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Abstract

Dynamic Monte Carlo simulations of long chains confined to cubic
and tetrahedral systems as a function of both volume fraction and
chain length were employed to investigate the dynamics of entangled
polymer melts. It is shown for a range of chain lengths there is a
crossover from a much weaker degree of polymerization (n) dependence
of the self-diffusion coefficient to a much stronger one, consistent
with D ~ n"2, Similarly, systems have been identified having a
terminal relaxation time that varies as n’%. Since such scaling with
molecular weight signals the onset of highly constrained dynamics, an
analysis of the character of chain contour motion was performed. No
evidence whatsoever was found for the existence of a well defined tube
required by the reptation model. Lateral motions of the chain contour
are remarkably large, and the motion appears to be essentially isotro-
Pic in the local coordinates. Results from this simulation indicate
that the motion of a polymer chain is essentially Rouse-like, albeit,
slowed down. Motivated by the simulation results, an analytic theory
for the self-diffusion coefficient and the viscoelastic properties
have been derived which is in qualitative agreement with both ex-
perimental data and the simulatioms.

1. Introduction

A long standing problem of polymer physics is the elucidation of
the microscopic mechanism by which a given chain in an entangled
polymer melt moves.! Although this problem has been a central one in
polymer science for over the past forty years, the mechanism, in fact,
remains unclear.? The answer to this question has practical applica-
tions to, among other areas, polymer flow rheology, polymer adhesion
and polymer failure.l!

Among the phenomenological properties that any microscopic theory
must rationalize, in order to be considered a candidate for a correct
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theory, are the following: Imagine a linear polymer composed of n
bonds. The center of mass self-diffusion coefficient of the polymer,
D, must scale like

D ~ n? when n < n,’

D ~ n"2 when n > n.’' B
n’, is a crossover value of the degree of polymerization.! More re-
cently, other values of the molecular weight dependence of D have been
reported, and the situation is not quite as clear as it appeared a few
years ago.? The degree of polymerization dependence of the zero fre-
quency shear viscosity n is better characterized and is given by 4

n ~ n if n<n,
n ~n¥* if <n, 2

One of the mysteries which remains unresolved is why n, the crossover
value for viscosity is smaller than that for self-diffusion. Whatever
the microscopic mechanism giving rise to this behavior, however, it is
clear that as the molecular weight of the chains increases, entangle-
ments of some nature become important.

What are these entanglements? Computer simulations can be a parti-
cularly powerful technique for elucidating, at least in a qualitative
sense, the microscopic mechanism of various physical processes and
motion in polymers is no exception. This paper describes the results
of simulations on melts of linear chains and describes a simple theory
of melt dynamics that is suggested by those simulations.

One of the most remarkable, and in fact, surprising consequences
of the experimental observations embodied in the dependence at low
molecular weight of the self-diffusion coefficient and the viscosity
is that the polymer chain in a melt behaves like a Rouse chain.® This
is the simplest model for the properties of a polymer chain at in-
finite dilution. In a Rouse chain, which is just a bead-spring model
of a polymer dissolved in a continuum solvent that exerts a high
frequency, frictional force on the beads, the overall motion is
locally, as well as globally, isotopic, and one can neglect hydrody-
namic interactions between beads. BRydrodynamic interactions arise
from the perturbation of the solvent flow about a bead due to the
presence of the other beads. Thus, if the molecular weight of the
polymer melt is sufficiently small, it behaves not only as if it is
not entangled, but it behaves remarkably simpler than if it were at
infinite dilution where hydrodynamic interactions must be considered.®

In subsequent discussion we will require various scaling properties
of the Rouse model’. The mean square displacement of the center of

mass

Ben(t) = 6Dt. (3
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In the long chain 1limit, the mean square displacement of a single
bead,
g(t) ~ th  t<rpiuee (4)

with rg,.,, the terminal or longest internal relaxation time;
2
n°.

TRouse™

As n increases, the polymer changes its response from a viscous
liquid to a viscoelastic liquid. Probably the most widely accepted
model to describe the scaling behavior of D vs. n is the reptation
model of de Gennes®, which was later modified and elaborated on by Doi
and Edwards.®!? Basically, one imagines that the surrounding matrix
of linear chains that produces the entanglements remains static on the
order of the relaxation time of the end to end vector. Thereby, an
extremely complicated many body problem is reduced to an effective
single particle picture. The matrix of chains is replaced by a tube,
which is defined by the static entanglements. In the reptation
picture, the only way the chain can move appreciable distances is by
slithering out the ends of the tube; hence, the name reptation.

In the original reptation model, and in all its subsequent var-
iants, the dominant long distance motion is longitudinal down the
chain contour defined at zero time.! Lateral fluctuations are always
of limited extent. Because of the torturous path that the chain must
take with respect to the laboratory fixed frame, the longest internal
relaxation time of the system 7., turns out to be proportional to nd.
This is typically called the tube renewal time.

If one further assumes that there is a rubber-like elastic response
of the polymer at short times'®, then n ~ n® as well. Observe that
this is a slightly weaker molecular weight dependence than experiment
indicates (see eq. 2). Similarly, the self-diffusion constant scales
as n"2. Thus, at face value it would seem that this simple model of
polymer melt motion quite closely reproduces the experimentally
observed behavior of the self-diffusion coefficient and the shear
viscosity. 1In subsequent developments, however, it turns out that D ~
n? is a ubiquitous property that is quite insensitive to the micro-
scopic details of the motion, a point we will return to later.

Let us contrast the behavior of the single bead autocorrelation
function g(t) for a reptating chain with that of a Rouse chain. For
distances less than the tube diameter, g(t) scales like t¥. In this
time regime the chain has absolutely no information about whether
there is a tube or not, and so it will still behave like a pure Rouse
chain. For somewhat longer times, the chain behaves like a Rouse
chain confined to a tube which itself is a Gaussian random walk, and
therefore, the t¥ behavior is further diminished so that g(t) is
proportional to t* times for up to rp,,,,. Next, one is left with the
center of mass motion down the tube. Thus g(t) is proportional to t¥
for times less than the reptation time. Finally, in the free dif-
fusion limit g(t) is proportional to t. Similar considerations indi-
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cate that there is a range of times for which the mean square dis-
placement of the center of mass scales not like t, but t¥ for times
less than the reptation time, but longer than rg,,, . For >
gm(t) ~ t.
All this is extremely plausible for a regular gel for which, in

fact, reptation was originally derived.® It is not at all clear that
this picture holds for polymer melts where everything is moving on the
same time scale. The reality of a spatially fixed tube has been
previously questioned by Phillies!® and Fujita and Einaga!* for melts,
and by Fixman for concentrated solutions of rod-like polymers.!®

The existence of reptation as the dominant mechanism in a polymer
melt forms the focus of the present paper, the outline of the re-
mainder of which is as follows: We shall begin with the description
of the microscopic model of the polymer dynamics and then turn to the
dynamics of homopolymeric linear chains. Subsequently, we summarize
the results of an recent analytic theory which is in qualitative
agreement with both experiment and simulation,!6717

I1. DESCRIPTION OF THE MODEL

Both diamond and cubic lattice models of a polymer melt have been
employed.®1® A lattice representation is used for a number of
reasons. First of all, it allows one to do the calculations in
integer arithmetic, thereby affording a factor of 10 to 100 speedup
over floating point calculations. Second of all, it allows one to
rigorously insure that no bond cutting occurs and thereby that the
excluded volume effect exerted by one chain upon another is rigorously
implemented. As in all simulations of this type, the lattice is
enclosed in a periodic box of volume L}.” To avoid the problem of a
given polymer chain interacting with its image, we always chose L >
<R%>% (the equilibrium root mean square end-to-end distance) to insure
that interactions of the chain with itself cannot occur. Each polymer
chain is assumed to occupy n consecutive lattice sites, and ¢ is the
volume fraction of occupied sites. In all cases, excluded volume is
implemented by prohibiting the multiple occupancy of any given lattice
site. The dynamic properties of homopolymeric diamond lattice
polymers were studied over a range of volume fractions ¢ from zero to
0.75 for chains up to n = 216.'® The corresponding cubic lattice
polymers were studied at fixed ¢ = 0.5, but for n ranging from 64 to
800 for homopolymeric melts of linear chains,?!®

The first problem one faces in attempting to undertake such a
simulation is the construction of an equilibrated dense melt. Proce-
dures for constructing such systems have been discussed in detail
elsewhere and need not concern us further.?® The next problem encoun-
tered in studying the dynamics of the melt by Monte Carlo techniques
is that one must choose a set of local moves. One wants to make the
moves as local as possible, to avoid either distorting the time scale
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of motion or somehow building in an artificial and unphysical dyna-
mics,7:18°19

The crucial properties of the chain dynamics are as follows: One
has to choose a set of moves on any given lattice that not only can
diffuse local orientations down the chain but also has the possibility
of locally introducing new random conformations into the chain.
Otherwise, the dynamics of even an isolated chain would be non-physi-
cal. That is, if new chain orientations can only arise by diffusion
from the free ends, an now artificial n® time scale is built into the
algorithm which has absolutely nothing whatsoever to do with entangled
dynamics.?"?2 For the case of both diamond?® and cubic
lattices,18:21"22.2% the get of elementary jumps depicted in Figures 1
and 2 respectively satisfy the above requirements and are useful in
that a reasonable fraction of the jumps are successful.

Figure 1. Elementary confor-

a mational jumps for tetrahedral
: O polymers: (a) three-bond
ut;“’(ﬁh' i motion g* -+ g¥, (b) four-bond
motion (with a random choice

of the new orientation of the
bonds), (c) two-bond motion

of end units (with a random
g choice of the new orientation
¥ C}ﬂ=(}” of the bonds), (d) one-bond

motion of end units (with a
random choice of the new
orientation of the bonds).

Figure 2. Elementary confor-
mational jumps for cubic
lattice polmers. (A) The
normal bead motion and an
example of chain end motion.
(B) Examples of three-bond
permutations. (C) The 90°
-crankshaft motion of a
U-shaped fragment of the

c chain.

The simulation proceeds as follows: A chain is picked at random
and then a given bead is chosen. One then attempts to make each of
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the various kinds of moves per bead on average. The fundamental time
unit is taken to be that required such that on average each of the
lattice moves is attempted once per bead. Of course, in actual
implementation, we randomly mixed the moves, and any move is rejected
if such a move is not allowed. For example, in the case of a diamond
lattice, if a three bond flip from one half of a cyclohexane ring to
the other is attempted and the conformation of the selected three
bonds is trans, as opposed to a gauche plus (g+) or gauche minus (g-)
conformation, the move cannot occur. Similarly, the move will be
rejected if the site(s) to which the jump is attempted is (are)
already occupied. One of the nice things about doing simulations at
high density is that while one may specify an a priori choice of any
given type of move, the system itself due to excluded volume restric-
tions chooses the fraction of successful moves for a wide range of a
priori probabilities.18"20

At this point, it is appropriate to review the relative advantages
and disadvantages of using a lattice representation of a polymer melt.
One uses a lattice as mentioned above because it allows one to simu-
late much longer polymers at much higher densities for longer times
than corresponding off lattice systems. The disadvantage, of course,
is that one has to demonstrate that the results obtained from such a
simulation are physically meaningful and not an artifact of the
lattice. While we cannot prove this, in fact, when comparisons can be
made with off-lattice simulations,?’ all the qualitative conclusions
are identical. Moreover, we have obtained identical results for both
cubic and diamond lattices when corrections for differences in local
persistence length and lattice coordination number are made.

I1I. SIMULATIONS ON HOMOPOLYMFRIC LINEAR CHAINS

CENTER MASS MOTION AND THE LONGEST INTERNAL RELAXATION TIMES

The first problem that one faces when doing computer simulations is
demonstrating that the scaling behavior of the self diffusion constant
and terminal relaxation time are consistent with experiment. Thus we
start by an examination of the center of mass motion, and in the
Figure 3, plot, on a log-log scale, the mean square displacement of
the center of mass, g, (t) vs. t for homopolymeric cubic lattice
systems at ¢ = 0.5. Clearly, two regimes are evident. For distances
such that g (t) <2<8% (<S% is the mean square radius of gyration),
ga(t) ~ t* with the values of a monotonically decreasing from about
0.91 when n = 64 to 0.71 when n = 800. Thus, we conclude that these
systems behave neither like a Rouse chain having a uniform friction
constant where g (t) is always proportional to time, nor like reptat-
ing chains which have a t¥ regime. Qualitatively identical behavior
is seen in diamond lattice simulations,® as well as in off-lattice
simulations.?® The existence of a t® regime where a<l indicates
coupling between the center of mass of motion and
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Figure 3. Log-log plots of the center-of-mass autocorrelation
function g (t) vs. t for n = 64, 100, 216 and 800 melts reading
from left to right (or top to bottom). ¢ = 0.5 in all cases. The
shorter time t® regime is to be distinguished from the long time
diffusion regime.

the internal relaxation modes. This is also consistent with the fact
that 2<S$>? is the maximum distance over which the internal modes of
the chain relax to their equilibrium values if, in fact, one can treat
the chains as statistically independent. The self-diffusion constant
was obtained by fitting g (t) equal to the following functional form:
Bea(t) = 6Dt + c, with ¢ a small positive constant that arises from
the fast motion of the center of mass at shorter times. If the data
is fit over the regime from n = 64 to n = 216, then D ~ n"!-32, Unfor-
tunately, during the time these simulations were run we lacked the
computer resources to run the n = 800 system out into the free dif-
fusion limit. Thus, a number of extrapolation procedures were
employed to obtain D for this system. These have been discussed in
detail elsewhere,?® but basically we feel that by n = 800, D is well
into the n'? regime.

We next examined the scaling of the longest relaxation time of the
end-to-end vector obtained from the long-time decay of <R(t)-R(0)>
where R(t) is the end-to-end vector at a time t. Following a period
of very rapid initial relaxation we find that the autocorrelation
function vector is rather well fit by a single exponential.

The scaling of D ~ (n-1)™® and 75 ~ (n-1)® on diamond and cubic
lattice systems are summarized in Table I.
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TABLE 1. Chain Length Dependence of the Self-Diffusion Coefficient
D ~ (n-1)™® and Terminal Relaxation Time 73 ~ (n-1)*

é a B
Diamond Lattice
Single Chain 1.154 (#0.010)® 2.349 (+0.018)°
0.25 1.372 (#0.021)*® 2.563 (30.061)"
0.50 1.567 (+0.017)*® 2.677 (+0.035)2
0.75 2.055 (+0.016)® 3.364 (£0.082)°

Cubic Lattice

0.5° 1.52 (+0.06)* 2.63 (20.04)°

Standard deviation of the slope obtained from a linear
least square fit of the log-log plots of D vs. n and
Tg VS. n, respectively.

Fit over the n = 64 to 216 range, i.e., in the crossover
region.

We point out that the diamond lattice system at ¢ = 0.75 is in
accord with the experimentally observed dependence of 5 on n if n ~
7g. That is, n is proportional to the 3.4 power of n. We further
point out that a given ¢ <0.5 on the diamond lattice the chains are in
the crossover region. One would expect that on increasing n similar
values of the exponents a and B should be seen as in the ¢ =0.75 case.
One of the more interesting results that were obtained from this
series of simulations is that at all concentrations the product Dry
scales like n'? on a diamond lattice and n!'! on a cubic lattice
rather than the expected n!. Based on elementary scaling considera-
tions Dry should be on the order of the radius of gyration of the
chain, which in linear polymer melts is proportional to n. A possible
origin of this discrepancy might be the coincidence of statistical
uncertainties in the estimation of both a and B8, which is approxi-
mately £ 0.05 for both exponents at high densities. A second explana-
tion is that one is observing a crossover to Dry ~ n in the infinite
chain limit. If this were to be true, this would imply that the
experimentally determined scaling of the shear viscosity, n ~ n®%,
would be indicative of a crossover regime, and consist with the simu-
lations it would be rather broad. Some recent experiments by Colby,
Fetters and Graessley are not inconsistent with this particular con-
clusion, but by no means demand it.2® A final alternative explanation
is, in fact, that Dry always scales like n'*® with ¢ greater than zero.
That is to say, configurational relaxation is rapid relative to the
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disentanglement between the chains. This idea has been put forth in a
recent theory of Fixman.?

Having established that our simulations are on chains sufficiently
large that the experimentally observed scaling with molecular weight
of D vs. n obtains we next turn to a finer characterization of the
dynamics, namely, single bead motion. In Figure 4A the log-log plots
of the average mean square of the displacement per bead, g(t) vs. t
for chains confined to a cubic lattice is displayed. Clearly, two
different regimes of behavior are evident. The first regime, which
extends once again up to 2<§%>, g(t) ~ tP with b decreasing gradually
from the Rouse exponent of about 0.54 when n is equal to 64 to 0.48
vhen n is equal to 216. Thus, within the statistical error of the
simulation one might conclude that these chains exhibit a Rouse-like
dependence of g(t) on t. However, the n = 800 curve exhibits dis-
tinctly different behavior from all of the previous cases. There is a

region where g(t) ~ t%%, indicative of more constrained dynamics in
*hese chains.

10% ¢ ’ T oy .
109 L Figure 4A. Log-log plots of the
3 single bead autocorrelation
function g(t) vs. time t for n =
i 64, 100, 216 and 800 melts
102 | reading from top to bottom. The

a(t)

g(t) are averaged over all the

! o ] beads in the system. ¢ = 0.5 in
lo" all cases.

100 . 1 L el

102 102 104 108 108
t

One’s first response is to suspect the t°3® regime is similar to the
t* regime predicted by reptation theory, and that these chains are
reptating. However, getting slightly ahead of the story, microscopic
examination of the motion demonstrates that the character of the chain
motion is distinctly different. One might expect that the central
beads of the chain, in fact, would cross over to the t* first. Thus,
in Figures 4B and 4C, we plot present log-log plots of the average
mean square displacement of the central five beads of the chain,
gs(t), vs. t for n = 216 and n = 800. A tk regime is clearly evident
(actually, gs(t) ~ t%28). Thus, one is left with the question: Are
these chains, in fact, reptating or is the character of their motion,
in fact, different?
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Figures 4B and 4C. Log-log plot of the single bead autocorrela-
tion functions of the central five beads, gs(t) vs. t for n = 216

and n = 800 in Figures 4B and 4C respectively. In all cases
¢ = 0.5,

EXAMINATION OF THE PRIMITIVE PATH DYNAMICS

In the classic treatment of polymer melt dynamics, assuming that
reptation is the dominant mode of chain motion, Doi and Edwards used
the idea of a primitive path.®!? This basically involves the re-
placement of the actual chain by an equivalent ome in which all of the
local fluctuations in chain contour irrelevant to the long distance
motion are averaged out. Basically, one could imagine taking the
chain and reeling in the slack and then looking at the resultant path.
In what follows, we construct an equivalent chain which is quite close
to the primitive path and follow its motion as a function time.

The basic outline of the procedure is as follows: Each bead in the
original chain is replaced by a point on the equivalent path which is
the center of mass of a subchain composed of n, beads. Thus, one
replaces the actual contour of the chain by a smooth path composed of
these partially overlapping subchains which should be very close to
the primitive path of Doi and Edwards, if n, is close to the number of
monomers between entanglements. At every time, we generate the
equivalent path and look at the displacements down the original path
defined at zero time. This corresponds to the reptation component.
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What is left over is the non-reptation component which should be small
if reptation is dominant. To determine whether, in fact, this is true
we compute the average mean square displacement, gj(t) down the
original primitive path and perpendicular to the primitive path,

g, (t). It is trivial to demonstrate that a reptating chain has a
maximum value of g,(t) equal to one half the mean square tube radius
for times less than the tube renewal time. Thus, the ratio gL(t)/g"(t)
should monotonically decrease in time. On the other hand, if the
motion is, in fact, globally isotropic and liquid-like with no memory
whatsoever of a tube defined at zero time, gl(t)/g”(t) should mono-
tonically increase with time. It is interesting to point out that
reptation theory assumes a kind of glass transition has already
occurred in the melt. That is to say, the motion of a chain perpen-
dicular to the original path is essentially frozen out due to the
existence of entanglements.

The question immediately arises whether, in fact, somehow we have
not artificially suppressed reptation in our choice of moves, and if
our particular criteria of the ratio of 8.(t)/g|(t) vs. t would pro-
vide the signature of reptation when it exists. It has long been
established that if a chain is in a fixed mesh and if it is suffi-
ciently long, the chain should reptate.?5:282% Bagsically, the origin
of the force that tends to keep the chain from having large lateral
displacements is as follows: 1If a chain attempts to move between a
set of fixed obstacles then the allowed number of configurations of
the chain are reduced. In the asymptotic limit one could imagine that
this forms a constrained ring whose configurational entropy is greatly
reduced relative to the case when one takes the equivalent chain
length and pokes it out the end of the tube. Thus, one would expect
in the asymptotic limit that reptation should dominate.

To demonstrate that this is true for our simulation we have simu-
lated a chain in a partially frozen environment.!® Basically, what
one does is take the original n = 216 diamond lattice polymer melt and
freeze all the chains but a test chain. However, if one does this,
since the tube is not very porous, one finds grid lock. Thus a par-
tially frozen enviromment is used. We took every 18 beads in the
matrix chains and pinned them. This provides for a set of local
dynamics which is extremely close to that of the original polymer
melt, but here all chains but the test chain of interest are con-
strained from moving appreciable distances. Looking at pictures of
the primitive path, these chains reptate, and gl(t)/g”(t) Vvs. t mono-
tonically decreases with increasing time. Thus, the signature of
reptation is recovered, and one finds the presence of reptation when
it is the dominant mechanism of long distance motion. Furthermore,
since the chains do reptate when placed in a partially frozen en-
vironment, our choice of local Monte Carlo moves does not somehow
artificially suppress reptation.

In Figure 5, we plot for the melt where everything moves g*(t)/g"(t)
vs. t for n = 216 and 800 chains on a cubic lattice at
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a ¢ = 0.5 for times below the tube renewal time of reptation theory.
We have set ny = 17 as well as 101 and find no qualitative difference.

Figure 5. The plot of the ratio

gl(t)/gu(t) vs. time for the

4 n = 216 (upper curve) and n = 800
(lower curve) melt. See the text

for more details.

1-1073 ( 2:1079)

The qualitative features displayed here are identical to those seen
for shorter chains on a diamond lattice at higher demsity. At short
times, transverse motion of a chain is preferred. This is an effect
due to the nature of cooperative motions in high density systems whose
origin is the following:?° Imagine a chain has undergone a conforma-
tional rearrangement. Now the probability of the chain undergoing
correlated motion is a product of two quantities. (1) The intrinsic
probability that the chain is in a conformation such that it can
undergo a jump. (2) The probability there are unoccupied sites the
chain can jump into. For both down and cross chain motion, the
intrinsic probabilities of undergoing a jump are identical. For cross
chain motion, given that the chain has undergone a jump, there is now
an unoccupied volume into which the neighboring chain can jump into
and, therefore, the conditional probability that it can undergo a jump
is now one. However, for down chain motion, this probability is
roughly proportional (on a lattice) to (1-4) raised to the power of
the number of sites involved in the motional unit. Therefore, one
would expect that with an increase in density, cross chain motion
should dominate at short times, as is indeed observed.

Subsequent to the short time preference for transverse motion,
there is a period when down chain motion becomes somewhat more impor-
tant. This corresponds to, in fact, distances on the order of the
excluded volume decay length. Basically what is happening is that the
chain is starting to feel the effect of the environmental, topological
constraints on this distance scale and has slowed down. There is a
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certain incubation period before the collective motion giving rise to
the larger scale lateral motion takes over. Finally, at longer times
the reptation component becomes increasing less important and the
lateral component grows. In fact, it becomes increasingly difficult
to follow the original primitive path and project onto it. We point
out, however, that for the displacements shown, the maximum time is on
the order of a tenth of the terminal relaxation time, and the tube (if
it indeed exists) should have been well defined. An interesting
point observed on comparison of Figure 5 with Figure 4B is that the
minimum in gl(t)/gﬂ(t) occurs vhen the chains are crossing out of the
tl/* regime in the g (t) vs. t plot. Thus, if one were to merely look
at g,(t)/g(t) for times just up to the end of the tk regime, but for
times and distances still short relative to the radius of gyration,
one would incorrectly conclude that reptation dominates. One still
has to go out further into the second t¥ regime where reptation, in
fact, becomes at most a minor component of the motion with respect to
the original primitive path defined at zero time. Thus, we conclude
that there is no tube confining chain of interest. We will return to
this point in subsequent discussion.

A more pictorial illustration of the character of the chain motion
is presented in Figures 6A-6C, where the trajectory of one of the n =
800 chains presented.

N N A N

a c

NN NN RN

Figures 6A-C. Snapshot projections of the primitive path of a n =
800 chain with in the melt, at ¢ = 0.5. The thinner line corre-
sponds to the conformation at the initial time. The thicker line
at a time t (indicated below) later. Triangles indicate one of
the chain ends. (A) The displacement after 6x10* steps; (B)
after 1.2x10° steps; C) after 2x10° steps. The equivalent chain
has been constructed as described in the text with n, = 101.
Every bead in the plot corresponds to the center-of-mass of such

a blob, and for clarity only every fourth bead is plotted. The
density of the beads reflects the density of the chain beads.

The behavior of all of the other chains are qualitatively the same.
The thin curve is the initial configuration of the primitive path
defined at zero time and the thick solid curve, the path at times
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t = 6x10%, 1.2x10° and 2x10° for Figures 6A-6C, respectively. For ease
of visualization, m, = 101 a very conservative value. It is entirely
evident and consistent with the ratio of g,(t)/gj(t) that significant
transverse fluctuations of the chain are observed, and the motion down
the original path is basically insignificant. One is forced to
conclude, based both on the examination of the primitive path and from
the g, (t)/g)(t) analysis that the chains simply do not know they are
confined to a fixed network or tube.

THE ORIGIN OF DYNAMIC ENTANGLEMENTS

Whatever their physical origin, in order to have an important
effect on the long distance motion, entanglement constraints must live
for times on the order of a terminal relaxation time. Otherwise, they
can be subsumed into an effective molecular weight independent monome-
ric friction coefficient. Based on the simulations which behave much
like slowed down, Rouse chains, one might conjecture that the slow
down is due to dynamic entanglement contacts - that is, where one
chain drags another chain for times on the order of the terminal
relaxation time. Eventually, of course, we would expect these two
chains to diffuse apart. However, this disengagement process would
occur on a very long time scale. We next examine what the simulations
have to say about this conjecture.

BEAD DISTRIBUTION PROFILES

Some further insight into the nature of dynamic entanglements
emerges from Fig. 7, where we plot the time dependence of the average
mean square displacement of the bead, g;(t), as a function of the
position i along the chain. In the curves denoted by a through d, the
time equals 3 x 10*, 6.9 x 10, 1.35 x 10° and 2.1 x 10° time steps for
the ¢ = 0.5, n = 216 homopolymeric diamond lattice melt. The smooth
curves through the data correspond to the values produced from the
Rouse model obtained employing an apparent diffusion constant defined
as g.,(t)/6t.

3000 —
Figure 7. Plot for n = 216
2 = 3e10° chains in a melt having

b) t: §ge10* ¢ = 0.5 of g,(t) vs. i, at
) t:135¢}0" times indicated in the

d) 1=21010" figure, in the open

' circles, and calcualted
assuming that the Rouse
eigenvectors form a good
basis set, in the solid
lines. See the text for
additional details.
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The Rouse model over-estimates the mobility of the chain interior and
somewhat underestimates the mobility of the ends. Overall, though,
the bead distribution profiles are rather good. In fact, in general,
it should be pointed out that even for a long isolated Rouse chain in
the absence of any constraints the bead distribution profile is para-
bolic, with the ends moving more than the middle. This is a general
result for linear chains that is independent of the particular model
of dynamics.

NATURE OF THE DYNAMIC CONTACTS BETIWEEN CHAINS

In order to examine the time evolution of contacts between chains
the following procedure was employed. (1) We replaced each chain by
a series of non-over-lapping blobs, each having n, = 18 monomers; thus
the resulting chain is analogous to a pearl necklace. (2) Next we
searched for pairs of blobs belonging to different chains whose
centers of mass are at a distance less than a distance ry, = 5 from
each other at zero time (the length of a bond equals unity). (3) We
count the number of such contacts. Let n.(t) be the fraction of such
dynamic contacts that survive up to a time t later, given that the
chains were at contact at time zero. In Figure 8, we plot n(t) vs. t
for the n = 216, ¢ = 0.5 homopolymeric cubic lattice chains. n,(t) is
found to be decomposable into a sum of three exponentials. While we
realized that our three exponential decomposition is by no means
unique, the time constants which are obtained, nevercheless, are
highly suggestive. The majority of the

10°

Z107
L]

1072 . )

t/1000

Figure 8. Log-log plot of the number of dynamic contacts that
survive up to a time t, n,(t) vs. t for a n = 216 homopolymeric
cubic lattice melt with ¢ = 0.5, ng = 18, and rp, = 5. See the
text for further details.
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contacts (64%) decay within 1% of rp, 91% of the contacts decay within
9% of ry, and the remaining 9% decay on the order of rz. Therefore,
we conclude that dynamic entanglement events are very rare and
approximately 10% of these contacts in an n = 216 chain are long
lived. This translates into one dynamic entanglement for every 133
beads. This compares remarkably well with the estimate of the number
of monomers between entanglements obtained from the self diffusion
constant (see below, eq. 5) which equals 125. The mean lifetime of
these contacts is consistent with the idea that contacts between poly-
mers slow down the motion. Most local contacts, however, are rather
short-lived, and apart from modifying the local friction constants
have no effect on the long time dynamics. Thus, the first conclusion
that emerges from these simulations is that the long-lived dynamic
entanglement contacts have a distance scale which is order of a
magnitude larger than the static screening length. In real polymer
melts the static excluded volume screening length is on the order of a
monomer unit or so, whereas, based on estimates of the plateau
modulus, the mean number of monomers between dynamic entanglements is
on the order of 100.! Moreover, we have also established that all
entanglements are in fact moving with respect to the laboratory fixed
frame. Thus, there is no fixed cage.

What then are the dynamic entanglements? Suppose that at zero
time, a pair of chains are in a configuration where one chain forms a
loop around the other chain - this is a necessary but not sufficient
condition for an entanglement. They then subsequently have to move
together in a direction that causes the contact to be long-lived.
That is to say, one chain drags another chain. Currently we are in
the process of examining the nature of the dynamic entanglement
process in far more detail.

IV, RECENT ANALYTIC WORK

THE SELF-DIFFUSION CONSTANT

It is possible using the Mori projection operator treatment to
calculate the effective friction constant of a polymer due to the pre-
sence of all of the other polymers. This was done in a recent elegant
article by Hess.®® If one then assumes that one need only consider
two body terms, (consistent with the fact that the entanglements are
rather dilute), and thus the propagator between collisions has a free
Rouse component, then it is quite easy to show that!®

d

D=__° (5)

n+n?/n,

with d, the monomeric diffusion constant and n, is the mean number of
monomers between dynamic entanglements. Thus, based on these rela-
tively benign assumptions we conclude that the n2 dependence of D is
very general and will, in fact, be independent of the microscopic
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details of the mechanism of motion. In other words D ~ n'? is not a
unique signature of reptation. e SO

What then must.any successful theory say about the internal :dyna-
mics of polymer -melts? It must rationalize the experimental molecular
weight :dependence of  the self-diffusion coefficient and the shear vis-
cosity (see eq. 1 and 2). It must dlso be consistent with the simula-
tions which indicate:that the motion appears to Rouse like, but slowed
down and that there is no tube. g(t) has a th regime with b<s; g (t)
has a t° regime with a less than one when g (t) < 2<§%>. The product
Drg/n ~ n° with ¢ between 0.1 and 0.2. Furthermore, it must rationa-
lize the single bead, mean square displacement profiles which says
that the ends are more mobile than the corresponding equivalent Rouse
chain and the middle is less mobile.

We summarize below the features of a recent phenomenological theory
that accounts for the above facts.!” The following assumptions need
to be made. (1) At short times a la Doi and Edwards,!® we treat the
response of a melt as identical”to that of a rubber. We then focus on
the motion of an-average reporter chain. We are further going to
assume that the long time relaxation behavior of a given chain in a
polymer melt is adequately described by a Rouse model. However, due
to the presence of dynamic entanglements there are some slow moving
points.

Qualitatively, what might one expect from the crossover behavior of
such a physical picture? Let us consider the behavior 'of a chain
having a single dynamic entanglement. Physically one would expect that
the longest lived dynamic entanglement contact to be located in the
center of the chain. Clearly, the terminal relaxation time in this
system does not change by miuch; basically, the slow moving point
behaves like a local defect. However, in the absence of the entangle-
ment, the self-diffusion is constant is do/n and in the presence of
the entanglement it is do/2n. Therefore, one would expect the cross-
over regions of D and ry to be different. Moreover, the center of
mass and the center of resistance are.not identical. Basically, the
center of mass motion couples into the internal coordinates and this
gives rise to g, (t) ~ t° re§ime with a<l for distances less than
2<s®>%  Similarly, g(t) ~ t” with b<)s. One can show is that as n goes
to infinity, the dynamic properties behave as if the monomer friction
constant can be replaced by the average friction constant per bead
equal to ¢, (l+n/ne), with ¢, the friction constant in the absense of
chain connectivity. The shear viscosity equals 4/15 of the Doi and
Edwards value® and ultimately scales as n’. Thus, we would predict
that n ~ n®" where § goes to zero as n goes to infinity. And finally,
the product of the plateau modulus times the shear compliance equals
10/7. Doi and Edward theory gives a value of 6/5 and experiments are
in the range from 2% to 3.° .

As shown in Figure 9 where the circles denote the calculated values
and the dashed line is the fit through the points giving n ~ n®** the
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crossover value of n ~ n® should be around 40 to 50 entanglements.
This is not inconsistent with the recent work of Colby, Fetters and
Graessley?® although by no means demanded by it. We find in the
present theory that the value of n’;, in eq. 1 equals about 4.5 n,.
Thus, the resulting regime where n depends on the 3.4 power of the
molecular weight occurs at smaller chain lengths than for diffusion.
Finally, Drp/<S%> has an n® regime with € = 0.1 or 0.2 regime, depend-
ing on the particular distribution of friction constants.
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Figure 9. Plot of the shear viscosity in reduced units vs. as n.
The circles are the calculated values and the solid line is the
least square fit through the data giving p~n®**. G is the
plateau modulus and ty is the time it takes a monomer to diffuse
a distance equal to a bond length.

Finally, in Figure 10, log-log plots of g.(t) and g(t) vs. t are
presented for the case of a chain having n = 255 with a mean distance
between entanglements of 15; rp = 1.88 x 10°. We point out that ry of
a Rouse chain of corresponding molecular weight will be 1.3 x 10*. 1In
the top solid curve, there are t¥, t¥ and t¥ regimes in g(t). Clearly,
however, these chains do not reptate. Thus, we have demonstrated that
the existence of a t* regime in g(t) is indicative of some kind of
slow down in the dynamics of this system, but no means demands the
existence of reptation as the dominant mechanism of polymer motion.
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Figure 10. Going from top to bottom in reduced units, log-log
plots of the mean square displacement per bead g(t), the mean
square displacement per bead if the friction constant were
smeared uniformly over the entire chain, g, (t), the mean square
displacement of the center of mass g.(t), and the mean square
displacement of the center of frictional resistance, g (t).

n =255 and n, = 15. The arrow denotes 2<5%>.

V. SUMMARY

The computer simulations provide no evidence whatsoever that rep-
tation is the dominant mode of polymer melt motion. There is no
spatially fixed tube; rather to a very good approximation the
character of the long-distance motion is essentially isotropic.
Furthermore, there are two relevant distance scales in polymer melts.
One is associated with the distance over which static excluded volume
effects are screened out and a second, much longer distance, is
associated with the mean distance between dynamic entanglements.
These dynamic entanglements appear to be rare, and are the result of
topological constraints. From an analytical viewpoint, the motion of
the chain can be phenomenologically treated as that of a Rouse chain
having a few less mobile points, corresponding to the long dynamic en-
tanglements. Theory further indicates that the scaling D ~ n™2 is due
to the onset of some kind of constrained dynamics and nothing more.

Perhaps in the asymptotic limit chains reptate. If so, the transi-
tion to reptation behavior will be transparent to experiment. We have
found cases in the simulation where D is proportional to n™2 and 7y is
proportional to n* and yet these chains do not reptate. Clearly,
however, this is by no means a solved problem. One has to now examine
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the nature of dynamic entanglements more closely and establish
whether, in fact, ultimately there is some kind of moving tube where
the long-lived entanglements somehow disengage by a reptating or
slipping mechanism of one chain past the other. Refinements of the
analytic theory are also required. '
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