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Over the past several years we have done a set of dynamic
Monte Carlo simulations on lattice models of a melt of
linear polymer chains,!'? which casts doubts on the physical
model behind the popular reptation theory of polymer melt
dynamics®*. We have also formulated an alternative theory
of polymer melts using the insights obtained from these
simulations®®. While reptation theory has had reasonable
success in explaining the dynamic properties of linear
polymer melts it has not been as successful in explaining
the dynamic properties of melts of ring polymers. Ring
polymers diffuse more rapidly and have a lower viscosity’
than linear polymers of the same molecular weight. The
reptation model leads to the opposite conclusions®.

We have now done a set of dynamic Monte Carlo simulations
on melts of monodispersed ring polymers. .We view these
simulations as computatiomal experiments to enable us to
better understand the dynamics of polymers melts.

Mode) and Method

The dynamic Monte Carlo simulations on melts of ring
polymers were done in the same wa¥ as our previous simula-
tions of melts of linear polymersl:? (these references
should be consulted for further details). We used a simple
cubic lattice in a Monte Carlo box with cyclic boundary
conditions, large enough that finite size box effects can be
safely neglected.

A chain consists of n adjacent distinct lattice sites
(beads) connected in a closed ring by n bonds. No two
beads, whether .from the same chain or different chains can
occupy the same lattice site. No micromodification (see
below) will be allowed which passes two chain segments
through each other. Hence, the model includes all excluded
volume effects. Other than this hard core repulsion there
is no interaction between the beads, hence the system is
athermal.

Briefly, the simulation is performed in the following
steps: i) We start out with a set of smallest possible
sized rings. These are then randomly grown and randomly
modified (see below) until the rings have all reached the
desired size. As we add bonds to the chain the ring is
never opened up so that there is no chance for the rings to
concatenate or for knotted rings to form. The micromodifi-
cations used were the same as for linear chainsl® (two-and-
three-bond jumps and 90° crankshafts) with the obvious
exception of end modifications. These modifications are
made randomly in accord with the standard Monte Carlo
algorithm. It should be noted that this set of micromodifi-
cations spans the set of all modifications possible on a
simple cubic lattice. Step i) is completed when each chain
has attained the desired degree of polymerization n at the
final density of ¢=0.5 (where ¢ 1s defined as the fraction
of occupied lattice sites. At this time the rings are
already partially equilibrated. ii) Ve then performed an
equilibration run by repeating our basic micromodifications.
Since we could not use the very efficient reptation
algorithm for our equilibration of rings as we did for
linear chains the equilibration run took considerably
longer. iii) We then performed our simulation saving the
trajectory for subsequent calculation of various averages.
A Monte Carlo time unit was one attempt, on average, for



each bead in the Monte Carlo box to undergo each of the
possible modifications. These simulations were continued
until the mean square center of mass displacement was
greater than 10 mean square radii of gyration, <$%, for n =
100, 216, 392; about 4<S% for n - 800 and approximately
<52 for n = 1536.

esult

Historically the average size of a polymer has been used
to obtain information about the kind of statistics which
describes the polymeric system under different conditions.
We used two different measures of the size of rings - the
mean square radius of gyration, <Sz>, and the mean square
diameter, <d®> (this is the mean square distance between
bead 1 and n/2, and is to be compared with the mean square
end to end distance of linear chains <R®*>). The results are
tabulated in Table I along with a comparison of the ring
data with the analogous data for linear chains taken from
Ref. (1C). As the degree of polymerization increases the
ratios depart more and more from Gaussian statistics - the
rings are smaller than Gaussian statistics would predict.
This is most easily seen by obtaining how the size scales
with n using the data in Table I:

<d®rings ~ n-®
<Sz>r1ngs ~ no-8

which can be compared to the Gaussian result obtained!® for
linear melts:

<R®»1linear ~ n?-%®

<$%1linear ~ n!-%

TABLE I Equilibrium Properties

n <d®> <s> <Sz>/<d2> §2>r1ngs <d2>;1ngs
<s®linear® <R®>1linear®

100 46.9% 0.4 15.15£0.07 0.323 0.492 0.250
216 92,2+ 2.8 30.9 0.3 0.335 0.458 0.223
392 151.8+t 7.8 52.0 1.3 0.342 0.418 0.212
800 282 122 95.0 £ 3.1 0.338 0.370 0.197
1536 460 *49 168.4 £ 5.4 0.359 0.334 0.170

®The values of <S%>linear and <R®linear are from

Ref. 1C. The values for n which were not simulated in
Ref. 1C (e.g. n=1536) were obtained by a fit to the
simulations.

Our results are in agreement with the simulation of Pakula
and Geyler® on a melt of ring polymers who obtain

<s¥rings ~n%?
using a very different simulation method.

Before discussing the possible origin of the smaller ring
dimensions we should note the ratio <§%/<d® in Table I is
in reasonable agreement with the Gaussian statistics result
that

<Sz>rings/<da>r1ngs -1/3,

despite the fact that melts of rings are clearly not
Gaussian.

Our simulation is in reasonable agreement with the Flory-
like mean field treatment of Cater and Deutschl® which gives

<d®rings ~ n*/3



in three dimensions. They presented an argument for rings
having a statistics intermediate between that for a
collapsed chain (n®/?) and a Gaussian chain. They assume
along with Flory that excluded volume interactions are fully
screened. However, the fact that concatenated rings are not
allowed enforces a topological constraint on the system.
Many of the ring configurations which would be allowed for a
Gaussian ring (ring in a © solvent) are disallowed because
they would lead to concatenated rings. The more extended
the ring structure, the larger the number of configurations
which are disallowed. Hence the set of configurations which
must be averaged over to obtain the average properties of a
ring in a melt has a smaller number of extended configura-
tions than would be the case for a set obeying Gaussian
statistics.

Dynamic Properties

The self diffusion constant, D, and the terminal relaxa-
tion time of the mean square diameter (the longest internal
relaxation time for a ring), 7y, were obtained from the
simulation as in Ref. (1) and are listed in Table II. One
should note that to run the simulations long enough to

TABLE II SpOrt erties
n n/n, D TR
100 0.21 1.14 x 107 1.15 x 10°
216 0.46 4.56 x 107 7.5 x 10°
392 0.83 1.88 x 10™* 3,02 x 10*
800 1.17 (8 x 107%)* 1,33 x 10°
1536 .

® This value is an upper bound estimation of the
diffusion constant (See Ref. 1C).

obtain the transport properties for the n = 1536 melt are
beyond present computational capabilities. The scaling
behavior of the dynamic quantities with respect to degree of
polymerization was obtained from the data in Table II as

D ~ n"3 and r; ~ n?4.
This scaling behavior suggests that the rings are not yet in
the fully entangled regime but are rather in the crossover
regime between Rouse and entangled.

We can show that our simulated melts are in the cross-
over regime in another way by evaluating the average number
of entanglements per ring. To obtain this from our data we
use an expression for the chain length dependence of a chain
in a melt [derived in Ref. (5]

D(n) = d,
n(l+n/n,)

where n, is the entanglement length (average number of
monomer units between entanglements) and d, is a monomeric
friction constant. Fitting this expression to the data in
column 2 of Table II gives ny(rings) = 470. This should be
compared to our simulated value of n,(linear) = 130 obtained
under the same conditionsi®:2, Hence, the ratio

n,(rings)/n,(linear) = 3.6

which is in reasonable agreement with the experimental value
for the ratio of approximately 5 obtained for polybuta-
diene’. The mean number of entanglements per ring, n/n,, is
given in of Table II. It is apparent that even the n = 1536
ring melt is in the crossover regime and at least twice that
length would be required to obtain fully entangled melt
behavior.



This dramatic decrease in the number of entanglements of
a ring when compared to a linear polymer of the same molecu-
lar weight is an important feature in the dynamics of ring
melts. The fact that rings are more compact than linear
chains, as discussed in the previous section, is undoubtedly
a contributing factor. However, it seems unlikely, consi-
dering the rather small differences between the simulated
size of the rings and that predicted using Gaussian statis-
tics, that this can be the major cause. We suggest that the
cause is in the dynamics of entanglements. If one thinks of
an entangled ring moving in any (arbitrary) direction it is
apparent that many fewer of the contacts with other chains
will act to retard this motion than would be the case for a
linear polymer with the same number of contacts with other
polymer chains, Hence, even though the number of contacts

it is for linear ones the number that are actually retarding
the motion is much smaller. It is those contacts which
retard the motion of the polymer which act as entanglements,
hence, rings having a smaller number of effective contacts,
are less entangled than linear polymers.

Lastly, although it is not surprising considering the
small number of entanglements in our simulated ring melts,
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