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I. INTRODUCTION

The elucidation of the mechanism by which an individual polymer chain
moves in a concentrated solution or in a polymer melt (a viscoelastic liquid
in which all the constituent molecules are polymers) has been among the
central problems in polymer physics for over 40 years.":? In addition to the
complications arising from the effects of internal excluded volume on chain
dynamics, there is the additional complexity in a melt due to the noncrossing
constraint between the individual polymer chains. The problem of polymer
melt dynamics is of interest not only in its own right as an example of an
extremely complicated many-body problem, but also because its solution
would have practical applications to the areas of polymer flow rheology,
polymer adhesion, and polymer failure.! Thus considerable effort has been
expended over the years to develop an effective single-particle picture capable
of describing the dynamics of the chains in the melt. In this chapter we shall
review a number of theoretical approaches to the solution of this problem.*~22
Because of its inherent complexity, computer simulation techniques?°~24 and
analytic theory®~22 have been applied to explore the dynamics of entangled
polymer systems.

A. Experimental Phenemonology

Before presenting an overview of the various theories that have been applied
to treat melt dynamics, it is appropriate to summarize the salient experimental
phemonenology that any successful theory must ultimately rationalize and
encompass. Among the important characteristics of any given polymer prop-
erty is the dependence of the property on molecular weight M (equivalently
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the degree of polymerization, n). In many cases, the absolute magnitude of a
given property has proven extremely difficult to calculate, and the elucidation
of the scaling of this property with M has been a major focus of various
theories.

For a polymer melt composed of linear chains, the center of mass diffusion
coeflicient scales with n as!-25-32

D~n'whenn<n,, (1a)
and with a further increase in n,
D~n~?whenn>n,, (1b)

where n,. is a crossover value of the degree of polymerization. However, more
recent experiments have called into question whether the scaling embodied in
Eq. (1b) is the asymptotic behavior.>* Substantially stronger scaling with
molecular weight has been reported*3, and in the case of concentrated polymer
solutions Phillies** has found that a stretched exponential of the form

D = Dyexp(—oc”) (1c)

fits experimental data extremely well. Here D, is the diffusion constant of the
polymer at infinite dilution which scales as M~® with b in the range 0.5-0.55,
« ~ M, and v is molecular weight dependent crossing over from v = 1.0 to
v = 1/2as M increases.'!*!2 Thus the question of the molecular weight depen-
dence of D is not resolved.

Another transport property that has been extensively studied is the zero
frequency shear viscosity n, which depends on 7 as follows:3:26

n~n'whenn<n, (2a)
and
n ~n>*whenn > n,. (2b)

Observe that the value of the crossover degree of polymerization for viscosity
and diffusion are unequal. Typical experimental data give n_ of about 5n,.3°
Why the crossover values are different for the viscosity and the self-diffusion
coefficient is not understood.

For a number of theoretical reasons'-*3 it has been questioned whether
Eq. (2b) is the limiting power law behavior of 5. A range of exponents of # has
been reported, but the values tend to lie in the range 3.3-3.7, with 3.4 being
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the most prevalent.>3% A major conceptual difficulty with the 3.4 power law
dependence arises from the following: In a polymer melt, the static excluded
volume effect giving rise to chain expansion is screened and the mean square
radius of gyration (S2) scales as n',!'3¢ As pointed out by Colby et al.>3
the time required for molecules to diffuse a distance on the order of the radius
of gyration is

ty = <S?)/D. (3a)

Thus t;, ~ n3 if Eq. (1b) holds.
On the other hand, the time scale for stress relaxation,

To=Jn (3b)

where J? is the recoverable shear compliance (a molecular weight independent
quantity in the limit of large M*-26). Hence, taking Eqs. (2b) and (3b) together
implies that 7y ~ n3. In other words, if 7, ~ n, then chains will move many
radii of gyration before they undergo orientational relaxation. This apparently
“nonphysical” result, when juxtaposed with the predictions of the reptation
model of polymer melt dynamics, has led to the belief that in the asymptotic
limit » should scale as n*°. Thus far, only one experiment by Colby et al.®’
on polybutadiene claims to find this n® behavior. However, these series of
measurements, while clearly an experimental tour de force, have not been
universally accepted as providing convincing evidence for the n* power law
behavior of n.

Whatever the final resolution of this controversy, it is clear that as the
length of the chains in a polymer melt increases, the behavior of the system
changes drastically. The problem remains to identify the cause of this change
in behavior; a reasonable qualitative explanation is that as the size of the
chains increase, chain entanglements of some kind become important.

Thus far we have discussed the behavior of a melt of linear chains, which
are by far the most extensively studied. However, rings are of intense interest
because of the reptation model of polymer melt dynamics which asserts that
for distances on the order of {S2>'2, the other chains act to confine the chain
of interest to a tube.*~%:37 Thus, the dominant motion of the chain of interest
involves the slithering down the tube, defined at zero time. In the reptation
model, the motion of the ends is extremely important. Rings being entirely
devoid of chain ends should, therefore, move substantially slower.3® Experi-
mentally, this doesn’t appear to be the case. Melts of polymer rings have a
lower viscosity and appear to be less entangled than the corresponding linear
chains.3?'4° Roovers*® has reported a scaling of # with n that is consistent
with Eq. (2b); however, the absolute magnitude of # is less. Admittedly, due

'm
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to synthetic difficulties, the range of molecular weights measured is substan-
tially smaller than for linear chain melts; nevertheless, the rings that have been
studied do crossover into what is considered the entangled regime; i.e., the
regime where the polymeric nature of the medium is influencing the behavior
of the chains.

B. Entanglements: An Overview

What is immediately apparent from the overview given above of the experi-
mental phemonenology is that as the length of the chains comprising the melt
increases, the chains behave differently; the origin of these effects has been
ascribed to entanglements of some sort between the various chains.

What is the nature of these entanglements? One picture that comes to mind
is that the chains form knots. Thus, one chain is trapped by a knot formed by
another chain until one of the two ends comes through, and therefore, dis-
engages the entanglement.®!® If this is true, the question arises as to how
mobile the entanglements are. One might envision that these slip knots are
basically immobile, for times, on the order of the z,, and if so the knots could
therefore form the tube conjectured by reptation theory. Another possibility
is that, in fact, the knots are not rigidly held in space but are quite mobile.'®
Thus the chains are not confined to a tube. Rather, the internal configurational
relaxation can occur relatively rapidly, but the disengagement of the chain
from the knots is the rate-determining step.

There is an alternative view of entanglements.?: 4! This viewpoint, while
conceding that the disengagement of knots will contribute to the relaxation,
holds that this isn’t necessarily the dominant process. Rather, a chain need
not be confined by knots to be dynamically entangled—looping of one chain
around the other can work just as well. That this effect can be important is
motivated by the analogy with tangled fishing line. Topologically, in tangled
fishing line, there are no knots whatsoever, yet one loop gets trapped by
another loop until there is a tangled mess. Thus entanglements are viewed to
be intrinsically dynamic in nature, with the surrounding chain environment
at intermediate times (corresponding to distances on the order of {(§2)1?2)
being viewed as quite fluid, much like in a small molecule liquid.

Unfortunately, experiment does not get at the exact nature of the entangle-
ments. Based on estimates of the crossover behavior of the viscosity, whatever
they are, entanglements are rare, occurring on the order of a hundred monomer
units or so.> Computer simulations are an especially powerful technique for
elucidating, at least in a qualitative sense, the microscopic mechanism of
various physical processes;2° the nature of the motion in a polymer melt in
not an exception. However, the simulation of polymer melt dynamics is not
a trivial matter. One must simulate a sufficiently large number of long chains
for long times in order that entangled behavior be exhibited.?® As discussed
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in further detail below, this is a nontrivial task. Here we point out that the
simulations scale at least as the fourth power of n.

C. Rouse Model

One of the most surprising consequences of the experimental observations
embodied in Egs. (1) and (2) is that low molecular weight melts behave like
Rouse chains, which is the simplest model for the dynamics of a polymer chain
at infinite dilution.*! In this model hydrodynamic interactions (the perturba-
tion of the solvent flow surrounding one monomer due to the presence of the
other monomers) are ignored, as are excluded volume effects.*!-42

In what follows, the behavior of a Rouse chain will be required; we sum-
marize here the salient features of the model. Qualitatively, the motion of a
chain composed of identical monomers is isotropic at all times. For a chain
composed of n monomers, the self-diffusion coefficient constant Dy, scales
like n~!. Furthermore, the mean-square displacement of the center of mass,
g.m(?), is related to the self-diffusion coefficient, at all times ¢, by

Genlt) = 6DL. @

In the limit of very long chain lengths, the average mean square displacement
of a bead exhibits the following behavior as a function of time:

g(t) ~ t2 t < TRouses (5a)

where 1., is the longest internal relaxation time and describes the decay of
the end-to-end vector. g, Scales like n?C if excluded volume effects are
neglected. For distances such that g(t) is appreciably greater than 2{5?),

g(t) = 2{5%) + 6Dt. (5b)

Finally, the zero frequency shear viscosity scales like Tg,y../n, and thus the
scaling behavior of Eq. (2a) is recovered.

D. Reptation Model

While the Rouse model has proven to be remarkably successful at charac-
terizing the low molecular weight behavior of polymer melts, it cannot account
for the enhanced dependence on molecular weight of D and n as the length of
the chains increase.2>~34 The first class of models that proved capable of
almost reproducing the molecular weight dependence of both the diffusion
constant and the zero frequency shear viscosity is the reptation model.*~8 It
was originally proposed by de Gennes* to describe dynamics of a polymer
chain moving in a gel, and later was fully developed by Doi and Edwards to
apply to a polymer melt.>~® Since this is a widely accepted model against
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which all alternative theories have had to compete, it is appropriate here to
summarize its features. We focus here on its application to linear chains.

In the original reptation model,}*4~837 one imagines that the surround-
ing chains produce entanglements that remain static for times on the order
of the longest internal relaxation time. The beauty of this approach is that
an extremely complicated many-body picture is reduced to a very simple
single particle picture, namely, the dynamics of an isolated chain confined
to a tortuous (Gaussian) tube. Lateral motions of the chain are always
extremely limited, and the only way the chain can move distances on the
order of the radius of gyration is by slithering out the ends of the tube,
in a snake-like motion. The assertion that the dominant long wavelength
motion is longitudinal, and essentially down the chain contour defined at
zero time, is the fundamental assumption of the reptation theory and all its
variants,!*4~8:37:43-45 A gchematic picture of the chain motion is presented
in Fig. 1.

The scaling with chain length of the various properties can be readily
derived.* Internally, the chain behaves like a Rouse chain; the only problem
is that it must now travel a mean square distance on the order of the contour
length, L ~ n,in order to relax its conformation. Thus the terminal or longest
relaxation time i is obtained from

tR ~ LZ/DRousc ~ n3. (6a)
However, with respect to the laboratory fixed frame, the molecule has moved
appreciably less, on the order of (S}, if one assumes that the tube obeys

Gaussian statistics. Hence the diffusion constant with respect to the labora-
tory fixed frame is obtained from

D ~ (S*/tg ~n~2. (6b)

-

~-_.——;

Figure 1. Schematic representation of chain motion in the reptation model. Owing to
entanglements with other chains (solid circles), the chain of interest is confined to a tube for times
on the order of the longest internal relaxation time; d; is the diameter of the tube.
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Observe that the long chain limit of the self-diffusion coefficient, Eq. (1b), is
recovered.

To obtain the dependence on 7 of the shear viscosity, Doi and Edwards,5~®
make the further assumption that there is a rubber-like (elastic) response of
the melt at short times. Basically, in the short time limit before the chains have
a chance to flow, it is impossible to differentiate the behavior of a melt where
the entanglements provide the restraining influence, from a rubber where all
the chains are covalently cross linked. Unlike the rubber case, the entangle-
ments in a melt are not infinitely long lived, and thus the behavior of a melt
is distinct from that of a rubber at longer times. Coupling the assumption of
a short time rubbery response with longer time motion down the tube gives

n~ g~ n. 0]

Observe that this is not quite the 3.4 power of n, found experimentally for the
zero frequency shear viscosity® 2% (see Eq. 2b); nevertheless, it is close. This
has given rise to the conjecture that the n** power dependence of y is not the
asymptotic behavior, rather it is indicative of a crossover regime.3%-37

Subsequent work by Graessley provided a means of estimating the magni-
tude of D and 5 from reptation theory.3” The reptation model, typically,
overestimates n by about an order of magnitude, but overall it does a rather
good job of estimating D.!+3%:37

Let us compare the behavior of the single-bead autocorrelation func-
tion g(t), obtained from a reptation model with the Rouse model.*3:#¢ For
distances less than the tube diameter d, the chain is unaware that there
is a constraining environment, and consequently simple Rouse behavior is
recovered. Namely,

gy ~ 2 ifg(t) < d3. (8a)
As time further increases, the chain now experiences the restraining effects of
the tube and undergoes internal Rouse dynamics in a randomly distributed
tube. Hence for times up to gy,
g(e) ~ t14. (8b)
The chain then undergoes free diffusion down the tube, thereby giving
git) ~ "2 Tgoue <t < TR (8¢)

Finally, in the free diffusion limit,

g(t) ~ t. (8d)
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Similar considerations indicate that there should be a range of times for
which the mean square displacement of the center of mass scales, like t'2 for
times less than 7, but greater than tg,,..2°

While the basic physical picture is quite reasonable for a regular gel, for
which the reptation model was originally derived; it is not at all clear the same
picture obtains when everything moves on the same time scale. The reality of
a spatially fixed tube has been questioned by Fujita and Einaga,”!° by
Kolinski, Skolnick, and Yaris,!:17:23.47-49 3nd Fixman!®'!? for melts and
concentrated solutions of linear chains, by Fixman'3 for concentrated solu-
tions of rod-like polymers, and by Baumgartner and Muthukumar®®*! for
chains in a random static medium.

Thus, in the past several years the validity of the original reptation model
has been examined,®~12-15-19.34.47-51 There are two points that need to be
clarified. First, is the fundamental assumption that stress relaxation arises
from reptation-like motion correct? If so, is there a well-defined tube for
motions on the scale of the radius of gyration?.

The examination of what is known about the nature of the dynamics in
dense polymer systems is the focus of this chapter, the outline of the remainder
of which is as follows. In Section II we present an overview of computer
simulation results on multichain dynamics. In Section III we summarize the
results of recent analytic theories of polymer dynamics and point out the
-agreements and disagreements with the simulation results. Section IV con-
cludes the chapter with an overview of the status of the field.

1. COMPUTER SIMULATIONS

A. Dynamic Monte Carlo Results

The problem immediately encountered in an attempt to simulate the long-time
dynamics of a dense polymer system is that one must have the ability to study
sufficiently long chains for sufficiently long times so that one can verify that
the scaling behavior of D and 7 are reproduced by the simulation. One
possible way of simulating systems into the crossover regime is to employ a
lattice representation of the polymer melt and perform a dynamic Monte
Carlo (MC) simulation.2% 52-53 There are a number of intrinsic advantages as
well as disadvantages to this approach; we discuss each in turn.

A dynamic MC simulation consists of the random sampling of configura-
tion space by the following procedure.52 Starting with an initial configuration
of the system, one then chooses a chain at random and then a bead at random.
One then randomly displaces, by a set of elemental local moves, the bead
of interest. One must be careful that the choice of allowed moves spans
the configuration space of the chains, otherwise nonphysical dynamics will
result.22:54=56 In the case of systems interacting solely with a hard-core



232 JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

potential, the move is accepted, provided that two or more beads do not
overlap. This method of sampling is known as an asymmetric Metropolis MC
scheme. Provided that some additional assumptions are fulfilled, in particular
that there must be a path to every state on the system and every step of the
process is reversible, then in the limit of a large number of such micromodifi-
cations, the system will sample all states with a frequency that is close to their
relative Boltzmann probabilities; thus good equilibrium sampling can be
obtained.3233

The asymmetric Metropolis MC scheme, when implemented using small-
scale local micromodifications of the chain configuration, generates a solution
to a stochastic kinetics master equation for the time evolution of the system
and, therefore, is able to mimic dynamics.>” Whether or not the dynamics is
physical will depend on the kinds of moves employed. Care must be taken to
make the elemental moves as small as possible to avoid the problem of
significant time scale distortion. However, there is no guarantee a priori that
the chosen moves can mimic physical dynamics. Checks must be performed,
such as demonstrating that isolated random coil chains obey Rouse dynamics,
that the scaling behavior of D and t with n is recovered, and that the relative
mobility exhibited by different chain topologies (e.g., rings and linear chains)
tracks experiment.

The advantage of Monte Carlo dynamics (MCD), by setting the funda-
mental time scale as that required for local conformational modifications, is
that it is inherently more efficient than molecular dynamics where the intrinsic
time scale is associated with rattling about in local conformational wells. Thus,
if one is interested in global relaxation properties of long-chain polymers
where presumably such details are unimportant, then MCD is the method of
choice.

MCD can, in principle, be performed both on’3-*® and off lattice.2%2! The
advantage of performing MCD on the lattice is twofold. First of all, it allows
one to perform the calculations in integer arithmetic, therefore, providing at
least an order of magnitude speed up over off-lattice calculations that must
be done using floating-point arithmetic. Second, it allows one to rigorously
insure that no bond cutting occurs. By use of a lattice occupancy list, this can
be done extremely efficiently.?? Since entangled systems are the object of these
studies, it is extremely important that the only way entanglements relax is
through physical processes, and not by the nonphysical passing of one chain
through the other. The disadvantage is that one is confined to a lattice, and
one must show that the results are consistent with off-lattice simulations and
that the qualitative results of the simulation are not lattice artifacts. This is
always a concern when performing lattice calculations.

In what follows next we present an overview of the results of the diamond??
and cubic lattice*?-4%:5 MCD simulations performed over the past several
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years by Kolinski, Skolnick, and co-workers for melts of linear and ring
polymers; the former simulations are discussed first. As in all simulations of
this genre that were previously performed on much smaller systems,36-60-62
the lattice is enclosed in a periodic box of size L x L x L. To avoid the
problem of a given chain interacting with its periodic image, L is chosen such
that it is larger than the root-mean-square end-to-end vector {( R?)1/2 23.48.49
Each polymer chain occupies n lattice sites, and ¢ is the volume fraction of
occupied sites. The dynamic properties of homopolymeric (i.e., a melt in which
all the chains are equal in length and identical in composition) diamond lattice
polymers?® were examined over a range of volume fraction ¢ from an isolated
chain to ¢ = 0.75, and n ranged up to 216. The cubic lattice polymers were
studied at fixed ¢ = 0.5, for a range of chain lengths n = 64 to 800 for the
homopolymeric melt.*®

The first problem one must address, before undertaking the simulation of
the dynamics, is the construction of a dense equilibrated melt. The details for
preparing such systems has been discussed at length elsewhere.®® Then one
must choose the set of local moves; the importance of this has been discussed
above. 34736

The local elemental moves that are employed must not only have the ability
to diffuse orientations down the chain, but just as in the real system, the ability
to introduce locally new orientations into the chain interior as well.>#-%% For
the case of diamond and cubic lattices, the set of elemental moves depicted in

Figure 2. Elementary conformational modifications for diamond lattice polymers. (4)
Three-bond kink motion. (B) Four-bond kink motion. (C) One- and (D) Two-bond end motion.
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Pl
Figure 3. Elementary conformational modifications for cubic lattice polymers. (4) Two-

bond kink motion and an example of chain-end motion. (B) Examples of three-bond kink
motions. (C) An example of 90° crankshaft motion.

Figs. 2 and 3, respectively, satisfy these criteria.?3:47:48.56.58.62.64 The funda-
mental time unit is that when each of the beads, on average, is subjected to
all the local motions. With this definition of time, the local moves shown in
Figs. 2 and 3 give the correct isolated random coil (Rouse) dynamics. As shown
below, it is encouraging that in spite of the very different local moves, both
the cubic and diamond lattices exhibit the same qualitative behavior, when
corrected for differences in local persistence length and lattice coordination
number, thereby providing encouragement that the simulation results are
physically meaningful.?3-48:49

1. Center-of-Mass Motion and Longest Internal Relaxation Times

Before even beginning a detailed analysis of the internal chain motion, one
must be sure that the scaling behavior of the self-diffusion constant and the
terminal relaxation time are consistent with experiment. Figure 44 shows, in
a log-log plot, the mean square displacement of the center of mass g.(¢)
versus time for homopolymeric cubic lattice systems at ¢ = 0.5.47 Two distinct
time regimes are apparent. For distances such that g .,(t) < 2{52), g¢(t) ~ t*
with a decreasing monotonically from 0.91 when n = 64 t0 0.71 when n = 800.
Qualitatively identical behavior is found on the diamond lattice?® as well as
in off-lattice simulations.?! Hence the existence of a t° regime with a < 1 is
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not a lattice artifact, but is indicative of some kind of constrained dynamics
where the center-of-mass motion couples into the internal relaxation processes.
This is also consistent with the fact that 2¢S?) is the maximum distance over
which the internal modes of an individual chain can relax if, in fact, the chains
are statistically independent. Clearly then, the behavior of the longer chains
is not Rouse-like (see Section 1.C).

From the long time slope of the curve shown in Fig. 44, the diffusion
coeflicient has been extracted. Fitting the data from n = 64 to n = 216, one
finds a scaling behavior D ~ n™!-52, At the time the simulations were done,
we lacked the resources to run the n = 800 system into the free diffusion limit.
Thus a number of extrapolation procedures were employed to extract the
power law behavior of D; these are discussed elsewhere.*” Here we quote the
conclusion that the n = 800 system is well into the D ~ n™2 regime.

The next quantity examined is the longest internal relaxation time g,
obtained by standard techniques from the decay of the autocorrelation func-
tion of the end-to-end vector. Table I summarizes the scaling of D ~ (n — 1)™*
and 1z ~ (n — 1) for the diamond and cubic lattice systems.234® In the case
of diamond lattice systems, the deviation in « and f from @ = 2 and § = 3.4
arises at lower density from the fact that the chains studied are not long
enough to cross over to entangled behavior. Increasing the density at fixed
chain length increases the extent of interchain entanglement. For example, the
longest chains simulated at ¢ = 0.5 on the diamond lattice are n = 216. This
roughly corresponds to a n = 100 chain on the cubic lattice, since chains on
a diamond lattice are inherently stiffer. Thus longer chain lengths would have
to be simulated to observe the asymptotic scaling behavior. Note that the
¢ = 0.75 chains on the diamond lattice exhibit the requisite scaling.2* These
systems are highly mobile, and no evidence of the slowing down for distances
greater than a bond length, indicative of the onset of the glass transition (which
does occur at ¢ =0.92),%* is seen. These chains exhibit globaily isotropic
long-time behavior. Thus the range of densities and chain lengths are appro-
priate to examine the existence of reptation, since « = 2.05 and § = 3.36, the
desired scaling with chain length is found.

Note that at all concentrations the product Dty scales like n'-2 for a
diamond lattice independent of the concentration®?® and n'-! for the cubic
lattice.*” Based on elementary scaling arguments, Dz, should scale like (S2),
which is proportional to n'-%.37 Perhaps this reflects the +0.05 uncertainties
in the exponents « and f at high densities, or perhaps this is due to the
conjectured crossover regime before Dty ~ n!-®. The Colby et al.>” measure-
ments are not inconsistent with this explanation, but they by no means
demand it. A third explanation is to take the observation at face value and
conclude that Dtz ~ n'** with ¢ > 0. This idea forms the basis of a theory of
polymer dynamics introduced by Fixman'®1? (see Section IIL.D).
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TABLE 1
Chain Length Dependence of the Self-Diffusion Coefficient D ~ (n — 1)~ and the Terminal
Relaxation Time, t; ~ (n — 1)’ on Cubic and Diamond Lattices

¢ a b
Cubic Lattice
0.5 1.52 (+0.006) 2.63 (1:0.04)
Diamond Lattice
Single chain 1.154 (+0.0101 2.349 (+0.018y
0.25 1.372 (£0.021y 2,563 (+0.061)y
0.50 1.567 (+0.017y 2.677 (£0.035y
0.75 2,055 (+0.016)° 3.364 (£ 0.082y

© Standard deviation of the slope obtained from linear least-square fit of log-log plots.

Next, the finer details of the chain dynamics will be examined. In Fig. 4B,
the average mean square displacement per bead, g(t), is plotted versus time
on a log-log plot for the ¢ = 0.5 cubic lattice chains.*” Just as for g, (t), two
distinct time regimes are evident. The first regime, which once again extends
up to 2{S5?), exhibits a g(t) ~ ¢® dependence, where b decreases gradually from
the Rouse exponent value of 0.54 when n = 64 to a value of 0.48 when n = 216.
If one stopped increasing the length of the chains at this point, one might
reasonably conclude that the dynamics of these chains is entirely Rouse-like.
However, this doesn’t hold for the n = 800 system. Here there is a region where
g(t) ~ t°3%, once again indicative of the more constrained nature of the
dynamics of these chains. _

Itis not unreasonable to guess that the behavior exhibited by g(t) and g, ()
is indicative of the crossover to reptation dynamics where one expects a
g(t) ~ t'* regime (see Eq. 8). One might expect that the central beads of the
chain would cross over to the t'* regime first. Thus Figs. 54 and B present
log-log plots of the average mean-square displacement of the central five
beads in the chain g;(t) versus ¢ for n = 216 and n = 800 chains, respectively.
There is clear evidence for a t'* regime. The fundamental question still
remains; namely, are these chains reptating? To get slightly ahead of the story,
as shown in the next section, a detailed microscopic analysis of the microscopic
motions of these chains indicates that the character of the chain motion is
entirely different.

In fact, the existence of a t' regime is indicative of some sort of constrained
interchain dynamics and is not a unique signature of reptation. This statement
is further substantiated by a recent simulation of Milik et al.®® on a model
of a membrane, confined to a diamond lattice. The head of each molecule is
constrained to bob up and down, no more than one lattice unit in the z
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Figure 5. Plot of the mean square displacement of the central five beads, g5(¢) vs. time for
n = 216 (A) and n = 800 (B) in ¢ = 0.5, homopolymeric, cubic lattice melts.
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direction, but the chains are free to move in the other two dimensions. Given
the constraints on the dynamics, these chains cannot possibly reptate (one tail
is more or less nailed down in one dimension). There is the standard ¢!
regime; this is followed by a t'* regime at distances corresponding to the mean
spacing between chains. Hence the existence of a t'** regime in the single bead
autocorrelation function does not prove the existence of reptation, since
systems which cannot possibly reptate exhibit this behavior as well.

2. Examination of the Primitive Path Dynamics

In their classic papers developing many of the essential ideas of the reptation
model, Doi and Edwards>~® invoke the idea of a primitive chain path.®® The
primitive path entails the replacement of the actual chain by an equivalent in
which all the local fluctuations in the chain contour which are irrelevant to
the long distance motion are averaged out. Conceptually, this is much like
taking the original chain contour, reeling in the slack, and examining the
resulting path.

To examine the trajectories of the chains in the simulation, we have
constructed an equivalent chain and followed its motion as a function of
time.2347:48 The outline of the procedure is as follows: Each bead in the
original chain is replaced by a point on the equivalent chain which is the center
of mass of a subchain composed of n, beads. This replaces the actual chain
contour by a smooth path of partially overlapping subchains, which should
be a good approximation to the primitive path of Doi and Edwards if n, is on
the order of the number of monomers between entanglements. (Actually, the
results described below are quite insensitive to n,.) The equivalent path is
generated as a function of time. At every time the equivalent path is projected
onto the original path defined at zero time. The displacement down the
original path corresponds to the reptation component. What remains is the
nonreptation component of the dynamics, which should be small if reptation
is dominant.

To quantify the measurement of reptation, the mean-square displacements
down the original primitive path, g,(t), and perpendicular to the original prim-
itive path, g, (¢), are calculated. If the chain reptates, it is straightforward to
show that the maximum value of g, () equals one-half the mean-square tube
radius for times less than the tube renewal time.2* Thus the ratio g, (t)/g,(t)
should monotonically decrease with increasing time. If, however, the motion
is isotropic and liquid-like with little if any memory of a tube defined at zero
time, then g, (t)/g,(¢) should monotonically increase. Thus, examining this
ratio is a nonbiased way of directly addressing the question of whether or not
a given system of chains reptates in a fixed tube. It is interesting to point out
that reptation theory assumes that a kind of glass transition is occurring in
the melt. That is, the motion of the chain perpendicular to the original path
is essentially frozen out due to the existence of entanglements.
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Since the simulations involve MCD on a lattice, it is important to establish
that somehow reptation is not artificially suppressed by the choice of ele-
mental moves and to verify that the ratio g, (t)/g,(t) does indeed indicate
reptation when in fact it is present. It is well established that if a single chain
is confined to a fixed mesh and if it is sufficiently long, the chains will
reptate,21-43.44

To validate the simulation methodology, we examined the dynamics of a
single chain in a partially frozen environment.?* Basically, what one does is
take the original n = 216 diamond lattice polymer ¢ = 0.5 melt, and freezes
all but one test chain in place. However, if all the matrix chains are completely
frozen, since the tube is not porous, the test chain is trapped. Thus a partially
frozen environment was employed, where every eighteenth bead in the matrix
chains is frozen in place. This allows for local dynamics that are quite close
to the original melt, but where all the chains but the test chain are constrained
from moving appreciable distances.

Examination of the primitive path revealed that the chains reptate and the
ratio g, (t)/g,(t) versus time monotonically decreases, as expected.?3 The signa-
ture of reptation is recovered, and one finds the expected presence of reptation.
Hence the MCD moves that are used do not somehow artificially suppress
reptation. We do note, however, that there is substantial tube leakage,! with
loops running up and down cul de sacs. A further interesting point, that is not
surprising, is that the chain in the partially frozen environment moves sub-
stantially slower than when ail the chains are free to move.

In Fig. 6 the ratio g, (£)/g,(f) versus t is shown for the cubic lattice melt,*’
where everything moves, for chains with n = 216 and n = 800. Here n, has
been set equal to 17 as well as 101, and no qualitative difference is found.

The qualitative features exhibited in Fig. 6 are identical to those seen for
chains on the diamond lattice.2® At short times transverse motion of the chains
is preferred. This results from the nature of cooperative motions at high
density, whose origin is as follows.% Imagine a chain has undergone a confor-
mational rearrangement. The probability of the chain undergoing correlated
motion is the product of two quantities: (1) the intrinsic probability that the
chain is in a conformation in which a conformational change is possible and
(2) the probability that there are unoccupied sites, into which the chain can
jump. For both cross- and down-chain motion, the intrinsic probabilities are
identical. However, for cross-chain motion, given that the chain has already
undergone a jump, there is now an unoccupied volume that the neighboring
chain can jump into. The conditional probability that the neighbor can:
undergo the jump is unity. In the case of down-chain motion, this probability
is to lowest order proportional (on a lattice) to (1 — ¢) raised to the power of
the number of sites involved in the motional unit. Therefore, with an increase
in density, one would expect that cross-chain motion is dominant at short
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Figure 6. Plot of the ratio g, (1)/g,(t) vs. time x 1073 (2 x 107*) for n = 216 (800) in the
upper (lower) curve. Both are at a density of ¢ = 0.5 on a cubic lattice.

times, as is observed. This qualitative conclusion is independent of whether
or not the chains are on a lattice.

Subsequent to the short time preference for transverse motion, there is a
period when down-chain motion becomes more important. This corresponds
to distances on the order of the excluded volume decay length. For these
distances, the chain starts to feel the effect of the environmental constraints
and has slowed down. There is a certain incubation period before the collective
motion of the chains that gives rise to the lateral motion takes over. Finally,
at longer times the reptation component becomes less important and the
lateral component grows. In fact, it becomes increasing difficult to follow the
original primitive path and project on it. This is true, in spite of the fact that
according to reptation theory this is precisely the distance and time regime
for which reptation dynamics should be very well defined.’'4~%-37 Note that
we have only examined the primitive path for the middle third of the chain,
because any chain, whether reptating or not, undergoes substantial fluctua-
tions of the ends.!7-23

An interesting point observed on comparison of Fig. 6 with Fig. 54 and B
is that the minimum in g, (t)/g,(¢) versus ¢ occurs just as the chains are crossing
out of the ¢' regime in the g,(t) versus ¢ plot. Thus if one were to merely look
at g, (t)/g,(¢) for times just up to the end of the t'* regime, but for motion over
distances still small relative to the radius of gyration, one would incorrectly



242 JEFFREY SKOLNICK AND ANDRZEJ KOLINSKI

conclude that reptation is quite important. It is not until the chain goes further
into the second ¢! regime that reptation becomes a minor component of the
dynamics. Thus a recent off-lattice molecular dynamics simulation,2* which
claims to see reptation, is in fact, inconclusive because only times up to the
end of the t'# regime are sampled. The simulation times are too short to
demonstrate whether the chains are reptating or not. As discussed above,
the existence of a t'* regime in g(t) versus ¢ plots is insufficient to prove the
existence of reptation. Other modes of cooperative dynamics give this result
as well.

A more pictorial illustration of the character of chain motion is shown in
Fig. 7A-C, where the trajectory of one of the n = 800 chains confined to a
cubic lattice is presented. The thin line corresponds to the conformation at
the initial time, and the thicker line shows the conformation at a time ¢, later.
The triangle indicates the position of one of the chain ends. For ease of
visualization, n, was set equal to 101. Consistent with the ratios g, (¢)/g;(¢)
versus ¢, substantial lateral fluctuations are evident. One is forced to conclude
that these chains, at least, do not know that they are confined to a static tube.

T 7

Figure 7. (A-C) Snapshot projections of the primitive path of a chain of n = 800 in the
¢ = 0.5 cubic lattice melt. The thin line corresponds to the initial conformation and the triangle
labels one of the ends. The displacement after 6 x 10* steps, 1.2 x 10° steps, and 2.0 x 10° steps
is shown in A-C respectively.

>
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The question still remains as to whether or not real chains reptate. Cer-
tainly, these simulations strongly argue against the existence of a fixed tube,
but it could be argued that these chains are in the crossover regime from Rouse
to reptation dynamics. In this regime, one might still expect substantial tube
fluctuations; in other words, we are observing a regime where the chains do
not yet reptate. Since the n = 800 chains are about at the limit of our compu-
tational capabilities, we cannot rule out a crossover to fixed-tube/reptation
behavior at increased chain length. However, because the present simulations
reproduce the experimental scaling of D and 7, it would have to be a crossover
from a regime where classical reptation is not dominant to a regime where
reptation dominates which is invisible to experiment, at least via the standard
techniques that have been employed.

B. Probe Polymer in Matrices of Different Molecular Weight

Another important observation is that when a test or probe polymer is
dissolved in a matrix of polymers of identical chemical composition but
increasing molecular weight, the diffusion constant of the probe, D,, becomes
independent of matrix molecular weight.2%:2%67 To examine whether the
present model system could reproduce this behavior, the dynamics of a probe
chain composed of n, = 100 segments in matrices from n,, = 50 to 800 seg-
ments was explored in a cubic lattice system having ¢ = 0.5.48 Over this range
of matrix molecular weights, the diffusion constant of the probe decreases by
approximately 30%; this is consistent with the decrease in D, observed in real
experiments.?” While a chain of n, = 100 is not sufficiently long to have
crossed over into the n~2 regime of the diffusion constant, the probe in the
n,, = 800 system had a diffusion constant that is two orders of magnitude
larger than the matrix in which it was dissolved.

The primitive path analysis clearly showed that the motion of the chain is
not confined to a tube and that the motion is not reptation-like. Otherwise
stated, the local fluctuations in the topological constraints imposed by the
matrix are sufficiently large even for the n,, = 800 case to allow for essentially
isotropic, but somewhat slowed-down, motion of the probe chains in the melt.
Thus the MCD is once again in qualitative accord with experiment, and yet
reptation within a confining tube is not found.

C. MCD Simulation of Melts of Rings

More recently, Sikorski, Kolinski, Skolnick, and Yaris®*®®® undertook a
series of simulations designed to examine the nature of the dynamics of a
melt of uncatenated rings; two distinct physical cases were examined. The first,
and simplest, involved a cubic lattice melt of unknotted cubic lattice rings,
packed at a volume fraction ¢ = 0.5; a range of chain lengths from n = 100 to
1536 was studied. The second case involved the dynamics of a melt of rings
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Figure 8. Conformation of an n = 30 ring on a cubic lattice containing one self-knot.

containing one self knot, such as is shown in Fig. 8. The motivation of this
simulation, suggested to us by McKenna, is as follows. Owing to the nature
of the synthesis conditions, it is possible that real ring polymers might contain
self knots, and the question arises as to whether such knots will drastically
change the dynamic properties of a melt of rings.*°

1. Growth of Melts of Rings

Just as in the linear case, one has to start with an equilibrated melt of rings
before one can even begin to perform the dynamics. Recently, Pakula and
Geyler developed a very efficient method for generating such a system on a
fully occupied lattice.®®~7! This novel algorithm will be elaborated on in detail
in Section ILE, where their simulation technique and results are more fully
explored. Here we describe an algorithm for generating systems, in principle
of arbitrary polydispersity, which should be quite efficient, provided that the
density of the system is not too large.

As schematically depicted in Fig. 9 for the case of unknotted rings, one
starts with a set of the smallest size rings, each containing four beads. One
chain is shown for the sake of clarity; actually, N chains are simultaneously
subjected to the growth/equilibration algorithm. These are then randomly
grown and modified, just as is done for linear chains. However, unlike the
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Figure 9. Schematic representation of the ring growth algorithm. One ring is shown for
clarity. In reality all rings are simultaneously grown and equilibrated.

linear case,% reptation dynamics is useless (there are no free ends to randomly
cut and paste). Fortunately, since rings are characterized by smaller chain
dimensions and for isolated chains, at least, smaller relaxation times, this
doesn’t pose too severe a problem. That is, the systems can be run for suffi-
ciently long times to be reasonably sure that equilibrated systems have been
prepared. The rings undergo the same set of internal modifications as the
linear chains shown in Fig. 3, with the exception that end moves are not
performed. The process of growth/equilibration stops when all the rings are
of size n. In principle, polydisperse melts of rings could be grown.

The advantage of this particular ring preparation procedure is that owing
to the set of elementary jumps of MCD and the ring growth mechanism the
rings cannot be catenated. Depending on the degree of polymerization and
density, the rings can be rather highly entangled. Provided that the equilibra-
tion period between intervening growth steps is sufficiently long, the resulting
system should be close to an equilibrated system. Following system prep-
aration, the system is allowed to run for several relaxation times before
sampling for the dynamic properties begins.
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The only difference between growing rings that have no knots and rings
with a single knot is in the starting conformation. Initiaily, rings having a
single knot are placed in the box, and then they are subjected to the growth/
equilibration process. Again, because of the bond pair insertion constraint
that does not violate excluded volume, a monodisperse collection of rings,
having one self-knot, can be generated as well.

2. Equilibrium Properties

To date, only two simulations of the equilibrium properties of a melt of rings
have been undertaken, one by Pakula and Geyler”! for rings on a fully filled
cubic lattice, up to n = 512, and the present simulation for rings at ¢ = 0.5,
for rings up to n = 1536.3°-%® Qualitatively, identical behavior is observed.
Before presenting the simulation results, it is appropriate to compare the
expected scaling relationships of the conformational properties with the cor-
responding linear chains, if the statistics are Gaussian.*? The mean square
radius of gyration of the corresponding ring and linear chain of identical n
are related by

<S2>ting = <Sz>linear/2 ~ nl.O, (93.)

and the mean square diameter, which is the mean square distance between
beads 1 and n/2, {d?),;,,, is related to {R?)y;;.r bY

<d2>ring = <R2>Iinear/4 ~ nl.O. (9b)
Combining Eqgs. 9a and 9b,
<Sz>ring/<dz>ring = %' (90)

These results are to be compared with the Pakula and Geyler’! simulation
result that

<sz>ring ~ n0.90’ (108.)
and
<R2>Ilnear ~ "1.006’ (IOb)

the latter holding for chains up to n = 512,
The Sikorski et al. result>%¢8 js

<S2>ring ~ n0.84’ (1 la)

and
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TABLE II

Equilibrium Statistics of Melts of Rings at ¢ = 0.5

n N d*) <5%) <8*H/Kd*) dHKd*y? (S*HKS™)? (2> g [KROINN®  (8)110g/<S* Dpin
100 20 46.9 + 0.04 15.15 £ 0.07 0.323 1.540 + 0.008 1.070 + 0.002 0.250 0.492
1007 20 280+ 08 11.60 + 0.02 0.414 1.666 + 0.02 1.041 £ 0.001 0.149 0.377
216 24 91.8 £ 0.3 300 £ 03 0.336 1.587 £ 0.017 1.081 + 0.003 0.222 0458
392 28 1546 + 7.9 528 + 14 0.342 1.597 + 0.026 1.083 + 0.006 0.215 0424
392° 28 132.5 £ 100 454 + 1.7 0.347 1.664 + 0.020 1.084 + 0.009 0.184 0.369
800 40 278 £ 19 952 %30 0.341 1.625 + 0.077 1.091 £ 0.020 0.195 0.368
1536 40 469 + 50 1684 + 5.6 0.359 1,657 £ 0.101 1.109 £ 0.020 0.169 0.333

@ Melt of rings each containing one self knot.
b lin is the value for the linear system.
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d?) ing ~ 1%, (11b)
which should be compared to the linear melt values*’ of
CR*Djinear ~ n>%, (12a)
and
{5 tinear ~ 1'% (12b)

Thus the ¢ = 0.5 result is in excellent agreement with the ¢ = 1.0 result of
Pakula and Geyler.”! With respect to the equilibrium properties at least, the
¢ = 0.5 system is essentially identical in scaling behavior to the fully occupied
lattice system.

In Table II, the Sikorski et al. equilibrium results*®-¢® are summarized for
both the unknotted system and the system having one self knot. The latter
systems, not unexpectedly, have smaller dimensions than the unknotted rings,
but the relative difference between the two cases decreases with increasing
chain length.

The simulation results of both groups are in reasonable agreement with the
Flory-like mean field treatment of Cates and Deutsch,’? which gives

<d2>rings ~ n*? (13)

in three dimensions. The crux of their argument is as follows. If excluded
volume interactions are fully screened, the fact that catenated ring confor-
mations are prohibited exerts a topological constraint on the system, and the
more extended the conformation is, the greater is the topological constraint.
Thus rings in a melt should tend to collapse. Opposing this is the Gaussian
entropic force. Equation (13) results from minimizing the free energy due to
these two competing effects, with the result that rings are less expanded than
would be predicted from Gaussian statistics alone.

One of the more interesting and unexplained relationships of Table II is
that while the ($2),,., and {d*),;,,, are distinctly non-Gaussian in behavior,
their ratio is close to the Gaussian value of 1/3.

3. Dynamic Properties of Unknotted Rings

The procedure for extracting the self-diffusion coefficient and the longest
relaxation time 7, (Which corresponds to the relaxation of the diameter auto-
correlation function) is discussed elsewhere.3?-8 Values of D, 7,, and a number
of other dynamic quantities for rings of n = 100, 216, 392, 800, and 1536 are
shown in Table III. Given the computational resources, we cannot carry out
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TABLE III
Self-Diffusion Constant and Terminal Relaxation Times for ¢ = 0.5 Melt of Rings
M D 1, Dt f{d*) n/n} ac b¢
100 1.14 x 1073 1.15 x 102 2.80 x 1072 0.20 0.96 0.61
100° 9.15 x 1074 1.17 x 10° 3.82 x 1072 0.95 0.56
216 435 x 1074 7.50 x 103 3.55 x 1072 042 0.88 0.52
392 1.88 x 1074 3.02 x 10¢ 3.67 x 1072 0.77 0.87 045
392° 2.85 x 1074 243 x 10* 523 x 1072 0.90 0.46
800 143 x 10° 1.57 0.85 0.46
1536 5.89 x 10% 3.01 0.80 041

2 Melt of rings each containing one self-knot.

b Estimated from Eq. (15a).

¢ Exponent of g,(t) ~ t° for distances less than 2{S2).
4 Exponent of g(t) ~ t® for distances less than 2{5§2).

the n = 1536 simulation into the free diffusion limit. The diffusion constant
scales with n like

D~ n142 (14a)
and
T4~ n?32, (14b)

This scaling behavior suggests that the rings are in the crossover regime and
are not as entangled as the corresponding linear system.

Another means of estimating the number of entanglements follows from
an analytically derived expression for the diffusion constant of a chain in the
melt'® (see Section IIL.B below)

do

n(l + ﬁ)
n,

where n, is the mean number of monomers between entanglements. Fitting
this expression to data in Table III gives n, (rings) = 515, and employing the

analogous expression to fit the linear data*?-® gives

D(n) = (15a)

n (rings)/n (linear) = 3.9. (15b)

In other words, the melt of rings is less entangled and therefore, more mobile
than the corresponding melt of linear chains. This ratio compares quite
favorably to the ratio of approximately 5 obtained for polybutadiene;*® other

te
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ratios reported for polystyrene are about two.3° Hence the simulations once
again reproduce the experimental trends.

Unfortunately, since rings have a larger n, than the corresponding linear
chains this means that it is presently impractical to simulate rings of a
comparable (albeit relatively small) degree of entanglement as the correspond-
ing linear chains on available computers. The decrease in the number of
entanglements is partially due to the more compact dimensions of rings as

Figure 10. (4-C) Snapshots of the primitive path of an n = 1536 ring in the ¢ = 0.5 cubic
lattice melt. The thin line denotes the initial conformation, and the triangle labels beads 1 and

1536. The displacement after 3.04 x 10%, 8 x 10% and 1.008 x 10° steps is shown in A-C
respectively.
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B

Figure 10. ( Continued )

compared to the corresponding linear chains. Another effect may be due to
the nature of the entanglements themselves, a point that we address further
in the next section.

For advocates of reptation, rings being entirely devoid of ends pose a
particular problem. Klein3® has proposed a model which asserts that the only
rings which are mobile are those that collapse to a linear chain of half the
contour length. If this expectation is true, one would expect to find almost all
rings immobile and an exponentially small subpopulation that is highly
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Cc

Figure 10. ( Continued)

mobile. Thus we examined the population of mobile rings to see if such a
bimodal population exists; none was found.

We next present the primitive path as a function of time for the n = 1536
system in Fig. 104—-C. The triangle labels beads 1 and 1536. The thin line
indicates the initial primitive path obtained at zero time, and the solid line
labels the path at a time ¢ later. Nothing striking or reptation-like is seen—
rather rings seem to move much like amoebas.

In all fairness to the advocates of reptation, these systems are weakly
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entangled; nevertheless, if reptation were the dominant mechanism of melt
dynamics, one would have expected the onset of reptation for rings to occur
at smaller—and not larger—degrees of entanglement than in the corre-
sponding linear chain case. However, because these systems are early in the
crossover regime, a transition to much slower dynamics cannot be ruled
out—although there is no hint of any such transition in the simulations
performed thus far.

4. Properties of Self-Knotted Rings

We next turn to the behavior of the dynamics of a melt of rings, each
containing one self knot. Care has to be taken when comparing the dynamics
of self-knotted rings with unknotted rings because of an artifact of lattice
dynamics. Consider a ring containing one self knot, the minimum ring size
that can fit onto a cubic lattice contains 22 beads and is left absolutely
immobile when subjected to the internal moves of Fig. 3. This is a close-packed
object that can only undergo rigid body translations and/or rotations, and
these have not been incorporated into the present MCD algorithm. Thus, one
should expect two competing effects as n increases. First of all, internal
conformational transitions become possible, and thus D increases from zero.
This effect is as indicated above, an artifact of the MCD algorithm that is
employed. Second, as polymeric effects take over, D should decrease with
increasing molecular weight. Finally, D for isolated chains without knots
should always be larger than D with knots (since the conformations of the
latter are more compact). When comparing the results of the dynamics of
knotted versus unknotted rings in the melt, one wants to be sure that artifacts
are eliminated, and we therefore examine the dynamics of isolated rings first
to be sure such artifacts are not present.

In the solid (open) circles of Fig. 11, results of D versus n for isolated rings
containing one (no) self knot are shown on a log—log plot. Beyond n = 100,
and certainly for n greater than or equal to 216, D for the knotted system is
well defined and monotonically decreases with increasing n.

Fitting the log—log plot for n = 216, 800, and 1536, we find for the knotted
system that

D~nt3, (162)
and for the terminal relaxation fit over the range of n > 100 that
14~ n*2, (16b)

By way of comparison, the equilibrium quantities are

ts
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Figure 11. Log-log plot of the self-diffusion coefficient of isolated ring polymers confined
to a cubic lattice vs. n. The solid (open) circles are for rings having one (no) self-knots.

(8% =0.0411(n — 1)'-28 (16¢)
and
{d?) = 0.1090(n — 1)!-28, (16d)

The corresponding quantities for the isolated unknotted rings, are for a fit
over the range 30-1536,

D ~ n=09, (17a)
Tg~ nz'l, (l7b)
{8%> = 0.1079(n — 1)*:15, (17¢)

and

{d?*) = 0.3266(n — 1)*-'°, (17d)
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Based on these results we can probably safely compare the dynamics of
melts of self-knotted rings with those of unknotted rings for n = 216 or greater.
Table III also presents a summary of the dynamic properties of melts of
self-knotted rings of n = 100 and 392. Comparing the knotted with the un-
knotted rings, it is immediately apparent that within the error of the simula-
tion the dynamics of a melt of self-knotted and unknotted rings are essentially
identical. Probably because self-knotted rings are smaller (having {S2) of
about 133 vs. {§2) of 155, for n = 392) than unknotted chains, the self-knotted
rings are less entangled and, therefore, slightly more mobile (this competes
with the intrinsically lower mobility of isolated self-knotted chains; the latter
effect should be more important at smaller n, as is observed). Nevertheless,
the effect is minor and we conclude that self knotting will have a marginal
effect, at best, on the melt dynamics.

D. The Origin of Entanglements

Whatever the physical origin of the interchain entanglements, to exert an
influence on the long distance motion, they must live for times on the order
of the terminal relaxation time or perhaps longer. Otherwise, they can be sub-
sumed into a molecular weight independent, monomeric friction coefficient
and therefore, they wouldn’t change the scaling with molecular weight of
the transport coefficients. Based on the results for the linear chain simula-
tions which in many, but not all, respects behave like slowed-down, Rouse
chains,247:4® one might conjecture that the slowdown in behavior results
from dynamic entanglement contacts. That is, one chain drags another chain
for times on the order of the terminal relaxation time. Eventually, of course,
these entanglements should disengage. This is an old idea in the literature,
which goes back to Bueche,®”3 variants of which have been proposed by
Fujita and Einaga® '°, Ngai et al,,'*7* Kolinski et al.,'®17-23:47:48 and Fix-
man.!®!? Thus we next examine what the simulations have to say about this
conjecture.

1. Bead Distribution Profiles

In Fig. 12 the time dependence of the mean-square displacement of the ith
bead g,(t) is plotted as a function of the position i, along the chain for n = 216
linear chains, packed at ¢ = 0.5 diamond lattice melt.2* In the curves denoted
by a—d, the time equals 3 x 10%, 6.9 x 10 1.35 x 105, and 2.1 x 10° time
steps (1g = 5.2 x 103). The smooth curves are generated by using the Rouse
model and an apparent diffusion coefficient defined as g.,(t)/6t. The Rouse
model is seen to overestimate the mobility of the chain interior and under-
estimate the mobility of the ends. It should be pointed out here that at infinite
time in the absence of excluded volume, the bead distribution profile will be
parabolic, independent of the particular model of the dynamics.
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Figure 12. Time dependence of the mean-square displacement of the ith bead as a function
of position along the chain for n = 216 linear chains confined to a diamond lattice at ¢ = 0.5.

2. Nature of the Contacts between Chains

To examine the time evolution of the contacts between chains, the following
algorithm is employed.'® (1) Each chain is replaced by a series of nonover-
lapping blobs, each having n, monomers. (2) All pairs of blobs belonging to
different chains, whose centers of mass lie a distance less than r,,, = 5, are
identified. (The length of a bond equals unity.) (3) The number of such contacts
is counted. (4) The fraction of contacts, n,(t), that survive up to a time ¢ later,
given that the blobs were in contact at zero time, is determined.

For the n = 216, ¢ = 0.5 cubic lattice chains, n(t) is found to be decompos-
able into a sum of three exponentials.!® While this decomposition is of course
not unique, the results are highly suggestive. The majority of the contacts
(647;) decay within 19, of g, 91%, decay within 9% of 75, and the remaining
contacts decay on the order of 7. This translates into one long-lived contact
every 133 beads. If Eq. (15a) is used to extract the number of monomers
between entanglements, one finds a value of 125. The mean lifetime of these
contacts is consistent with the idea that long-lived contacts between polymers
slow down the motion of the chains at long times. Most local contacts are
short lived, and apart from modifying the local monomeric friction constants,
they exert no effect on the long-time dynamics.
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The first conclusion that emerges from the simulation is that long-lived
dynamic entanglement contacts occur on a distance scale which is an order
of magnitude larger than the static excluded volume screening length. In real
polymer melts, the excluded volume screening length is on the order of a
monomer unit;2% whereas, based on estimates from the plateau modulus and
the crossover regime of the shear viscosity, the mean number of monomers
between entanglements is on the order of 100 monomers or s0.3:2¢ Moreover,
by examining the displacement of the contacts, we have established that all
entanglements are moving with respect to the laboratory fixed frame and that
there is no static cage. If these model chains were reptating, in a fixed tube no
single contact should live on the order of the terminal relaxation time.

What then might dynamic entanglements be? Suppose that at zero time a
pair of chains are in a configuration where one chain loops around another
chain. This may be a necessary, but not sufficient, condition for the formation
of an entanglement. Subsequently, the pair of chains must move in a direction
that causes the entanglement to be long lived; that is, one chain drags another
chain for times on the order of the terminal relaxation time. Whether or not
the disengagement must occur by reptation is not yet established, nor is it
clear what sort of configurations cause the dynamic entanglements. The
analysis of these kinds of questions is now underway; however, at best, the
results must be viewed as tentative. Even in the n = 800 linear chains, there
are at most 6—7 entanglements per pair of chains, and their statistics are likely
to be poor.

E. Cooperative Relaxation Dynamics

In a series of papers Pakula and Geyler,®*~7! have developed a method of
simulating chains on a fully packed lattice, using a cooperative exchange
mechanism that works as follows. (1) A kink on a given chain is chosen, say
chain A. This kink is sliced out of the chain and inserted into a section of chain
B that is locally parallel to the top section of the original kink in chain A.
Observe that this decreases the length of chain A, and temporarily increases
the length of chain B. (2). The algorithm then searches for a similar inter-
change between chain B and another chain C. (3) The loop replacement
procedure is continued until a loop is interchanged back with the original
chain A. Thus, at the end of a loop migration procedure, all the chains have
been restored to their original contour length. While there is no doubt that
this is a highly efficient algorithm for equilibrium sampling, it is not clear how
reliable the resulting dynamics are, especially since there is no limitation on
the lengths of the mobile loops. They choose 10° searching steps as the
fundamental time unit; this particular choice, at short time intervals, produces
equal mean square displacements of the monomers that are independent of
chain length. A possible problem encountered if this algorithm is employed

]
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to obtain dynamic sampling is that in a single time unit, interchanges over
short and long wavelength distance scales are occurring, and it is not at all
clear how (or even if) the time scale is distorted.

Applying this cooperative motion model to a melt of linear chains confined
to a cubic lattice, chains up to n = 512 were simulated.’® For longer chains,
the self-diffusion coefficient is found to have a D ~ n~2 regime, and the
end-to-end vector autocorrelation functions are found fit a stretched expo-
nential form. The single-bead autocorrelation function is found to be close to
that predicted by the Rouse model. Snapshots of individual chain configura-
tions indicate globally isotropic dynamics with no evidence of reptation.

They next applied their algorithm to examine the dynamics of a melt of
rings;”! the equilibrium results have been summarized in Section I1.C.2. They
find that rings have a smaller self-diffusion constant than the corresponding
linear chains, and while this difference decreases with increasing n, it disagrees
with the viscoelastic experiments which indicate that melts of rings are more
mobile than the corresponding linear chains. The origin of the difference
between their results and the local MCD simulations of Section II.C.2 is not
clear. One thing the linear simulations point out, however, is that a D propor-
tional to n~2 appears to be a ubiquitous result that cannot be invoked as proof
of chain reptation. This point is addressed further in Section IILB.1.

F. Dynamics of Chains in Random Media

To examine the fundamental validity of the reptation model Muthukumar
and Baumgartner®®5! have returned to the original system on which the
reptation idea is based and have performed off lattice, MC simulations on a
single chain diffusing through a random medium. The mean-square displace-
ment of the center of mass of the chain is observed to exhibit three time
regimes. At long and short times g, (¢) is linear in time. The duration of the
intermediate time regime increases as either the chain length or the volume
fraction of the solid phase increases. The short-time apparent diffusion con-
stants are Rouse-like with D,,, ~ n~'. The diffusion constants extracted from
the long-time behavior of g.,(¢) do not obey the n~2 scaling predicted on the
basis of the reptation model. Rather, the results indicate the presence of
entropic barriers, arising from the necessity of the chain squeezing from one
domain to the other through bottlenecks. Thus, even in the case of a static
random medium, it does not automatically follow that a chain must reptate.
While it is true that as the contour length of the chain increases to the point
that a given chain may be in multiple domains, then reptation-like motion
will dominate, it is not necessarily true that classical reptation theory should
apply. The latter situation appears to hold in the problem of DNA gel
electrophoresis and has been analyzed by Levene and Zimm.”® A further
discussion of the theoretical problems associated with DNA gel electro-
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phoresis is beyond the scope of this article. For additional details, we refer to
the literature.”5~77

G. Brownian Dynamics Simulation of Polymer Melts

Kremer, Grest, and co-workers?#7® have undertaken a series of Brownian
dynamics simulations of an off-lattice model of a polymer melt. We remind
the reader that in Brownian dynamics one solves Newton’s equation of motion
for the system coupled to a heat bath. In their particular realization, the
inertial term is retained, while in many simulations since polymers are typically
in the high friction limit, it is dropped.”’® They have studied the dynamics of
up to n = 400 chains confined to a box containing N = 10 polymers. Their
results can be summarized as follows. They find for n > 35, a crossover to
D ~ n™2, scaling. For n < 35, Dn ~ constant is seen, and g5(t) is Rouselike.
As n increases further just as in the cubic lattice system, there is a crossover
to t'# behavior, which these authors interpret as due to reptation. Further
analysis of the primitive path dynamics indicates that for the range of times
sampled, the reptation component of the motion is important. These authors
again interpret this as proving the existence of reptation. Unfortunately, they
only sample the dynamics, at best, to the end of the ¢ regime, and as we have
discussed in Section I1.A.2, it is not until the end of this regime that the lateral
component of the motion begins to dominate to the point that reptation can be
neglected. Moreover, neither the existence of a ¢!/4 regime nor the scaling of D,
as the inverse square power of n, is unique to reptation. Thus the Kremer et
al.2478 simulations agree with the MCD simulations of Kolinski et al,23:47-48
in the time regime that they overlap, and the Kremer et al. case for reptation
is not at all definitive.

III. THEORETICAL TREATMENTS OF POLYMER DYNAMICS

There have been a number of theoretical models developed over the years to
describe the dynamics of entangled polymers. Briefly, these can be divided
into three general categories. First of all, there is the classical reptation
theory in which there is always a well-defined tube constraining the chain of
interest.!*47%13:37 This tube exists for times on the order of the terminal re-
laxation time of the end-to-end vector. Hence, the dominant long-wavelength
motion involves the slithering down of the contour for times on the order of
the terminal relaxation time. This model has a very large number of variants
and is by far the most highly developed. As these models have been extensively
discussed in detail elsewhere,! we refer the reader to the literature for a detailed
exposition of their properties.

The second class of models envisions the polymer environment to be more
liquid-like. Entanglements between chains are still important, but they are

ré
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dynamic in nature. The models of Fujita and Einaga,? !° Skolnick et al.,'¢:!”
Ngai et al,'*7* and Fixman,!®'? fall into this category. The qualitative
description of each of these models is presented in turn below. Finally, there
is the hydrodynamic interaction model of Phillies,'!** in which entangle-
ments in concentrated polymer solutions are relegated to a minor role and
interchain hydrodynamic interactions are assumed to dominate. While the
theory has been developed to treat the case of concentrated solutions, since it
is clearly related to the problem of dynamics in a melt, an overview of this
alternative view is clearly appropriate. As will become apparent, there are a
number of quite different viewpoints of the nature of polymer melt dynamics,
and this, no doubt, reflects the intrinsic difficulty of the problem.

A. Fujita—Einaga Theory—The Noodle Effect

For the case of concentrated polymer solutions and polymer melts, Fujita and
Einaga®!? argue that dense polymer systems do not suffer from the severe
topological constraints conjectured by reptation theory; rather, in entangled
systems, moving chains induce the movement of surrounding chains through
the interactions at entanglement points, thereby producing considerable energy
dissipation. These authors refer to the cooperative motion of the surrounding
chains as the “noodle effect.”

1. Diffusion Constant

These authors® then proceed to calculate the diffusion coefficient of a chain
in the case of a monodisperse system in the n/n, > 1 limit, where n, is the mean
number of monomers between adjacent entanglement points. Assuming that
the translational friction coefficient of a chain can be expressed as the product
of n times a mean monomeric friction coefficient { by the standard Stokes—
Einstein relationship, the polymeric diffusion coefficient is

D = ks T/n{), (18)

with kz Boltzmann’s constant and T the absolute temperature. If the entangled
segments are assumed to be localized at every n, bead, each of which has an
additional friction constant {, in addition to the friction constant in the
absence of entanglements {,, then in the large n/n, limit the average mono-
meric friction constant is

(= CO + Ce/ne' (19)

Thus the crux of the model involves the calculation of {,.
Fujita and Einaga make two assumptions from which {, follows. First, they
assume that the velocity field E, induced around the test chain when the test
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chain moves with velocity , is spherically symmetric about the center of mass
G, and its radius is of order {S?)'?, the root mean square radius of gyration.
In particular, they take the radius of E to equal 2{$%)'2, which is proportional
to n'2. Second, they invoke the free drainage approximation (i.e., they neglect
hydrodynamic interactions between segments) and proceed to calculate the
force F in the direction u that must be applied to G to overcome the frictional
force exerted by all the chains on the test chain

F={, J Pl dv. (20)
E

Here, p, is the average segment density in the volume element dv which moves
cooperatively with the test chain, and # is the average velocity of the coupled
segments in the u direction. It is quite reasonable that p, and # monotonically
decrease as one goes out from the center of mass.

They replace # by ku with k a constant between zero and one that is taken
to be independent of n, polymer concentration, and position within the veloc-
ity field E. In this approximation, Eq. (20) becomes

F= Cokuj p.dv. (21)

E

They then approximate by N.s, where N, is the number of chains directly
entangling with the test chain and s is the number of segments of such an
entangling chain that has substantial coupling with the test chain and which
are located inside the field E.

Now the spherical domain occupied by each of the entangling chains has
(n/n.)*->n, entangling segments [there are (n/n,)!'* entangling units in the
volume 2{S2)'?, each contains n, segments]. The essential assumption is then
made that s is proportional to (n/n,)"->n,, with a proportionality constant that
is independent of the polymer concentration. This assumption assumes that
a fraction of the chains not involved in direct entanglements with the test chain
are also dragged along with it.

Employing these assumptions, Eqgs. (18-21) give

Lo =Lofn¥n'R (22)
with f a constant. Thus the effective monomeric friction coefficient is
{ = Lol + f(n/n.)?]. (23a)

When ( is inserted in Eq. (18), the self-diffusion coefficient is
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D™ = nlo(kz T) ' [1 + f(n/n.)*?]. (23b)

Equation (23b), therefore predicts that D asymptotically should be propor-
tional to n~52, a behavior not inconsistent with experiment.-2°

One of the touchstones of a successful theory is the ability to rationalize
not only the molecular weight dependence of a monodisperse polymer melt,
but also to rationalize the independence of the probe diffusion coefficient on
matrix molecular weight when the latter is sufficiently large. In their treatment
Fujita and Einaga® consider a bidisperse blend of polymers having degree of
polymerization n; and n, for components 1 and 2. Both components are
assumed to be sufficiently long that they exhibit entangled behavior and
n, < n,. The key to this analysis lies in the assumptions indicated above that
only chains within several (two) radii of gyration of the chain of interest are
dragged along with the probe chain. This leads to the prediction that the
increase in friction coefficient is identical to Eq. (22), with n, substituted for
n, and where n, is given by the reciprocal average of the mean number of
monomers between entanglements arising from chains 1 and 2. Thus the
desired independence of matrix molecular weight is recovered with D, ~ n3 2.
However, fits to experiment did not reveal the theoretically predicted power
of D,.

Epinaga and Fujita® have also been able to derive a prediction of the
concentration dependence of D, which obtains from the recognition that n,
should be inversely proportional to polymer concentration ¢,. This simply
gives D ~ ¢, '-5. Experimental data give varying power law (or perhaps not;
see the Phillies theory,!*-12:34 Section II1.D) dependencies of D, ranging from
the —3 to — 1.75 power. However, different c, scaling can be obtained depend-
ing on the molecular-weight dependence assumed.

2. Viscosity

Fujita and Einaga'® have also developed an expression for the steady-state
shear viscosity of a polymer blend, n,. They basically employ standard linear
viscoelasticity theory plus the assumption that the terminal relaxation time
of each component 7, is given by

Tmi = By/D;, (24)

where B is a constant and D; is the diffusion coefficient of the ith component
of degree of polymerization n;. In the case of a monodisperse system, it then
follows that 7, is predicted to be proportional to the 3.5 power of the molec-
ular weight. By assuming that the shorter chains relax as if they were in a

noninteracting blend, they also derive an expression for n, appropriate to this
situation.
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The key point is that this theory predicts for a monodisperse system that
Dnq ~ n. Furthermore, this analysis shows how an alternative mechanism to
reptation based on the assumption that what is relevant is the dragging of
chains for distances on the order of the radius of gyration, can give rise to a
plausible physical picture that overall is in fairly good agreement with experi-
ment. It is interesting to note that reasonable scaling behavior can be predicted
without, in fact, specifying whether the chains ultimately disengage by repta-
tion, or perhaps by some other mechanism.

B. Phemonenological Theory of Dynamic Entanglements

1. Diffusion Constant

Based on the discussion above, the question arises as to just how general the
treatment must be to recover the experimentally observed scaling of D and n
with n. The following development by Skolnick et al.'®!7 is patterned after
the Hess!38! generalized Rouse treatment, which was used to provide a
theoretical underpinning for reptation-like behavior. The key to Hess’ re-
covery of reptation is the assertion that the forces exerted on the test chain
by the sea of surrounding chains act perpendicular to the chain axis. Since the
Kolinski et al.234748 simulations indicated that this is only true for a small
fraction of time in the intermediate time regime, we modified the treatment to
account for the observed isotropic motion of the chains. In particular, because
the behavior of the chains is Rouse-like, the motion is factored into two
components, the center of mass motion between the chains and the motion of
the internal Rouse-like coordinates, with a weak coupling between the two
permitted.

Starting from the Green—Kubo expression for the diffusion constant, Hess
employed Zwanzig-Mori projection operator techniques to obtain the en-
hanced friction constant acting on the test chain due to the other chains.!?
After a bit of arithmetic,

o + [§ dtAL(0]

(25)

Here {, is a generalized concentration-dependent Rouse monomer friction
coefficient, and A{ is the additional dynamic friction term arising from inter-
chain interactions. If a standard separation of time scales argument is made,
the effects of short-lived contacts can be subsumed into an effective molecular
weight independent, monomeric friction coeflicient {,. The effect of the long-
lived, but dilute dynamic entanglements between chains are reflected in A,
which is explicitly defined as
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CF(1)- F0)>

A =T

(26)

where the term in the brackets is a Zwanzig—Mori projected force correlation
function.

In order to evaluate A{, the following assumptions are made. First, interac-
tions between chains are assumed to be predominantly steric in nature and
hydrodynamic interactions are ignored. Second, the time evolution of Al
reflects the motion of the dynamic entanglements. Finally, because dynamic
entanglements are dilute, the interaction hierarchy can be truncated at the
pair level. Using these assumptions, it is straightforward to show that the
propagator for pairs of chains in contact in the long-wavelength, hydro-
dynamic limit is of the form

R(g,t) = exp(—Derrq’t) @7

where D is an effective diffusion constant and q is the magnitude of the wave
vector.
A plausible functional form for D, is given by

Dy = (1 — B)D, + BD. (28)
D, is the renormalized Rouse diffusion coefficient given by
Dy = kgT/nlo = do/n. (29)

Equation (28) accommodates the fact that for times of order of the terminal
relaxation time the behavior is essentially Rouse-like (see Sections ILA and
IL.D.1), but with a small coupling between the center of mass motion and the
internal coordinates. In the small coupling limit (f « 1), it follows that

do

D= Ty

(30)

Here n, is the average number of monomers between dynamic entanglements.
An analogous equation can be derived for the diffusion coefficient of a
probe in a matrix, which in the small coupling limit gives

_do 1+n,/n,
P n-,[l + n,/n, + 2np/ne:l (31)

where n, (n,,) is the degree of polymerization of the probe (matrix) chains.
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Equation (30) and (31) provide rather good fits to simulation results described
in Sections ILA-ILC as well as to the experimental data of Antonietti et al.5”
on polystyrene melts and predict that D, should scale asymptotically as n, 2.
A more detailed description of the model that describes the behavior of the
self-diffusion constants over the entire range of 8 is given elsewhere.!5:4°
Since the assumptions employed to derive Egs. (30) and (31) are so benign,
the existence of an n~2 power law dependence of D cannot be used to prove
the existence of any particular microscopic model of chain motion. It differs
from the Fujita—Einaga result® in that the latter assumes stronger coupling
between entangled chains, and here a weak coupling limit is assumed.

2. Viscosity

We next review those features that any successful theory must rationalize about
the internal dynamics of polymer melts. It must reproduce the molecular
weight dependence of the diffusion coefficient and the viscosity.!:26733.35.67
It must also be consistent with the simulation results?3-47-48 that indicate that
the chain motion is slowed down and in many ways Rouse-like and that there
is no tube confining the chains. The single bead autocorrelation function has
at®regime with b < 1/2,and g, has a t* regime with a < 1. The product Dtg/n
scales as n® with ¢, assuming values between 0.1 and 0.2. Finally, it must
rationalize the single-bead mean square displacement profiles which indicate
that the ends are more mobile than the equivalent Rouse chain and the middle
is less mobile (see Fig. 12).

We summarize below the features of a recent phenomenological theory that
accounts for the above features. The following simplifying assumptions are
made. (i) At short times, a la Doi and Edwards,> the response of the melt
is treated as rubber. We then focus on the motion of an average reporter
chain and assume that the long-time relaxation behavior in a polymer melt is
adequately described by a Rouse model; however, because of the presence of
dynamic entanglements there are n/n, slow moving points, each of which
drags another chain along with it. In the effective single-particle picture, these
slow moving points have an augmented monomer friction constant of order
n. This approximation assumes that for times on the order of the terminal
relaxation time, on average the matrix chains are dragged along with the test
chain and the dissolution of the contact can be ignored. This clearly is the
simplest approximation of the effect of entanglements. It neglects the coupling
between the various entanglements and the time course of their dissolution
and formation.

With these assumptions in hand, the following qualitative picture of the
dynamics emerges for the expected crossover behavior of the individual chains.
Suppose an individual chain has just one entanglement. Physically, one would
expect this entanglement to be located at or near the center of the chain.

s
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Clearly, this one slow-moving point wouldn’t change the behavior of the
terminal relaxation time of the end-to-end vector by much; the single slow-
moving point behaves like a local defect. However, in the absence of the
entanglement, the self-diffusion coefficient is dy/n, and in the presence of the
entanglement, it is do/2n. In other words, the crossover behavior of D and
should be different, in agreement with experiment. Moreover, the center of
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Figure 13. In the curves going from top to bottom, log-log plots of g(z), the mean square
displacement per bead obtained assuming that each bead has a uniform friction constant gq(c),
the mean square displacement of the center of mass g,.,(t), and the mean square displacement of
the center of frictional resistance g,(t); t, is the average time a monomer takes to diffuse a bond
length. See text for further details.
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mass and the center of frictional resistance are no longer the same.* Basically,
the center of mass motion couples into the internal coordinates, and this gives
rise to the g ,(t) ~ t°, for values less than 2{S2). Similarly, a ¢* regime is
predicted for g(t).

It is also possible to show that in the limit as n goes to infinity, the dynamic
properties behave as if each monomer has an effective friction constant {,(1 +
n/n,) with {,, the monomeric friction coefficient in the absence of chain
connectivity. The viscosity equals 4/15 of the Doi-Edwards®’ value, and
ultimately scales as n. Thus, in the crossover regime, the viscosity scales as
n'*® with § going to zero, as n goes to infinity. Finally, the product of the
plateau modulus times the shear compliance equals 10/7, while Doi-Edwards
theory gives a value of 6/5, and experiments give values in the range of 2.5 to
3'37

Fits to a number of assumed distributions of slow-moving points give
n ~ n>*, with a lower bound for the crossover value of # ~ n3, around 40-50
entanglements. This is not inconsistent with the recent work of Colby et al.,*
but the experiments themselves are the subject of controversy.

The present theory predicts that the crossover value of n;, is about 4.5n,.
Thus, in accord with the experiment® (see Eqgs. 1 and 2), the viscosity exhibits
the 3.4 power of the molecular weight, prior to the crossover of the diffusion
constant into the n~2 regime. Finally D tz/n has an n® regime with ¢ = 0.1 or
0.2, depending on the particular distribution of friction constants.

Finally, in Fig. 13 log-log plots of g..,(t) and g(t) versus time are presented
for the case of an n = 255 chain with a mean distance between entanglements
of 15 and a 75 of 1.88 x 10%. This 7 value of the corresponding Rouse chain
is 1.3 x 10% In the top solid curve, there are t'2, t'%, and t'? regimes in g(¢),
and these chains are clearly not reptating. This is but another example that
shows that the existence of a t'* regime in g(¢) is indicative of some kind of
constrained dynamics, but it need not be reptation.

C. Coupling Model of Polymer Dynamics

Over the past decade Ngai, Rendell, and co-workers, have developed a general
formalism to address the problem of how!# 74:82 the relaxation of a “primitive”
mode is modified by the coupling to complex surroundings. The fundamental
prediction of the model is that the net effects of such coupling can be accounted
for by the use of a time-dependent relaxation rate. As will be seen below, their
application to polymer dynamics is in the same philosophical spirit as that of
the two previous models, but affords the advantage that it explicitly accounts
for the time-dependent modification of the behavior of the chain.

The coupling model asserts that the coupling of the primitive relaxation
mechanism to the environment slows down the primitive relaxation rate W,
for times greater than a characteristic time ¢, = ;. In other words, there is
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a time-dependent relaxation rate W(t) of the form
wity=W, or<l, (32)
W) = Wo(w. )™ .t > 1.
The relaxation function c(z) then obeys the rate equation

dc
Frini Wi(t)c, (33)

and the normalized relaxation function ¢(t) = c(¢)/c(0) is of the form
@(r) = exp(—t/1*)' ™", (34)
and the terminal relaxation time is
7 = [(1 - wlTe] V0, (35)

The degree of coupling is embodied in the parameter n (not to be confused
with the degree of polymerization; we employ the Ngai et al.!474-82 potation
to facilitate comparison with the original papers). For chain molecules in the
melt, 7, is the terminal relaxation time of the nonentangled Rouse chain. The
particular value of n is taken to depend on the particular kind of experimental
measurement. For the case of shear viscoelasticity, they report the following
predictions. The terminal dispersion of the shear modulus is of the Kohlraush,
et al. form,®? and the terminal relaxation time can be calculated from 7, using
Eq. (35) for @(z). The former prediction is in accord with a number of experi-
ments.'* Thus, using Eq. (35) and the Rouse 7, 77 can be extracted. These fits
provide a values of n, in the range of 0.4 to 0.45. If one then approximates the
viscosity by the relation GJt* with G, the plateau modulus, then

* ~ M2(A-ny) [Co(T)] 1(1—nq) (36)

In Eq. (36), M is the molecular weight of the polymer. Using the values of n,
obtained from the experiment gives a molecular weight dependence of the
viscosity between 3.3, and 3.6, in good agreement with experiment. Equation
(36) also provides an estimate of the temperature dependence of ¥ that is
in agreement with experimental measurements on polyethylene and hydro-
genated polybutadiene. Finally Eq. (36) provides a relationship between the
viscosity activation energy E¥ and the monomeric friction constant activation
energy E,,
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E} = E,/(1 —n,), (37)

a relationship also found to agree with the experiment.!4

They®* have also deduced the molecular weight dependence of the diffusion
constant. They proceed by relating the observed activation energy of the
diffusion constant E} to the monomeric diffusion constant by the analogous
relation, as in Eq. (37). This provides a value of n, of 0.33, and a characteristic
relaxation time associated with diffusion of 1§ = M%) which scales as
M?3. By assuming that D ~ {§2)/t*, they recover the inverse squared power
dependence of D on M.

More recently, Ngai et al.8>:8¢ have also derived a relationship for the
molecular weight dependence of a probe chain dissolved in a matrix that is in
good agreement with experiment for both linear and star tracer molecules.
Furthermore, they have obtained the stretched exponential form for the
concentration dependence of D (see Eq. 2). They identify the origin of the
stretched exponential with the gradual increase of the coupling between a
diffusant and the matrix as the concentration of the diffusant increases; that
is, the coupling parameter n(c), monotonically increases with increasing con-
centration c.

In a recent publication Ngai and Lodge®® applied the coupling model to
treat the diffusion of 3- and 12-arm polystyrene stars in entangled PVME
solutions. They find excellent agreement with experiment. Moreover, their
treatment predicts a different temperature dependence for stars than the
corresponding linear chains, a prediction that is also in accord with experi-
ment. Thus, in application to extant experimental data, the coupling model
is in rather good agreement with experiment, without invoking the exis-
tence of reptation. The qualitative picture is also in accord with simulation
data!8-23.47.48.69-71 that does not provide support for the existence of repta-
tion within a spatially fixed tube. The only problem with the theory is that it
cannot, as yet, predict the values of the coupling parameters, nor does it
identify the particular mechanism responsible for the coupling. Nevertheless,
in spite of these limitations, the coupling model is a very powerful approach
that appears to have much to say about the dynamics of entangled polymer
systems.

D. The Fixman Meodel of Polymer Melt Dynamics

In a recent pair of papers, Fixman'®-!® has proposed a generalization of the
reptation model of polymer dynamics that has as its basis the following
assumptions. First, it assumes that the most naive view of both simulations
and experiments are correct. That is, the viscosity n ~ n*4%! is indeed the
asymptotic power law, that the highly cooperative and simultaneous motion
of the chains, seen in simulations,'”-23:47:48:61 jg correct at all chain lengths
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(i.e., there is no frozen matrix) and, finally, that the translational friction
coefficient for self diffusion scales as n2. As will be seen below, unlike the
treatments discussed above that in many respects are highly phemoneno-
logical, Fixman has attempted to identify the specific mechanisms responsible
for entangled melt behavior and proposes a formalism for calculating the
polymeric properties arising from this conjectured behavior.

Taking these assumptions as valid implies that chains can diffuse many
radii of gyration without orientational relaxation.?® The persistence of ent-
anglements during the process of diffusion across many radii of gyration is
rationalized in terms of the correlated reptative motion of the probe and
vicinal (matrix) chains. The mathematical formalism is cast in terms of gener-
alized Langevin equations for the motion of the probe and has as its basis the
Rouse-Zimm model of chain dynamics at infinite dilution. In particular,
Fixman assumes that the matrix surrounding the probe chain is capable of
exerting a viscoelastic response to any forces exerted on it. But unlike the
isolated chain case where the elastic part is essentially neglected, in the case
of melts, the elastic part is assumed to be important. In addition to the
viscoelastic response, the matrix chains are themselves capable of reptative
motion along their respective primitive paths. Fixman asserts that for the
consistency of the treatment of viscoelastic interactions, the reptative motion
of the probe chain is accompanied by reptative motion of the matrix chains;
that is, unlike in standard reptation theory, here the motion of the probe and
matrix chains is taken to be highly correlated. Entanglements are identified
as small loops or twists of one chain about the other.

Imagine then the response of the polymeric system to an external force.
Owing to the elastic deformation of the matrix, the displacement of the probe
chain with respect to the laboratory fixed frame increases, concomitantly, the
reptative diffusion relative to the deforming matrix slows down. The net result
on the translational diffusion of the probe of these two opposing effects is
predicted to be negligible, if both the probe and vicinal chains are of the same
length. However, unlike standard reptation theory, the friction constant for
reptative motion increases by a factor n' ~*- x, assumes the value of one-half,
if Gaussian statistics obtains and 0.6 if excluded volume statistics applies.
Furthermore, the translational diffusion constant ~n~2, and the viscosity
scales like n*~>s,

In a companion paper'® Fixman applied his formalism to calculate the
storage and loss modulus, the shear compliance, and the translational diffu-
sion coefficient using parameters appropriate to polybutadiene. The resulting
dynamic stress modulii are in fairly good agreement with experimental results.
A particularly important conclusion is that the Langevin equation has the
same normal mode structure as in Rouse—Zimm*? theory, but each mode
relaxes as a sum of exponentials, rather than just a single exponential (perhaps
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providing the underpinnings for the Ngai et al.'#474.82:84786 coypled model,
KWW functional form). Fixman points out that there his approach requires
a number of not-well-determined parameters; nevertheless, the theory is rather
impressive in its agreement with experiment.

At this junction it is appropriate to summarize the various viewpoints. In
all the theories discussed above, there is the implicit assumption of the co-
operative relaxation of the test chain with its surrounding matrix of chains.
That is, the motion of the probe and matrix chains are coupled, and there is
no fixed matrix confining the chain of interest. Furthermore, the entangle-
ments are envisioned to be of a dynamic nature, and not static as in the
classical reptation model. In fact, the various theories differ in their specifica-
tion of what mechanism, if any, is responsible for entanglement disengage-
ment. In all but the Fixman theory, the disengagement mechanism is left
unspecified. Fixman asserts that the dominant long-time disengagement
mechanism is by reptation. Furthermore, all the other theories implicitly or
explicitly assume that the decay distance for orientational correlation is on
the order of the radius of gyration of a chain, whereas Fixman envisions this
as occurring over many radii of gyration. What is clear, however, from the
discussion of all the aforementioned theories is that (more or less) they all
reproduce most, if not all, features of experiment, and more sophisticated tests
will have to be devised to determine which, if any, are in fact correct.

E. Hydrodynamic Interaction Theory of Concentrated Solutions—
The Phillies Model

For the case of concentrated polymer solutions, Phillies** has found that the
stretched exponential form for the self-diffusion coefficient,

D = Dyexp(—ac®), (38)

fits the entire concentration range for all extant studies of the concentration
dependence of D. In fact, the stretched exponential form fits the concentration
dependence of both high- and low-molecular-weight polymers, as well as for
globular, nonentangling proteins. Since globular proteins cannot entangle
(they are rigid, dense bodies), Phillies®* argues that the same physics under-
lying the motion of dynamics of globular proteins should hold for polymer
solutions as well. Unlike the Ngai and Lodge treatment described above®®
(see Section ITL.C). Phillies has developed a model that gives the functional
form of Eq. (38), and numerical values of « and v.'*'!? Thus, more than
one physical picture can reproduce Eq. (38), and in fact Adler and Freed®’
have derived Eq. (38) in the context of a mean field approximation. The Phillies
approach is especially useful in that it provides for quantitative values for all
of the parameters.

e

(4
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The fundamental assumptions of the Phillies model*! are: (1) There is a
self-similar effect of infinitesimal concentration increments on D. (2) The
dominant force between polymers in semidilute solution is hydrodynamic. (3)
The root mean square radius of gyration is described by the blob model of
Daoud et al.®® that is, (S2) ~ Mc* with x = —1/4. An overview of his
derivation of Eq. (38) follows.

From assumption (1), the increase in the mobility u arising from a concen-
tration increment Ac is taken to be

Hu(c + Ac) = u(c) + AAc, (39)

where A is assumed to be proportional to u(Ac). The dependence of 4 on
polymer dimensions is taken from hydrodynamics by employing the func-
tional form appropriate to interactions between hard spherical particles,
namely, A ~ {S2)'2,(S2)%2,, and where a refers to the test polymer and b
refers to the other chains in solution.

The key to the argument comes next, where assumption (3) is invoked;
namely,

d—“ = a(c)dc, (40)
u

with a(c) = A/u. By examining the functional form for g, as a function of c,
Phillies replaces A/u by A/u,, with g, the mobility at infinite dilution. Inte-
grating Eq. (40) and using the Stokes—Einstein relation between D and u gives

D(c) = Dyexp (Jc -@dc). 41)

o Ho

If the scaling of {S2) of the probe and matrix with concentration is used, one
finds that

Jdc & = ac’ 42)

where « ~ M and v = 1 — 2x. An analogous development of Egs. (40) and (41)
has been previously presented by Adler and Freed.®”

In subsequent work, in the spirit of the hydrodynamic interaction model
of concentrated polymer solutions, Phillies!? derived an explicit functional
form for A(c). The specific approach is based on a generalization of Einstein’s
derivation of the Stokes—Einstein diffusion equation. In particular, the method
of reflections is used where a series of velocities are calculated. The first
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polymer is assumed to have an unperturbed mobility. This then acts on the
second polymer, which creates a velocity echo that perturbs the original
polymer’s flow field and consequently its mobility. The treatment, in detail,
involves the generalization of the Kirkwood Riseman®® model from one to
two polymers. The net result is that

9 (S 4m (ST 1

*=716 22, 3 M, 1-2x

(43)

where a, is the radius of a monomer. Note that Eq. (43) predicts that o ~
(M,M,)'? in agreement with previous scaling arguments.**

For the case of polystyrene at M = 1 x 10, Phillies estimates « is about
—2. Fits to experiment give an o of —0.7. However, over the entire range of
o, Phillies reports rather good agreement with the experiment, with « ranging
over more than 3 orders of magnitude as M changes.

Phillies further argues that « should be similar for both linear and star
molecules, which appears to be in agreement with experiment.!? In a recent
pair of papers,”®°! however, Lodge et al. find that D, values fit to linear
polystyrene data are systematically greater than the measured values and that
the expected scaling of « with molecular weight is not found, in contrast to
previous results.3* For the case of stars, Eq. (38) reproduces the concentration
dependence very well, but the origin of the chain architecture dependence
is unclear. Thus, a controversy between the Lodge and Phillies groups
is unresolved.

IV. SUMMARY AND CONCLUSIONS

Since the early 1970s when it was first proposed, the reptation model has been
the most popular and widely accepted description of dynamics in dense
polymer systems.'*4~8:37 Undoubtedly, it is a very elegant and simple model
that can rationalize a number, but by no means all, of the experimental
observations. Because of its relative maturity, it has been applied to a number
of experimental situations. It is appropriate here to review its successes and
failures. The model can reproduce the molecular weight dependence of the
self-diffusion coefficient of linear chains, and it provides a scaling of the shear
viscosity that goes like the cube of the molecular weight, whereas experiment
indicates that it goes like the 3.4 power of the molecular weight. It predicts a
t' regime in the mean square displacement profile of single beads, a regime
seen in two simulations on linear chains. It predicts that the diffusion coeffi-
cient of a probe in a linear matrix should be independent of matrix molecular
weight, that rings should move substantially slower than linear chains, and
that stars should move exponentially slower in the number of arms than the
corresponding linear chains. The reduction in mobility of stars predicted by
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the reptation theory has been taken to vindicate the reptation/arm retraction
mechanism.®%?! However, the viscosity of rings®®*4? is in fact smaller than
the corresponding linear chains, and granted that while the rings do not span
as broad a molecular weight range as linear chains, they are in the 3.4 power
of M regime for #, and it is difficult to understand why they are not moving
slower if reptation, in fact, dominates.

In the present review we have summarized results from alternative theories
that do not invoke the existence of a fixed tube, and yet the molecular weight
dependence of D is recovered. In fact, the requirements for the D ~ n~2 and
the asymptotic matrix molecular weight independence of a probe diffusion
constant follow from such weak considerations that no specific microscopic
mechanism of D can be inferred from its molecular weight dependence.'®
Similarly, the existence of t'* regimes in systems that cannot possibly
reptate! 75> shows once again that this too is a signature of cooperative
dynamics and nothing more. With respect to different chain topologies, the
analytic models are less developed, but just because a model isn’t mature,
it shouldn’t be dismissed out of hand. A number of simulations on rings
and linear chains do not find clear evidence for the existence of a fixed
tube.!7-23:47.48.59.68,70.71 Whjle there is some memory of the initial con-
figuration (even free Rouse chains exhibit this at short enough times), as time
increases for distances and times where the tube should be well-defined if
reptation is correct (into the second t'2 regime of the single-bead auto-
correlation function), the reptation component becomes of minor impor-
tance, and the environment surrounding the chains is not static; rather,
cooperative back-flow effects are evident. This is true for both dynamic Monte
Carlo23:47:48.59.68,70.71 5pqd Brownian dynamics simulations,'® although
this viewpoint has been questioned.?#78

These models, which treat the surroundings of a chain as a more fluid-like,
and which view entanglements as being of a dynamic nature (although the
exact mechanism is not understood), are equally successful as the reptation
model in predicting the experimental phenomenology of linear chains. More-
over, these models agree with the simulation results. If one views the ability
to treat the effects of different topology as the test of the validity of the theory,
then reptation fails the test for ring melts. The development of alternative
theories for ring and branched molecules is required before these theories can
be dismissed or fully accepted. While the coupling model of Ngai®® has been
applied to stars, since it makes no attempt at specifying the precise microscopic
mechanism of entanglements, it has been argued that it is not capable of
verifying the dynamic entanglement picture. Undoubtedly this is true, but
once again, if a general class of models fits the data, this implies that until such
time as features peculiar to a particular motional mechanism are identified,
then it is impossible to confirm the validity of a particular model.

In summary, while the problem of dynamics in dense polymer systems has
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been the subject of study for the past 40 years, the precise mechanism of motion
is not in fact resolved. A number of theories having quite a different physical
basis can reproduce the experimental results, and because the simulation of a
system well into the entangled regime is likely to remain beyond conputa-
tional capabilities for considerable time to come, the final disposition of the
competing theories will not be fully resolved by recourse to simulation alone.
(It can always be argued that if the desired reptation behavior is not seen, then
the chains are too small.) As alternative analytic theories to reptation are more
fully developed and applied to different chain topologies, and their predictions
tested against experiment and simulation, then the controversy about whether
reptation in a fixed tube is valid or not will hopefully be resolved. This review
has attempted to make the case that the matter is not at all settled in favor of
reptation in a fixed tube, and that an abundance of evidence exists that argues
against the simple reptation model’s validity. However, whether or not repta-
tion ultimately proves valid, it was the first model that successfully rational-
ized a wide body of experimental data and provided a conceptual basis for
the design of new experiments. In this alone, it has proven to be extremely
valuable, and its importance to the field of polymer dynamics cannot be
overemphasized.
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