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ABSTRACT To help elucidate the general rules of globular
protein folding, computer simulations of the conformational
transition in model proteins having the left-handed, four-helix
bundle motif in which the helices are joined by one or two long
loops, as in apoferritin and somatotropin, respectively, have
been undertaken. In the context of simple tetrahedral lattice
protein models, these unique native helix bundle motifs can be
obtained by a set of interactions similar to those found in
previous simulations of the folding of four-member a-helical
bundles with tight bends and B-barrel proteins including the
Greek key motif. The essential features sufficient to produce
the four-helix bundle motif with long loops are as follows: (i) a
general pattern of hydrophobic and hydrophilic type residues
which differentiate the interior from the exterior of the
molecule; (ii) the existence of hydrophilic regions in the amino
acid sequence that, on the basis of short-range interactions, are
indifferent to loop formation but that interact favorably with all
the exterior residues of the helix bundle. Thus, these simula-
tions indicate that, to reproduce all varieties of the left-handed
four-helix bundle motif, site-specific interactions are not re-
quired.

The problem of predicting the tertiary structure of a globular
protein, given the primary sequence of amino acid residues
that constitute it, is one of the most important and most
exciting problems in biochemistry, and many attempts re-
cently have been made to solve this problem (1-7). While a
wealth of information on the three-dimensional structure of
globular proteins exists (5) remarkably little is known about
the essential factors governing the folding of proteins to their
native conformation. The main questions one confronts are:
What is the relative role of long-range vs. short-range
interactions in determining the native state (8-10)? Are
specific site-site interactions required to achieve a unique,
folded native structure (11)? If not, what level of detail must
be employed to predict tertiary structure (12)? What is the
role of some secondary structure in the denatured state?
What is the role of short bends and longer loops in forming
tertiary structure (8, 13-15)?

A number of theoretical approaches have been developed
to address the above questions, including molecular dynam-
ics or Brownian dynamics techniques (7, 16). Unfortunately
these techniques, when applied with a realistic potential
energy surface, are limited to very short time scales. An
alternative approach, espoused by Scheraga and coworkers
(17, 18), employs a set of realistic potentials typically ob-
tained from a build-up procedure, and the folded structure is
obtained by energy minimization. A major problem encoun-
tered here is the presence of many local minima on the free
energy surface. Up to the present, these methods have been
successfully applied only for very short polypeptide chains.
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Finally, it should be mentioned there are some Monte Carlo
simulations of lattice models of globular proteins (19-22), but
they suffer from the limitation that the target native state
structures are assumed in advance and the possibility of
nonnative interactions is ignored.

An alternative method of studying protein folding has
recently been proposed in the context of simple lattice
models having a minimal set of interactions (12, 23-27). By
employing an efficient Monte Carlo algorithm that allows the
model chain to hunt over all configurational space, interac-
tions between all spatially close residues are allowed, and the
native structure is not assumed a priori. Furthermore, no
site-site specific interactions are introduced. That is, all
residues of a given type (e.g., hydrophobic) are taken to be
the same. From the simulation results on the folding of
B-barrels (12, 25, 26) and a-helical protein models (27), some
general rules of folding have begun to emerge. It seems that
the minimal sufficient set of conditions required to obtain a
unique tertiary structure are as follows: (i) a general
hydrophobic/hydrophilic pattern of interactions; (i) short-
range interactions that marginally favor secondary structure
formation (a slight statistical preference for trans conforma-
tions in B-sheet proteins and the existence of helical-wheel
type interactions in helical proteins, respectively); (iii) the
presence of some regions that, based on tertiary interactions,
exhibit a statistical preference to form bends. These are
called ‘‘bend neutral’’ because without tertiary interactions
the native bend conformation is but one of a large number of
equally likely rotational states.

In the case of proteins whose topology is complicated by
the presence of long loops in the native conformation, the
effect of such loops must be addressed. Recently the role of
loops was examined (25) for the case of a Greek key, B-barrel
structure. Not surprisingly, loops were found to provide an
entropic barrier that must be surmounted to produce a fully
folded state, and, depending on the stability of the loop
conformation associated with the native state, a single- or
multiple-domain protein could result. In fact, if the loop
marginally interacts with the folded conformation of the
remainder of the molecule, a nonunique native state can
result. In the present paper, the effect of long loops on the
structure and the thermodynamics of the conformational
transition in the left-handed four-helix bundle motif is exam-
ined.

Previously, we considered the equilibrium conformational
transition to a four-helix bundle having three tight bends and
no long loops (27)—i.e., the topology of cytochrome ¢’ (28)
and myohemerythrin (29). This is denoted by model 0 in what
follows (zero for a native structure devoid of long loops) and
is represented schematically by structure 0 of Fig. 1. In all
cases discussed below, a thick (thin) line indicates a junction
between helices at the top (bottom) of the helix bundle. In the
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present paper, we examine some sufficient conditions re-
quired to fold a helix bundle having one long loop, model 1,
as occurs in apoferritin (30); a schematic representation of the
native state is shown in 1 of Fig. 1. Similarly, in model 2, and
shown in 2 of Fig. 1, the conformational transition to and from
a four-helix bundle having two long loops, and representative
of the topology of methionyl porcine somatotropin (31), is
investigated. These three models include all the possible
connections between helices in an antiparallel, left-handed,
four-helix bundle. Thus, it is of importance to demonstrate
whether in fact our approach is capable of reproducing this
class of native state structures.

MODEL

The model represents every amino acid residue by a single
tetrahedral lattice point. Hence, the protein consists of N
consecutive points, connected by N — 1 bonds, each of length
=312 The set of allowed orientations of the bonds are given
by the permutations of (+1, £1, 1), which maintain tetra-
hedral bond angles. The short-range repulsion that prohibits
chain crossing is implemented by forbidding the multiple
occupancy of all lattice vertices. Every vertex represents an
entire residue with side chains included; i.e., an a-carbon
representation of the protein is employed. Thus, these
models of a-helical proteins are obviously very crude in their
representation of local details. Furthermore, in real proteins,
the number of residues per a-helical turn is 3.6. Due to lattice
restrictions, there are 4 residues per turn in the models
considered here. Moreover, in real proteins, the helices are
slightly tilted with respect to each other, and the four-helix
bundles have a left-handed supertwist (3, 32). On the dia-
mond lattice, the helices are perfectly parallel and a su-
pertwist cannot be accommodated. Nevertheless, if one
views these as models of proteins at low resolution, but with
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FiG. 1. Schematic representation of the topology of globular
protein models 0 (see ref. 27), 1 (see ref. 30), and 2 (see ref. 31). Every
native state contains a left-handed, antiparallel, four-helix bundle.
The thick (thin) lines represent connections on the top (bottom) of the
structure.
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the correct backbone topology, a number of important
qualitative insights can be obtained.

We next turn to the nature of the interactions that are
included in the model. Each residue has three accessible
rotational states: the planar trans state (r) and the two
out-of-plane states, gauche plus (g*) and gauche minus (g7).
A consecutive sequence of g~ states produces a right-handed
a-helix. Elsewhere, we have shown that while an intrinsic
preference for g~ states can be included in the model, it is not
obligatory (27). The local preference for forming a-helical
states is implemented here by including helical-wheel type
interactions (33) (i.e., cooperative interactions) between
residues i and i + 4. More specifically, if all residues from the
ith to the (i + 4)th are in a g~ conformational state, then these
two residues interact with an attractive potential of mean
force .. Helical-wheel type interactions are allowed between
every residue in the chain, except for those in the putative
loop and bend regions (see below).

An amphipathic sequence of residues (34, 35) is introduced
to allow for differentiation of the exterior from the interior
surfaces of the a-helices. All hydrophobic or hydrophilic
interactions are assumed to occur only between nonbonded
nearest neighbor pairs of residues and are independent of
their conformation. A hydrophilic-hydrophobic pair of res-
idues interacts with a repulsive potential of mean force &,,.
Hydrophilic/hydrophilic residues may be attractive, indif-
ferent, or repulsive; for convenience and unless otherwise
specified, we assign them an g, > 0 as well. Hydrophobic
pairs of residues interact with an attractive potential of mean
force &y,. The value of &, or &, depends only on the kinds of
residues that are nonbonded nearest neighbors. &, defines the
reduced temperature scale by T* = kgT/ &y, in Which kg, is the
Boltzmann constant and T is the absolute temperature. For a
more detailed description of hydrophobic and hydrophilic
interactions see ref. 27.

There are some regions in the model chain which form tight
bends or long loops in the desired native structure. Such
regions in the primary sequence might be bend neutral. That
is, for these residues, there is no statistical preference for any
particular configuration, and ¢, = 0 as well. Values of &, and
&w in a bend neutral region can be equal to zero or not equal
to zero; qualitatively identical behavior is observed. In other
models (type h; see below), these residues might also be part
of the amphipathic sequence (with ¢, and &,, # 0), and, based
on local helical-wheel type interactions (e, # 0), these regions
favor helix formation.

Residues belonging to those portions of the chain which are
expected to form the long loop(s) in the native state might
have different properties compared to those in regions that
produce helices and bends. First, loop(s) might be relatively
more flexible (36), and thus originally no cooperative inter-
actions are introduced (e, = 0). Subsequently, & in the loop
regions was set equal to ¥s and ¥ of the value in the remainder
of the chain. Folding behavior qualitatively identical to that
when ¢, = 0 is observed. We therefore restrict our attention
to reporting results when . = 0 in the putative loop regions.
Second, loops should be located outside of the core of the
helical bundle, but they should also be attracted to the
hydrophilic residues that form the external surface (31).
Thus, an attractive potential of mean force ¢, is introduced
between hydrophilic residues that might be on the exterior of
the helix bundle and those residues located in possible loop(s)
regions. The potential ¢, is an extension of the hydrophilic
pattern to loop regions and corresponds to an g, type of
interaction. A separate symbol is introduced for notational
convenience to make the distinction between the a-helical
core and the possible loop-forming parts of the protein so as
to underline the similarities of all the models of the four-helix
bundle under consideration. For the special case of model 2
having two such loops in the native state, as a first approx-
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imation, it is assumed that other than a hard core repulsion
there is no interaction between the loops. Again, it is
emphasized that the assumed set of interactions is valid not
only in the native state but also for every configuration of the
chain in which the pair of interacting residues are nearest
neighbors. Thus the Monte Carlo algorithm has only infor-
mation about primary structure (the values of ¢, &, &y, and
€, for every residue) without any built-in bias towards the
native conformation. Of course, the primary sequence intro-
duced by us is one which we guessed would form a four-helix
bundle with the appropriate topology.

As in previous work (27), the primary sequence is specified
by the following shorthand notation. H;(k) corresponds to
putative helical stretch number i consisting of & residues and
having a typical amphipathic amino acid sequence. Short
bend neutral regions are denoted by bf, and the ith putative
loop consisting of k residues is denoted as L ;(k). The number
of the model (e.g., 0, 1, or 2) indicates the number of putative
loop type regions encoded into the amino acid sequence. An
n indicates that the bend regions are neutral in the sense
defined above, and an h indicates that the regions have an
amphipathic amino acid sequence and, based on local inter-
actions, would prefer to adopt an a-helical configuration.

A number of cases having the native state topologies of
structures 1 and 2 of Fig. 1 were studied. Both of them have
an a-helical core that is almost the same as in previous studies
on the four-helix bundle with tight bends (27).

The first model under consideration, model 1, consists of
n = 61 residues with a short bend (every turn involves 3
residues) between helices I and II and between helices III and
IV and a long loop (15 residues) connecting helices II and III
(see structure 1 of Fig. 1 and Fig. 24). Model 1n has the
primary sequence H;(9)biH,(11)L,(15)H;3(10)b5H,(10). Model
1h, having the primary sequence H;(11)H,(12)L,(15)-
H;(12)H4(11), differs from model 1n by the absence of a turn
neutral sequence between putative helices 1 and II and
helices III and IV. Model 2n (see structure 2 of Fig. 1)
consists of N = 78 residues with one short bend between
helices Il and III (consisting of 3 residues) and two long loops.
One loop, involving 18 residues, is located between helices I
and II and the second loop, containing 13 residues, lies
between helices III and IV (Fig. 1 structure 2 and Fig. 2B).
The primary sequence of model 2n is H;(12)L;(18)H,(10)-
biH;(11)L,(13)-H4(11). Finally, model 2h has the primary
sequence H;(12)L;(18)H,(12)H3(12)L,(13)H,(11).

MONTE CARLO ALGORITHM

The Monte Carlo sampling algorithm (37) is basically the
same as that employed elsewhere (12, 25-27, 37). The main
idea is to allow the model system to sample all the relevant
regions of configuration space, especially those configura-
tions close to the native state and those in the randomly coiled
state. Each Monte Carlo sampling cycle consists of an
attempt to make the following five kinds of moves (local
changes of configuration) on a randomly chosen section of
the chain. (/) Three-bond kink motion, which changes g into
g~ . This move serves to diffuse local orientations down the
chain. (i) Four-bond kink motion, which changes g*g™ into
g¥g*, thereby introducing new local orientations into the
interior part of the chain. (iii) Chain end modifications. To
effect more efficient sampling, different modifications of the
chain ends are used depending on the temperature. At high
temperatures where random coil conformations dominate,
only the two end segments are rotated. At lower tempera-
tures, where native-like conformations contribute substan-
tially to the population, an entire end section of the chain of
length [ is cut off and then randomly reconstructed. The
magnitude of [ is determined randomly, but the maximum
length of such a piece does not exceed the length of an
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a-helical stretch in the guessed native state. (iv) Four-bond
wave motion, where four consecutive bonds having the
conformational sequence g*g~ or g g* are interchanged
with two consecutive bonds located elsewhere in the chain.
(v) Five-bond wave motion, where five of the six bonds
forming a closed cyclohexane-like ring are interchanged with
one bond located elsewhere in the chain. Of course, the
residues are renumbered after modifications iv and v. Mod-
ifications iv and v, and the low-temperature version of iii
change and shift pieces of local conformations along the
chain, thereby permitting the rapid dissolution of partially
folded secondary structures which might be nonnative,
and/or out of register. Hence, these moves help to surmount
deep local free energy minima in a fairly efficient manner.

The periodic boundary conditions normally applied to
Monte Carlo simulations were not used because of the cost
in computer time associated with projecting the coordinates
back into the original Monte Carlo box. With the advent of
computers having large amounts of memory, an alternative
method exists that is particularly efficient for single chains.
The model protein chain is placed in a Monte Carlo box large
enough to ensure that after a small number of Monte Carlo
steps it cannot leave the box (in our particular case, the length
of an edge of the box equals 80). After every 100 Monte Carlo
cycles, the center of mass of the chain is shifted back to the
center of the Monte Carlo box. This produces a substantial
speed up (up to a factor of 3) in the algorithm.

Every local change of chain configuration is tentatively
accepted subject to excluded volume restrictions. After a few
modifications, a new configuration is accepted according to
the standard Metropolis criterion (37). The number of mod-
ifications required to sample the equilibrium properties
depends strongly on the temperature and on the length of the
chain, but it is typically on the order of 10’ Monte Carlo
cycles for the cases studied below. To ensure that the
algorithm is ergodic and that the model chain reaches the
global free energy minimum, different initial configurations
were used and cooling-heating sequences (thermal renatur-
ation and denaturation cycles) were performed. The native
and denatured states are both well characterized, but the
relative populations of these states in the transition region are
not. This is because an insufficient number of jumps between
the native and denatured state are observed to accurately
calculate the equilibrium constant between the unfolded and
folded forms of the model protein.

RESULTS AND DISCUSSION

The ratio of the potentials of mean force are the same as those
employed in previous work on the four-helix bundle having
three tight bends; namely, ¢, = e, = Y2¢,, = —Y2¢,. For all the
models under consideration, this set of interactions leads to
the unique native structure. The ratio between potentials can
vary, but in general both contributions to the total energy
(short-range interactions involving ¢, and long-range inter-
actions involving &,) should have comparable values. Thus,
a broad range of parameters lead to qualitatively similar
behavior. Furthermore, since hydrophilic interactions of the
£w type do not occur in the pure native state, their variation
only influences the simulation time required to fold to the
native state by the suppression (or lack thereof) of incorrectly
folded species (e.g., the mirror image of a native hairpin).
When an inappropriate ratio of potential parameters is chosen
this gives either a collapsed, nonunique state (g}, too strong)
or too expanded a molecule, containing long isolated a-
helical pieces (g too strong).

In Fig. 2, representative native configurations obtained
from the simulations on models 1 and 2 are shown. For each
and every simulation involving a given primary sequence
type, the same native state is found. Contrary to the conclu-
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A B

FIG. 2. Representative conformations of the native states ob-
tained from the simulations of the four-helix bundle with one (A;
model 1) and two (B; model 2) long loops.

sions from both models On and in four-member B-barrel
structures (12, 26), where the presence of at least a central
turn neutral region is required to obtain the unique native
state, no tight bend preference is necessary to produce
structures 1 and 2. That is, models 1h and 2h uniquely fold up
to 1 and 2 as well. We return to this point later.

Fig. 3 shows the mean-square radius of gyration (S?) for
models 1n, 1h, 2n, 2h, and On (the latter was obtained from
ref. 27, where it was called model F) as a function of T*.
Model 1n is observed to have a higher transition temperature
than model 1h (within the error of the simulation the relative
ordering of models 2n and 2h cannot be determined). The
origin of this is as follows. In an h type model, a helical
configuration of the bends is preferred (this is reflected in the

lower value of (S2) at high T*); this results in a lower free -

energy denatured state as compared to the bend neutral case.
Thus, the n series should always melt at a higher temperature
than the corresponding h series for a given topology, an effect
seen in model 0 as well (27).

Due to the greater configurational entropy of the denatured
state arising with an increase in the number of loops, the
transition temperature increases when the number of long
loops is decreased. However, in all cases, in the high-
temperature limit a chain has virtually the same statistics as
that of a random coil. Decreasing the temperature leads to
more frequent but unstable locally ordered structures. In
addition to the values of (S?) reported in Fig. 3, this is verified
by, for example, the calculation of the mean helix content, 6;,
defined as

- f(T*) - fcoil
fnal - fcoil '

with f(T*), feon, and faa the fraction of g~ (helical) states at
T*, in the denatured state, and in the native conformation,
respectively. To facilitate a comparison between the models,
we report average values of 6,(T*) calculated for those
residues that are part of the four-helix bundie and not
involved in loops. Just prior to renaturation there is a small
amount of fluctuating secondary structure in the chain: 6, =
0.223 at T* = 0.741 for model On; 6, = 0.229 at T* = 0.667
for model 1n; 6;, = 0.391 at T* = 0.588 for model 1h; 6, =
0.417 at T* = 0.556 for model 2n; and 6, = 0.406 at T* = 0.556
for model 2h.

Under native conditions, 6,, assumes values close to unity
rather than precisely unity because the native conformation
experiences small local fluctuations. After the collapse to the
native state, ($2), as observed in Fig. 3, decreases slightly as
the temperature is lowered in models 1 and 2, whereas (5?) is
constant in model 0. First of all, there is an all-or-none (see
below) renaturation transition of the protein chain, which
forms the four-member a-helical core with the loop(s) ar-
ranged on the outside. On further decrease of the tempera-
ture, the loop(s) undergo(es) a local rearrangement to in-

6n(T™) (1]
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FiG. 3. Plot of the mean-square radius of gyration vs. reduced
temperature T* averaged over a number of cooling (renaturation)
sequences. O, Model 1n; @, model 1h; O, model 2n; m, model 2h; and
&, model On (see ref. 27, where model On is referred to as model F).

crease the number of contacts with the helical bundle, whose
structure remains unchanged.

The nature of the conformational transition emerges from
an analysis of the average number of native helical contacts,
Vnat, as a function of time. We focus explicitly on the results
of model 2h. The behavior of the other models is qualitatively
the same. In Fig. 4, the number of native contacts, vy, at
three different temperatures is plotted vs. ‘‘time.”” vp, = 21
for the fully native, four-helix bundle 2 of Fig. 1. The time unit
corresponds to 2 X 10%, 6 X 10°, and 10° Monte Carlo cycles,
respectively, for Fig. 4 A, B, and C. In Fig. 4A, at a
temperature T* = 0.556, the model chain is randomly coiled
and has some fluctuating secondary structure, among which
are a few transient native contacts. In the transition region,
at T* = 0.526, the system undergoes a series of renaturation
and denaturation transitions. The transition is more compli-
cated than the transitions for model 0 having 3 tight bends and
closely resembles that found for the Greek-key, B-barrel
structure (25). At any given moment, the protein chain exists
in one of three states: a randomly coiled chain, a pure folded
helical core plus loop(s), or a folding intermediate with 10
contacts that is marginally (<8%) populated. Thus, to a good
approximation the model protein undergoes the all-or-none
transition. This is the same kind of transition as is observed
in real proteins (5, 38, 39). Finally, at a temperature 7* = 0.5,
the chain is folded into the unique native state and has vy, =
21. This number is slightly altered by fluctuations.

On the basis of the above results, we conclude that a
minimal set of sufficient conditions required to obtain the
folded a-helical structure having the complicated topology of
1 and 2 of Fig. 1 is almost the same as the set required for
formation of an a-helical bundle with short bends and for
B-barrels, including the Greek key motif (3). This strongly
suggests that the folding rules are insensitive to the particular
topology and require the following: (i) A hydrophobic/
hydrophilic pattern of residues which if suitably arranged in
an amphipathic pattern will produce an a-helical protein and
if arranged in an odd/even pattern will result in a B-protein
(35). (ii) Short-range (local) interactions which impart mar-
ginal stability to secondary structures such as a-helices,
turns, or B-strands. In the case of four-helix bundles having
tight bends, it is found that there must be at least a single
central turn neutral region to produce the unique, in-register
native state. Here, for helical bundles having long loops we
have found that tight turn neutral regions are not obligatory.
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Fi1G. 4. Plot of the number of native contacts vqq (in the a-helical
core) in a single Monte Carlo run vs. ‘‘time”’ (see text) for model 2h
at T* = 0.556 (A), 0.526 (B), and 0.5 (C).

This can be rationalized as follows. Basically, the loop region
has no intrinsic preference for helical states and therefore
effectively acts as a *‘stop’” to helix propagation. This acts to
reduce the extent of helix length fluctuations [a recent
analysis of a possible role of specific residues in this regard
has been presented by Presta and Rose (9)]. Furthermore,
because of loop entropy, the loops tend to be as tight as
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possible; thus, in-register helix states are further favored.
Finally, the loop interacts with the exterior faces of the
helices; this further stabilizes the native in-register helix
conformations. Hence, due to the interplay of energetic and
entropic factors, turn neutral regions are not obligatory in
helix bundles with long loops. That is, the loops reduce the
fluctuations in registration inherent in the four-helix bundle
with tight bends.

In conclusion, this series of simulations has again demon-
strated that a simple lattice model without any specific site-
site interactions can mimic the conformational transition of
globular proteins in that both the overall topology and
thermodynamics are reproduced. Of course, further refine-
ments of the model are required to study mixed «/pB proteins
and to reproduce the finer details.
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