,
o . This leaves only the long lived, dilute, dynamic entanglements to be treated in
A{, which is given by

AL (t) = ((F(2) - F(0))/3nksT , (3.3)

where the correlation function is a Zwanzig-Mori projected force autocorrelation
function.
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One now makes the following simplifying physical assumptions:

1) The interactions between polymer chains are short ranged, steric (excluded
volume, replusive) interactions. This assumes that long ranged hydrodynamic
interactions are completely screened'” and that to a first approximation one can
neglect attractive interactions, except insofar as they are included in the
renormalized monomer friction constant.

i1) The dynamic evolution of the friction constant AL (¢) is identified with the
dynamic evolution of the dynamic entanglements between chains.

iii) Since dynamic entanglements are dilute, the global motion of the chains can
be treated as uncorrelated, and the interaction hierarchy can be safely truncated
at the pair level, i.e. correlated three-body interactions are neglected.

The time evolution of dynamic entanglements is treated in terms of a
propagator, R(q,t), for the pair of chains in contact. Since one is only interested in
the diffusional behavior of the polymers, the propagator need only be considered
in the long wavelength, hydrodynamic limit, where the hydrodynamic pole
dominates. Thus,

R(q.t) = exp(— Dy g*t) . (3.4)

Here Dy is an effective diffusion constant and g is the magnitude of the wave
vector.

From our simulation results, we know that we need the propagator evaluated
for times on the order of the terminal relaxation time. For times greater than 7 ,
the dynamic entanglements have come apart and for times considerably less than
Tg , the effects of contacts are included in {; . In this time regime, the simulations
show that the behavior of the chains is essentially Rouse-like (see for example Fig.
15 of Ref. 21b and the discussion therein) with a small coupling between the cen-
ter-of-mass coordinate and the internal, Rouse-like, coordinates. This physics
can be introduced into the model by making further the assumption that

iv) Dy = (1 =)D, + D (3.5)

where D, is the renormalized Rouse diffusion constant given by
Dy=s = (3.6)

D is the center-of-mass diffusion constant and f, which is small in the melt
regime, gives the coupling between the center-of-mass motion and the internal
dynamics.

From these physical assumptions and the general Hess treatment, we arrive at
an implicit equation for the self-diffusion constant
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D = Dy{l + wle,n)[(1 = pDy + BDI '} " (3.7)

w(c, n) is related to the free energy change per chain per dynamic entanglement
and must be proportional to the number of dynamic entanglements per chain.
Thus we define the dynamic entanglement length by

W =n/n,. (3.8)

n. can be shown to be inversely proportional to ¢, the concentration of polymer
segments per unit volume.”
Inserting Egs. (3.6) and (3.8) into Eq. (3.7) and explicitly solving for D gives

D =D, 2(1—p){(1—=28 + n/n) + [1+2(1=28) (n/n) + (n/n)"}"). (3.9)

If we neglect the small coupling (small ) between the internal and external
coordinates in Eq. (3.9) we obtain

dy
[ S e
n(l+n/n,)
giving Eq. (2.1) which was used to empirically fit the simulation data giving
dy = 0.16 and n, = 125. For all g, if the chain length is small, i.e. n/n,— 0, we
obtain the free Rouse behavior

d
D=DO=:U, (n<n,) (3.10a)

and for all # # 1 when the chain length is large, i.e. n/n, — oo, we obtain
D =dy,(1-Bmn./n*, (n<n,). (3.10b)

Equations (3.10a) and (3.10b) recover the experimental results of Eq. (1.1a).
Furthermore, in the limit that # — 1, Eq. (3.9) gives

dy/n(l — =
D={ o/n(1 —n/n), n=n, 311)

0, n=n
[

Since the shutting down of long wavelength, diffusional modes signals the onset
of the glass transition, Eq. (3.11) predicts a glass transition when # = 1 and
n=n, . The glass transition occurs because, when f# = 1, the propagator for dyna-

mic contacts given by Eq. (3.4) has D,y = D. Thus, in this limit the system is so



48 J. Skolnick, R. Yaris & A. Kolinski

tightly coupled that even the short time propagator requires the full center-of-
mass diffusion constant instead of the “free” Rouse propagator. Each chain pulls
another chain, which pulls another chain, etc. The shutting down of the
diffusional modes signaled by D = 0 shows that the tightly coupled system is no
longer a melt but a glass. Qualitatively then, high molecular weight, entangled
polymeric systems undergo a glass transition when the dynamic entanglements
become trapped, i.e. the global mode which allows for dynamic entanglement
disengagements shuts down. This requires us to consider the coupling constant
to be a function of concentration and temperature. Polymers which are below the
entanglement molecular weight do not have the entanglement trapping mecha-
nism available to them as a means of shutting down the hydrodynamic,
diffusional modes. They go through a glass transition when local, conformational
changing volume fluctuations shut down; a particular example of this was seen in
our diamond lattice Monte Carlo simulations®'®. This is consistent with the
experimental observation that high molecular weight polymer melts have a
molecular weight independent glass transition temperature, while for low
molecular weight melts (i.e. chains shorter than the entanglement length) the glass
transition temperature is considerably lower.*2

The above treatment of polymer melt diffusion can easily be extended to the
case where a probe polymer of degree of polymerization n, diffuses in a melt of
polymers of degree of polymerization n,,. The analysis of this situation only
differs from the above in that the dynamic friction of the probe chain arises from
dyamic entanglements between the probe polymer and matrix polymers (assum-
ing that the concentration of probe chains is small enough that probe-probe
interactions can be neglected — further generalization is straightforward). This
requires that in Eq. (3.4) for the propagator, we use the effective diffusion
constant for a probe-matrix pair. Employing the same physics which led to Eq.
(3.5) in the monodispersed melt we obtain

D = (1 = )7 Do, + (1 = 7)Dou]
+B(y' D, + (1 — y)D,), (3.12a)

where p(m) denotes a probe (matrix) polymer chain, D, again is the renormalized
Rouse diffusion constant and D is the center-of-mass diffusion constant. In the
long time asymptotic regime, a mutual diffusion constant is just the average of
the diffusion constants, but since we do not really know how to take averages in
the intermediate time regime described by the propagator we leave y and y’ as ad-
justable constants to be fit by experiment. However, we do not expect that y and
y’ should differ significantly from their asymptotic value of 1/2. When we fit our
simulations using y as a free parameter, we only obtained a slightly better fit than
using the asymptotic value of 1/2. Moreover, £, the coupling between the center-
of-mass and internal modes is small, and we could fit the simulation results for

)
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monodisperse systems using # = 0. Emboldened by these results, we shall use the
approximation that the asymptotic averaging applies (i.e. y = y’ ~ 1/2) and that
as long as we stay away from the glass transition we can neglect the small coupling
between internal and external modes (i.e. § = 0). Hence

Dy = 1/2[Dyy + Dou] - (3.12b)

Using this result in the general Hess treatment yields

D=ﬁ[ e ] (3.13)
S B T e :

A complete treatment using the full Eq. (3.12a) for the propagator is given in Ref.
23. In the monodisperse limit where n,/n,, — 1 , Eq. (3.13) goes over to Eq. (2.1).
The most stringent comparison of Eq. (3.13) and the simulation was to take
dyoand n, from the simulations on monodispersed melts and calculate the
diffusion of a probe chain using no adjustable parameters. The resulting average
error in the fit was only about 1.5 times the statistical error in the simulation.

Comparison with experiment

In order to see whether our diffusion theory fit real experimental data as well as
it did our computational experiments, we used the recent experiments of
Antonietti, Folsch and Sillescu on polystyrene melts'. They measured the self-
diffusion constants for 10 different molecular weight melts ranging from 7,200 to
75,400 at two different temperatures 180°C and 212°C (both well above the glass
transition temperature of polystyrene of 100°C)*. They also used the same
molecular weight samples dissolved in a polystyrene matrix of molecular weight
111,000 to measure the probe diffusion constants at the same two temperatures.

The experimental entanglement molecular weight for polystyrene is 18,000
which is obtained using®'?

RT
M, =c— (3.14)

0
N

where ¢ is the mass/unit volume of chains, R is the gas constant, T is the
temperature and Gy is the plateau modulus of the species (which is molecular
weight independent). Dividing the experimental entanglement molecular weight
by the molecular weight of monomeric styrene produces an experimental value of
n. equal to 173. Hence the polystyrene samples Sillescu and coworkers use for
their melt diffusion measurements range from n/n, = 0.4 to n/n, = 4.2. These
measurements should be a good test of the theory since they are in the crossover
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regime between unentangled and entangled chains. (We already know the theory
fits both extremes.)

To make the comparison with experiment as tough as possible on the theory,
we used the smallest possible number of free parameters®. That is, we used Eq.
(2.1) for the self diffusion constant of a neat polymer melt and Eq. (3.13) for the
diffusion of a probe chain. Hence, we neglected the coupling of internal and
external modes by setting # = 0 and used the asymptotic value of y = 1/2. We
used the experimental value of n, = 173 throughout, thus leaving d,, the
monomeric diffusion constant, as the only free parameter. From the meaning of
dy , it should be molecular weight independent and independent of the molecular
weight of the matrix in which a probe chain is dissolved. However d, 1is
temperature dependent. Hence, we used the same d, to fit both the self diffusion
and probe diffusion data but used a different d, at each of the two temperatures.

The resulting comparison between theory and experiment are given in Fig. 5
for the self diffusion and Fig. 6 for the probe diffusion. The theory is in quite good

1 T 1 T 1] III' ] 1 T i l_-
102 |- |
lU) - N
m 1
5 10 =
i L 1
S [ ]
= 100 E
10_1 1 1 1 1 1 llll 1 1 L 1 L
100
n/n

e

Fig. 5. Log-log plot of the homopolyer self-diffusion constant vs. n/n. at 180°C and 212°C, in the
upper and lower set of curves. The open triangles are the data of Antonietti, Folsch and Sillescu'?; the
solid curve is the fit of Eq. (2.1) to experiment.
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Fig. 6. Log-log plot of probe self-diffusion constant vs. n,/n.. The solid triangles are the data of
Antonietti, Folsch and Sillescu." The solid curve is the fit of Eq. (3.13) to experiment. The matrix mo-
lecular weight was 111,000.

agreement with experiment throughout this transition region. The activation
energy obtained from the value of d, at the two temperatures is about

30 kcal/mole.

4. Viscoelastic Response

In order to obtain a theory of the viscoelastic properties of a polymer melt that
is in agreement with the experimental scaling behavior, Eq. (1.1b), we had to
develop a somewhat more detailed model than was required for diffusion®.
Three additional physical assumptions were necessary. They are in the spirit of
those presented in Sect. 3 but go farther. The picture the reader should keep in
mind is that the polymer melt is a dense network of entangled chains. When the
polymer melt is subjected to a step deformation, there is resistance because the
deformation drags the collection of chains into a new spatial configuration in a
time fast compared to the internal relaxation processes. The deformed collection
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of entangled chains is clearly out of equilibrium; it is the return of the network
back to an equilibrium configuration which constitutes the viscoelastic response
of the melt.

The physical assumptions we employ to describe this return to equilibrium are:

1) Taking our cue from experiment, we assume that the short time response of
the melt is rubber like. Indeed this is the same assumption introduced into the
reptation model by Doi and Edwards’. In particular, we assume (as they did) that
the stress tensor g,; can be factored such that’

Oop(1) = Top(te) F (1), (4.1)

where a,4(f,) is a strain dependent quantity that depicts the short time network
response of the melt and F(7) is related to the long time configurational relaxation
of the melt. Equation (4.1) assumes that on the average the stored energy is dis-
tributed uniformly along the chains and is consistent with the experimentally
observed separability of the strain and time dependence seen in stress-strain
relaxation experiments.’

We envisage this process to take place in the following steps: After the
deformation, each chain faces a new set of dynamic entanglements which restricts
their motion and return to equilibrium. Moreover, the chain contour length itself
is out of equilibrium. The first relaxation process involves chain contour length ™
equilibration where each chain flows through the loops produced by the dynamic
entanglements. Since this process requires little if any dragging of other chains it
should proceed rapidly and is the process probed by the plateau modulus. This re-
laxation process is completely analogous to the motion through the slip links of
the Doi-Edwards theory,® except that we have identified the physical origin of
these slip links as the dynamic entanglements.

At longer times, the chain contour can further relax by the network of
entanglements as a whole relaxing (it is this latter relaxation that Doi and
Edwards® attribute to reptation). This relaxation process takes place by the same
type of motion that contributes to self diffusion, i.e. a chain drags the dynamic
entanglements along with it.

In order to treat in a relatively simple fashion the long time relaxation of the
network of chains involving a complicated many body entangled motion we must
employ a trick. Think of a single entangled chain — in order for it to relax to equi-
librium, the whole network of chains must also relax to an equilibrium
configuration. Hence, we can use the relaxation of a typical average chain as a
monitor of the relaxation of the network as a whole. That is, the relaxation of a
single chain reports on the relaxation of the entire network of chains.

2) To model the long time relaxation of a single chain in the network of chains,
we treat it as a Rouse chain which has, due to the effect of the dynamic
entanglements, some slow moving points distributed along the chain. This is
completely in the spirit of our treatment of diffusion. Since if one writes the diffu-
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sion constant in terms of {,, , the mean friction constant per monomer is
D = kyT/ng,, . (4.2a)

Equations (2.1) and (3.6) give
(av T CU (1 il n/nc) (4'2b)

where {, is the Rouse friction constant per monomer in the absence of dynamic
entanglements. Of course, in reality dynamic entanglements are constantly being
destroyed by chains drifting apart, and new ones are constantly being created.
The detailed kinetics is not presently known. Here, we neglect the explicit
entanglement dynamics by replacing it with a static time average. To repeat —
polymer chains in the melt are not Rouse chains with a few slow moving (i.e. high
friction) points. They are a dynamically entangled network. However, the
apparent motion of an average chain in the dynamically entangled melt is the
same as the motion of a Rouse chain with slow moving points, and we can use
the relaxation of this “average” model chain to report back the relaxation of
the whole network.

o To proceed further we must know how these slow moving points (i.e. dynamic
2ntanglements) are distributed along the chain contour. Given the present state of
computation, this is a very difficult quantity to obtain from simulation although
we are presently attempting to extract meaningful results from the n = 216
homopolymeric case. Thus,

3) When n/n, is on the order of one, the slow moving points are localized near
the middle of the chain. As n/n, increases, the fraction of the chain included be-
tween slow moving points approaches unity. Physically, this reflects the fact that
the ends of a chain are more mobile than the center. Hence, contacts or
entanglements which are near an end can easily disengage by the end moving
away from the contacting chain. Since it is only long time contacts which
contribute to the hydrodynamic properties, and these are considerably less
probable near one end, we feel safe in disregarding this possibility. As the chain
gets longer, the fraction of the chain consisting of the more mobile ends grows
smaller and in the limit of infinitely long chains goes to zero. Hence, the fraction
of the chain which is not an end and which can be the site of a slow moving point
Erows.

Fortunately, the qualitative behavior of the chains appears to be insensitive to
the details of the distribution of dynamic entanglements. Several reasonable
assumptions about the distribution give, at least qualitatively, the same results.
Again, as in the treatment of diffusion, we shall present here only the most
important results of the model. The interested reader should consult our original
paper for the material omitted here.*
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Before looking at the quantitative results of our model, we shall pause to
examine some qualitative features that emerge. If we consider a melt of chains
having a length on the order of the entanglement length, then each chain on the
average has a single dynamic entanglement. Our model depicts the motions of an
average chain as those of a Rouse chain with a single slow moving bead located
near the center of the chain that has a large friction constant { = (n + 1) {, . Thus,
for this model chain, with its nonuniform distribution of friction constants, the
center of mass, which depends on the mass distribution (which is uniform along
the chain) is not coincident with the center of resistance which depends on the
distribution of friction constants. An immediate consequence is that the center of
mass motion and center of resistance motion differ, and there is a coupling
between the internal motions of the chain and the external, center-of-mass,
motion.

If we now consider the terminal relaxation time of the end to end vector, 1 . for
such a chain, we see that the slow moving bead in the center of the chain acts as a
point defect and really has only a small effect on the motions of the ends. Hence,
7z should be quite close to the terminal relaxation time of a pure (i.e.
unentangled) Rouse chain of the same length in the same medium. On the other
hand, if we look at the diffusional properties of our model chain, since it has twice
the total friction of a pure Rouse chain (after all it is “pulling” another chain
through the medium), it has a diffusion constant half as large as a pure Rouse -,
chain. This qualitative argument suggests that the diffusion constant should :
approach its asymptotic, large molecular weight, entangled behavior at shorter
chain lengths than does the terminal relaxation time. Thus, the product Dty /(S?)
should scale as n* where « is a monotonically decreasing function of » in accord
with the simulation. This expectation is confirmed by the detailed calculations,
see for example Fig. 13 of Ref. 24. Furthermore, if # « 1z (as we shall show
below), then D and 5 reach their asymptotic entangled behavior (where ultimately
n ~ n’) at quite different values of the chain length. This qualitative argument
does not indicate whether »n, is greater or less than n. . However, as we shall
show, our model indicates that the y ~ n** scaling results from the lag in 7,
reaching its asymptotic long chain entangled behavior and that n.” > n,.

From assumption (1) and following the procedure of Doi-Edwards® and
Graessely>* we rewrite Eq. (4.1) for the stress tensor of a polymer melt subject to
a uniform shear deformation, y << 1 (thus limiting our model to the linear
viscoelastic regime) in the x direction as

o, (/7 = GuF(1)
= G(@) (4.3)

In Eq. (4.3), Gy is the plateau modulus which is chain length independent and
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G(?) is the relaxation modulus. From the general theory of viscoelasticity® one
can calculate the zero frequency shear viscosity from G () by

n= J dt G()dt (4.4)
0
and the recoverable compliance as
J. = f drt G(t)/n*. (4.5)
0

From assumptions (2) and (3), we evaluate F(f) in Eq. (4.3), by associating F (¢)
with the configurational relaxation of an average (reporter) chain having some
slow moving points. F'(7) is taken to be the normalized autocorrelation function
of the radius of resistance vector S, . S, is analogous to S, the radius-of-gyration
vector, but where the origin rather than being located at the center of mass is
located at the center of resistance. Within the confines of assumption (3), we use
several different distributions of dynamic entanglements to show that the results
are qualitatively identical. A given distribution of slow moving points is
generated by assuming that every bead has a monomeric friction constant {; , but
some of the beads have an additional friction constant proportional to n to mimic
the effect of the dynamic entanglements.

Smeared friction constant model

The simplest case of the model is when the distribution of friction constants,
{{}, is replaced by the mean friction constant per bead {,, given in Eq. (4.2b).
Physically, one would expect this to be a limiting case for any distribution in the
limit of infinite chain length. That is, when the chain length gets very large com-
pared to the average distance between dynamic entanglements, i.e. n/n, — oo,

. one is justified in replacing the discrete distribution function by a continuum.

_—

Moreover, the viscosity for this model, which can be obtained as an analytic
expression (as can the shear compliance), can be shown to be an upper bound to
the viscosity obtained for a nonuniform distribution of friction constants.

Intuitively, one would expect that the energy dissipation of a chain would be
greater when the total friction is spread out over the entire chain rather than if it
is localized at a few sites; when the friction is localized, a normal mode can easily
skip over these very slow moving points. However, when all points are
fricitionally equivalent, one can no longer reduce the total friction (and hence
lower the energy dissipation) by moving one bead rather than another. A more
detailed discussion of the nature of this upper bound is given in Ref. 24.
Physically, this means that in the long chain limit, the viscosity 5 approaches the
viscosity of the smeared friction constant model #° from below.
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Since the smeared friction constant model has a relaxation spectrum identical

to that of a Rouse chain with a bead friction constant given by Eq. (4.2b), we use
this relaxation spectrum in Eq. (4.3) yielding

n’ = (n*/15) Gy 1%, (4.6)

where 7§ is the relaxation time of the slowest relaxing Rouse mode (the end-to-
end vector relaxation time). Thus, since G is independent of chain length, when
expressed in weight of chains/unit volume, the chain length dependence of the
viscosity is given by the chain length dependence of 73 . In the large » limit,

3

. U n
lim 7p~—. (4.7a)
n/n,— w H,
Thus,
non e, B, (4.7b)

and the crossover exponent d in n° ~ n’ approaches 3 from below.

The smeared friction model does not yield the experimentally observed 3.4
power law scaling for viscosity®', in this it agrees with the reptation model which
also yields a cubic power law scaling. In fact, it can be easily shown that

B 4
T 1_5 Hrepration (48)

and thus it is somewhat closer to experimental results than the reptation model
which predicts viscosities somewhat larger than are experimentally observed®*.
More sophisticated variants of the reptation model including tube length
fluctuations by Doi*® and subsequently by Rubinstein®*’ have been found to
numerically give rise to an apparent power law dependence of # in the
neighborhood of 3.4. In the Doi model, 7 is predicted to asymptotically approach
3, whereas the Rubinstein model is not inconsistent with a power law dependence
of n anywhere between about 3.2 and 3.5. The Doi functional form in particular
gives a reasonable fit to experiment.*®

Before going on to the more detailed distributions of dynamic entanglements,
we point out that due to the bounding of 5 by n° from above discussed earlier, all
models in this class have the asymptotic property that at high enough molecular
weight they will yield a cubic scaling law for the viscosity. This is in qualitative
agreement with the experiments of Colby, Fetters, and Graessley*® on the
molecular weight dependence of 7 in polybutadienes which can be (but need not
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necessarily be) interpreted as showing that above an n/n, of approximately 300,

the experimentally observed 3.4 scaling behavior turns over into a cubic scaling
law.

Distribution of slow moving points

To use a more realistic distribution of dynamic entanglements, we must resort
to numerical computations. In particular, we must develop a normal mode
description of the chain where the beads now have nonidentical friction
constants. This involves diagonalizing matrices on the order of the chain length.
In order to be able to obtain a large number of entanglements and still keep the
size of the matrices manageable, we have set n, , the distance between dynamic
entanglements, at an artificially small value. Hence, when we use n, = 15 (for
example) one should think of each bead on the chain as representing approxima-
tely 10-20 physical monomer units.

We shall describe three different distributions of entanglements presented in
order of an increasing sophistication of the distributions of {{} assumed. In all
cases the total friction constant per molecule is n{,, = (1 + n/n)nl, . Since this
theory is really a theory of entangled chains, the short time behavior of G (¢) in the
crossover regime from the free Rouse chain (where the assumption of a rubber-
like short time response is incorrect) to the entangled chain behavior is beyond
“he scope of the present treatment. Hence we restrict ourselves to chain lengths
n=3n_.

1) n-Independent spacing, identical slow moving point model.

In this simplest model, all n/n, of the slow moving beads are uniformly

distributed about the center of the chain, each having a friction constant

G=0+nb.

The remaining n — n/n, beads have a friction constant {, . Because the beads are
. symmetrically distributed about the center, as » increases, the longest wavelength
modes very quickly have most of their amplitudes concentrated on the high
friction beads. Since the value of the viscosity is dominated by these longest
wavelength modes, it quickly saturates to the smeared friction constant value.
For example, if we fix 7, = 15 and vary the chain length we obtain: n = 45, n/»n°
= 0.962;n = 90, n/n° = 0.989; n = 135, /5" = 0.996; n = 180, /1" = 0.997.
Since for a smeared friction constant distribution, .~ n* (1 + n/n,) , this implies
that this equally spaced distribution has a power law behavior in the crossover
region for the viscosity between 2 and 3 — which is incorrect. Physically, this
arises because this distribution of slow moving points makes it very difficult to
localize the effect of the slow moving points on the terminal relaxation time of the
end-to-end vector, and it is just this localization at small n/n, that we believe is
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responsible for the greater than cubic power law scaling of the viscosity. So we
shall now look at distributions which embody more of the physics.

ii) Extra slow center, n-independent spacing model

Here we assume that the central bead has the largest friction constant in
the chain. This approximates the condition that the center of the chain moves the
slowest. Therefore, since dynamic entanglements in this region should be the
longest lived, the decreased mobility of this region should be greatest. Thus we
give the central bead a friction constant of

l: = (] + 3”)C0 a
The remaining n/n, — 3 slow moving beads are almost equally spaced about the
center and have equal friction constants, !
C=0+n

and the n — [(n/n,) — 2] fast moving beads have a friction constant of ¢, .

As we shall show below, the results of this distribution are qualitatively similar
to the results obtained with our third distribution; thus, we shall present them
together.

1i1) Identical slow moving points, n-dependent spacing model

In this model, we look more closely at the nature of the dynamic entangle-
ments. We assume that the friction constants of all the slow moving points are the
same, but while keeping a uniform spacing we assume that the spacing distance,
ng, 1s chain length dependent. The reasoning behind this distribution is that for
any chain, even a free isolated Rouse chain, the terminal relaxation increases
with increasing chain length at least as fast as n* (the value for the Rouse chain).
Thus, if a dynamic entanglement occurs at a position A beads away from the end
in a chain of length » and in a chain of length 2n, the entanglement in the chain of
size 2n will have considerably more time to disengage. Hence, in our effective
single particle picture, the entanglement closest to the end of the chain of length
2n should be farther from the end than for the chain of length n. '

A model distribution encompassing this reasoning is obtained by uniformly
distributing the n/n, slow moving points about the center, each with a friction
constant

& = (Ul apio)es
such that the spacing between slow moving points is

ng=mn. (1 —2n/n).
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This places the slow moving bead closest to the end a distance 1.5 n, — n.’/n
from the end bead. As n increases this distance increases and approaches an
asymptotic value of 1.5 n,, and the average spacing between dynamic entangle-
ments ny also increases approaching n, asymptotically. Hence the model
converges at large n to the n-independent spacing, identically slow moving point
model. This model has the attractive and physically reasonable feature that for
smaller chains the dynamic entanglements will on the average cluster closer to the
center than for large chains.

Results

We will only present here the results for the calculation of the terminal
relaxation time and the shear viscosity for the various models. Calculations of
other quantities such as the center of mass autocorrelation function and the
comparison of these quantities with the simulation results are given in detail in
Ref. 24.

Figure 7 is a log-log plot of the relaxation time of the longest wavelength normal
mode of the chain zz/f, vs n/n, for the extra slow center distribution (open
squares) and the identical slow moving point distribution (open triangles) (¢, is
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Fig. 7. Log-log plot of tz/tyvs. n/n, for extra slow center distribution (open squares) and the
identical slow moving point, n-dependent spacing distribution (open triangles). See text for further
details. The solid lines are the least square fit to the points in each case. The curve without any sym-
bols is the smeared friction constant model prediction.
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the characteristic time it takes a monomer, in the medium of interest, to diffuse a
root mean square distance equal to the root mean square distance between
neighboring beads). The solid lines are a least square fit to the points. The solid
line without any symbols is the smeared friction constant model prediction. The
scaling exponent as a function of » for the terminal relaxation time is 3.43 for the
extra slow center distribution and 3.21 for the identical slow moving point
distribution. This deviation from a cubic scaling behavior reflects the ability of
the longest wavelength mode to minimize the contribution of the slow moving
points. That is, if there are not too many of them, it treats them as localized de-
fects and effectively hops over them. If the large friction constant component is
spread over all the beads, as in the smeared friction constant model, the effective
friction constant per bead felt by the longest wavelength mode is larger. Hence,
the terminal relaxation time is less than the terminal relaxation time for the
smeared friction constant model. For example in the identical slow moving point
distribution, when n = 45, 75/t, = 718.8, while the smeared friction model gives
a 1z/ty = 1641.4. Remember that asymptotically, for large », the results from all
the various distribution functions must approach those from the smeared friction
constant model. Since at small n/n, they start out with 7 smaller than 73 (their
asymptotic limit which they must approach at large n/n,) 7, must increase faster
than t} with increasing n/n, . We view this transition region behavior as the ori-
gin of the 3.4 power scaling behavior of the viscosity to which we now turn.

Figure 8 is a log-log plot of the reduced zero frequency shear viscosity /G %,
vs n/n, . The extra slow center distribution results are depicted by open squares
and the identical slow moving point distribution results are depicted by open tri-
angles. The solid lines through the points are the least square fit straight lines
leading to a scaling dependence on n of the viscosity of 3.44 for the extra-slow
center distribution and 3.29 for the identical slow moving point distribution. The
heavy solid line in the figure is the asymptotic smoothed friction model limiting
result. While the approach of these distributions to the asymptotic value of the
smeared friction constant model (with its cubic scaling law behavior) is probably
slightly faster with increasing n/n, than the region of the 3.41 power law scaling
behavior in the experiments of Colby, Fetters and Graessley®, the crossover
region (or catch up region) of approximately two orders of magnitude is in
qualitative agreement with experiment (we mention — with some pride — that
the calculations on the extra slow center distribution were done before we became
aware of these experiments).

The scaling exponents for the viscosity and the terminal relaxation time are
almost identical — 0.3% difference for the extra slow center distribution and
2.4% difference for the identical slow moving point model. This suggests that we
should be able to use the calculated terminal relaxation time to approximate the
viscosity. This should be useful in simulations where it is relatively easy to
calculate terminal relaxation times but quite difficult to calculate viscosities
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- Fig. 8. Log-log plot of the reduced zero frequency shear viscosity, /G ¥ 1o , vs. n/n. . The open squares
(open triangles) are the extra slow center distribution (identical slow moving point, n dependent
spacing distribution). The solid curve without any symbols is the smeared friction constant model
prediction.

directly. To this end we try the approximate form suggested by Eq. (4.6) i.e. the
correct result for a Rouse like smeared friction model

7I2 0
napp = E GN TR . (4.9)

Results using this approximation are plotted in Fig. 9 where the open squares
(open triangles) are the exact results using the extra slow center (identical slow
moving point) model and the smooth curves are the result of using the
approximate formula, Eq. (4.9). The agreement with the exact values is quite
good, differing by about 20% when n/n, = 3 and by about 1 percent when n/ n, is
larger than 23.

Finally, we return to the question of the relative magnitude of the crossover
degrees of polymerization for the diffusion constant (n.”) and the viscosity (7,.) .
Figures 8 and 9 show that the n ~ n** apparent power law behavior is well
developed for n. in the order of 3 n.. Numerically, using Eq. (2.1), we find
D ~ dyn/n* when n/ equals about 7 n,. Thus, the model reproduces the
observed fact that n./ > n,.
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Fig. 9. Log-log plot of the reduced frequency shear viscosity, the open squares (open triangles) are the
extra slow center (identical slow moving point, n dependent spacing distribution) results. The solid
lines are generated using the approximate form of Eq. (4.9) with 1, appropriate to each distribution.

5. Summary

We have shown that by using the insights obtained from computer simulations
about the nature of dynamic entanglements in polymer melts, we have obtained a
new theoretical model of polymer melts that is able to explain the experimental
results.

The major features that we abstracted from the computational experiments
and incorporated into our model are: i) polymer chains in a dense system do not
reptate but rather appear to undergo isotropic motion; ii) most of the interchain
contacts are very short lived, but iii) there are a small number of widely spaced
(down a given chain) interchain contacts that persist for a long time — these con-
tacts we refer to as dynamic entanglements. In our model it is these dynamic en-
tanglements which produce the unusual scaling properties of long chain polymer
melts.

The qualitative picture of chain motion that emerges is that in a polymer melt,
the chains behave essentially like Rouse chains (i.e. the same behavior as in dilute
solution) except that where there is a dynamic entanglement of two chains (recall
such entanglements are dilute) the chains drag each other through solution. Thus
the motion of an individual chain in solution looks like a Rouse chain with a

-



'
-

Phenomenological Theory of Polymer Melt Dynamics 63

widely spaced distribution of slow moving — i.e. high friction constant points. It
is these slow moving points which represent the effect of dragging another chain
through the melt. Of course in reality these dynamic entanglements are
continuously dissolving as chains diffuse apart, and new ones are forming as
chains diffuse together. Thus, the picture we are presenting is really a statistically
time averaged picture of this motion of an “average chain”.

This picture of chain motion suffices to understand the diffusional motion of
polymer chains in a melt. It produces the correct scaling behavior of the diffusion
constant (D ~ n~' for small chain lengths going over to n~? for longer chains). It
also suggests that the glass transition for high molecular weight polymers occurs
when dynamic entanglements become kinetically trapped and can no longer
disengage. Short unentangled polymers, which do not have the entanglement
trapping mechanism available, undergo a2 glass transition when the local
conformational changing volume fluctuations freeze out.

In order to understand the viscoelastic behavior of polymer melts, we must rea-
lize that when we subject the melt to a shear deformation we are probing the
return of the perturbed entangled network of polymer chains to an equilibrium
configuration. For short times after the deformation, the entanglements act like
crosslinks in a rubber. For longer times, we can use our picture of the motion of
an average entangled chain as a probe of the relaxation process of the entangled

= network. That is, the average chain can only relax as the network as a whole re-

5

PN

axes, and hence the average chain’s relaxation reports back to us the relaxation of
the whole entangled polymer melt. This model predicts that the viscosity scales as
n for low molecular weight polymers and eventually goes over to an asymptotic
n* behavior for high molecular weight polymers. In the crossover region, which
covers several decades of molecular weight, the relaxation is trying to catch up
with its asymptotic behavior. In this long crossover (or catch up) regime the
model produces the hitherto puzzling n** power scaling behavior of the
viscosity. This three-regime picture of polymer melt viscosities is in agreement
with Colby, Fetters and Graessley’s recent experimental results®®. Hence, our
model strongly suggests that the 3.4 power scaling law for viscosity should be
viewed as ubiquitous but not fundamental.

The model also easily produces the different crossover molecular weights from
entangled to unentangled behavior for diffusion and viscosity.

Lastly we should mention that, although we have not shown it here, the model
also explains in a physical manner the various time regimes of the mean square
bead displacements seen in the simulations.

Hence the simple physical picture we have presented seems to encompass the
necessary physics to understand the dynamics involved in the transport proper-
ties of polymer melts. So while this model is by no means a complete theory of
polymer melts — such a complete theory would have to yield for example the dis-
tribution of entanglements — it should prove useful in improving our under-
standing of the dynamic processes in polymer melts and dense polymer solutions.
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