(3
Reprinted from J. Mol. Biol. (1989) 212, 787-817

Dynamic Monte Carlo Simulations of Globular Protein
Folding/Unfolding Pathways

1. Six-member, Greek Key p-Barrel Proteins

Jeffrey Skolnick and Andrzej Kolinski



J. Mol. Biol. (1989) 212, 787-817

Dynamic Monte Carlo Simulations of Globular Protein
Folding/Unfolding Pathways

1. Six-member, Greek Key p-Barrel Proteins

Jeffrey Skolnick¥

Institute of Macromolecular Chemisiry
Department of Chemistry, Washington University
8t Louis MO 63130, U.S.A.

and Andrzej Kolinski

Department of Chemistry
University of Warsaw, 02-093 Warsaw, Poland

(Recetved 4 April 1989; accepted 26 September 1989)

In the context of a simplified diamond lattice model of a six-member, Greek key B-barrel
protein that is closely related in topology to plastocyanin, the nature of the folding and
unfolding pathways have been investigated using dynamic Monte Carlo techniques. The
mechanism of Greek key assembly is best described as punctuated ‘‘on site construction”.
Folding typically starts at or near a f-turn, and then the p-strands sequentially form by
using existing folded structure as a scaffold onto which subsequent tertiary structure
assembles. On average, f-strands tend to zip up from one tight bend to the next. After the
four-member, B-barrel assembles, there is a long pause as the random coil portion of the
chain containing the long loop thrashes about trying to find the native state. Thus, there is
an entropic barrier that must be surmounted. However, while a given piece of the protein
may be folding, another section may be unfolding. A competition therefore exists to
assemble a fairly stable intermediate before it dissolves. Folding may initiate at any of the
tight turns, but the turn closer to the N terminus seems to be preferred due to well-known
excluded volume effects. When the protein first starts to fold, there are a multiplicity of
folding pathways, but the number of options is reduced as the system gets closer to the
native state. In the early stages, the excluded volume effect exerted by the already
assembled protein helps subsequent assembly. Then, near the native conformation, the
folded parts reduce the accessible conformational space available to the remaining unfolded
sections. Unfolding essentially occurs in reverse. Employing & simple statistical mechanical
theory, the configurational free energy along the reaction oco-ordinate for this model has
been constructed. The free energy surface, in agreement with the simulations, provides the
following predictions. The transition state is quite near the native state, and consists of five
of the six f-strands being fully assembled, with the remaining long loop plus sixth p-strand
in place, but only partially assembled. It is separated from the f-barrel intermediate by a
free energy barrier of mainly entropic origin and from the native state by a barrier that is
primarily energetic in origin. The latter feature is in agreement with the ‘“Cardboard Box”
model described by Goldenberg and Creighton but, unlike their model, the transition state is
not a high-energy distorted form of the native state. The theory predicts that the rate of
folding is less sensitive to changes in folding conditions than is the rate of unfolding, in
agreement with experiment. Finally, the simple theory provides a means of assessing the
effects of amino acid substitutions that favor native-like turn formation. By stabilizing the
intermediate, they enhance the rate of folding to the intermediate from the denatured state
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and the rate of unfolding out of the native state, and they act to slow down the rate of
folding from the intermediate to the native state. But even when every turn residue is

modified, the effect is relatively small.

1. Introduction

The elucidation of the mechanism by which a
globular protein finds its way to native conforma-
tion from the denatured state is one of the most
tantalizing. unsolved problems in contemporary
molecular biololgy (Kim & Baldwin, 1982; Anfinsen,
1972; Harrison & Durbin, 1985; Creighton, 1985,
1988). It has long been recognized that the mean
time required for a random search through all of
configuration space to find the native state far
exceeds the observed folding times (Levinthal, 1968;
Wetlaufer, 1973; Karplus & Weaver, 1976), which
are of the order of seconds or minutes (Creighton,
1985, Garel & Baldwin, 1973; Kawajima e al.,
1985); thus, proteins must possess a means of parti-
tioning configuration space so that only relevant
regions are sampled. Over the years, there have
been a number of suggestions how such partitioning
might occur, these will be summarized below
(Anfinsen, 1972; Wetlaufer, 1973; Ptitsyn & Rashin,
1975; Ptitsyn & Finkelstein, 1980). Whatever the
actual mechanism may be, it is unfortunately not
possible experimentally to follow directly the
folding process from the nascent state all the way to
the fully folded protein i.e. to make what is effec-
tively a “movie” of the folding/unfolding path-
way(s). Consequently, computer simulations may
prove helpful in elucidating some of the qualitative
features of protein folding. Thus, we have embarked
on a series of simulations designed to provide
qualitative insight into the folding and unfolding
processes. This paper describes the results from
dynamic Monte Carlo (MCt) simulations of a model
gix-stranded, Greek key, f-barrel protein
(Richardson, 1981) having a topology quite close to
that of plastocyanin (Guss & Freeman, 1983) and
for which the pathways of folding and unfolding
have been determined under ¢n vitro conditions. The
accompanying paper presents a similar analysis for
the folding and unfolding pathways of the left-
handed, four-helix bundles with tight bends, and
with one and two long loops (Sikorski & Skolnick,
1890).

Before summarizing the essential features of
extant folding models, it is important to review the
experimental facts that any successful model must
be consistent with. It is convenient to divide the
folding process into two . Those events asso-
ciated with the initiation of folding and those events
involved in the latter stages when the protein is
near the native state. The nature of the early
folding events is considered first. Under denaturing

t Abbreviations used: MC, Monte Carlo; BPT1, bovine
pancreatic trypsin inhibitor; N, native; D, denatured;
1, intermediate.

conditions, hydrophobic clusters (Bundi ef al., 1976,
1978), nascent helices (Shoemaker e al., 1985, 1987;
Dyson et al., 1988a,b), reverse B-turns (Dyson et al.,
1988a), etc. have been observed. Furthermore, small
protein peptide fragments have been shown to
adopt secondary structures in rapid equilibrium
with unfolded species. Thus, the denatured state is
ot a pure random coil that is entirely devoid of any
secondary structure. Oas & Kim (1988) have
demonstrated the stability of a 30 residue synthetic
analog of the first folding intermediate in the folding
pathway of bovine pancreatic trypsin inhibitor
(BPTI). Similarly, Udgaonkar & Baldwin (1988)
have provided evidence from nuclear magnetic
resonance studies, of an early folding intermediate
in ribonuclease A. While these observations are
basically equilibrium in nature, it is not unreason-
able to suppose that these nascent structures have
something to do with protein folding, in that they
automatically provide a means of subdividing con-
figuration space.

A particularly important observation of protein
folding kinetics is that the rate-determining step
seems to occur near the end of the folding pathway
(Creighton, 1985, 1988). Consequently, nucleation
models (Wetlaufer, 1973), which assume that once
initiation of folding occurs the reaction co-ordinate
is downhill in free energy (as in the growth of a
liquid drop from the vapor phase) appear to be
incorrect. Moreover, on the basis of the effect of
crosslinks in BPTI on the folding kinetics, the tran-
sition state has been conjectured to be native-like in
many, but not all, respects (Creighton, 1985, 1988).
This viewpoint has been advanced by Goldenberg &
Creighton (1985). In particular, the kinetics of the
unfolding process in proteins is almost always well
approximated by an all-or-none model! (Creighton,
1988; Brandts e al., 1975). Namely, a single rate
constant adequately describes the unfolding kine-
tics, and intermediates have proved difficult to
detect. These observations lend credence to the
viewpoint that the transition state lies closer to the
folded than the unfolded conformation (Creighton,
1981).

A number of models for protein folding have been
proposed. The framework models envisage folding
a8 proceeding along a limited number of well-
defined sequential pathways having well-defined
intermediates. In its simplest form, one assumes the
secondary structure (e.g. an a-helix) present in the
native state forms first. This is followed by the
coalescence of the secondary structural elements
that produce the native conformation. Karplus and
co-workers (Karplue & Weaver, 1976, 1979; Lee et
al., 1987) have developed a series of diffusion-colli-
sion-adhesion models based on this concept. One
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possible realization of the model involves assembly
via “‘prefabricated construction”. The individual
building blocks (e.g. a-helices) are assumed to be
sufficiently stable without tertiary interactions that
they have time to diffuse together before dissolution
occurs. Among other things, the appeal of this
model lies in its simplicity. Rather than having to
worry about tertiary interactions, one need only
coneider short-range interactions (down the protein
chain) to predict the resulting structural elements of
the native state. Moreover, folding in the model is
essentially sequential, and the protein does not have
to adopt irrelevant conformations for subsequent
native state formation.

There are & number of potential problems asso-
ciated with the prefabricated construction realiza-
tion of the framework model. First, there is the
rather marginal intrinsic stability of secondary
structures in the absence of tertiary interactions. In
fact, f-strands require interstrand stabilization to
impart substantial stability, but isolated a-helices
might be sufficiently stable. Thus, diffusion between
performed secondary structural elements (microdo-
mains) must occur before these elements have time
to dissolve. The mutual approach of two such micro-
domains must involve the dragging of at least a
portion of the attached random coil tails, with a
corresponding diminution in the relative rate of
approach. As pointed out by Lee et al. (1987), inclu-
sion of hydrodynamic interactions also serves to
slow down their mutual approach. Furthermore, in
this model it is not at all obvious why the transition
state lies closer to the native rather than to the
denatured state. We return below to a further
analysis of the implications of the framework model.
Secondly, it is known that certain short sequences of
amino acids in globular proteins may be found in
more than one structural motif (Zielenkiewicz &
Rabcezenko, 1988). At the very least, this implies
that some structural arrangements due to tertiary
interactions must also occur.

An alternative model involves modular assembly
(Kim & Baldwin, 1982; Harrison & Durbin, 1985),
wherein subdomains are assumed to fold without
any pre-existing secondary structure. This model
addresses the marginal stability of secondary struc-
ture without tertiary interactions by asserting that
tertiary interactions alone are responsible for
secondary structure. Such a viewpoint is not incon-
sistent with the thermodynamics of the conforma-
tional transition (Privalov, 1979) but, if the model is
taken literally, it is not clear how the system can
prepartition configuration space in the initial stages
of protein folding. Moreover, there is marginal
secondary structure in the denatured state. There
are also some theoretical analyses that indicate that
systems lacking marginal, intrinsic secondary struc-
ture stability should oollapse to very dense, non-
unique randomly coiled globules, with patches of
secondary structure, rather than the ordered struc-
tures observed in globular proteins (Kolinski et al.,
1987a).

Wright et al. (1988) proposed a model of single-

domain protein assembly that is an amalgamation
of elements of both the framework and modular
assembly models. On the basis of evidence from
nuclear magnetic resonance studies, they strongly
and convincingly argue that the formation of
nascent helical structures, f-turns and hydrophobic
clusters may be the essential events in early protein
folding. However, a crucial observation is that these
structures are marginally stable and in rapid equi-
librium with unfolded states. They further argue
that these transient structures then diffuse together
and result in structures of enhanced, but still
marginal, stability. Further progression along the
folding pathway produces a globular polypeptide
having a hydrophobic core with extensive secondary
and supersecondary structure. This corresponds to
the first observable intermediate. This structure
then rearranges into a compact, folded but non-
native structure. Finally, and most often the rate-
determining step, the rearrangement of the non-
native structure into the native conformation
occurs. The latter is similar to the *“Cardboard Box™
mode] proposed by Goldenberg & Creighton
(1985).

Clearly, given the broad disparity in the models
described above, a very large number of questions
concerning the nature of the folding process are
unanswered at this time.-Computer simulations of
the folding process can, in principle, provide a
number of insights into the nature of the folding
process. They can provide a full trajectory. Con-
sider, for example, the formation of an a-helical
hairpin. Even if one has established that the
isolated helices are marginally stable and that the
hairpin exists, it does not automatically follow that
the isolated helices remained stable long enough for
them to diffuse together and form a hairpin. Other
alternatives include the possibility of hairpin forma-
tion due to side by side growth of both helices from
a hydrophobic cluster or the formation from a single
helix and a turn onto which the second helix was
constructed on site. Unfortunately, knowledge of
the initial and final conformations without know-
ledge of the time-course of the intervening processes
does not allow one to specify the reaction co-ordi-
nate. Since computer simulations can provide
trajectories, they are a particularly powerful tool for
elucidating the full reaction co-ordinate, if the simu-
lation can be done.

Lattice models have been employed by a number
of workers. Go e al. (1980), (see also Ueda ¢ al.,
1978) have employed a series of simplified two and
three-dimensional lattice models in which, for most
cases, tertiary interactions are allowed only between
residues in contact in the native state. They have
successfully folded a three-dimensional Ilattice
model of pancreatic trypsin inhibitor (PTI) from the
denatured state, but were unable to do so for lyso-
gyme. They ascribe this failure to the presence of
mixtures of mirror image isomers. Recently, their
work has focused on two-dimensional cubic lattice
models (Taketomi et al., 1988). They observed
conformational transitions that are thermodynami-
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cally and kinetically all or none. While their studies
bave pointed out the relative contribution of long
and short-range interactions to the kinetics of
folding, by allowing only native-like interactions
between residues to occur, it is not clear how general
their conclusions are.

More recently, Chan & Dill (1989) have exhaus-
tively searched the sequence and conformational
space of compact two-dimensional square lattice
polymers and found that compact conformations
are dominated by secondary structures. Further-
more, Krighaum & Lin (1982) have used a bcc
lattice model of PTI to investigate the relative
folding efficiency of centrosymmetric versus a local
interaction potential; both of which appear to work
equally well in folding compact formations. Note
that here too, a target potential is explicitly imple-
mented in the folding algorithm.

Motivated both by the desire to deduce the
general rules and by the necessity of reducing the
number of degrees of freedom to make the folding
problem tractable, we have adopted a minimalist
approach to the protein folding problem (Kolinski e
al., 1986a,b, 1987a; Skolnick et al., 1988, 1989a,b;
Sikorski & Skolnick, 1989a,b, 1990) and in the initial
stages of our studies, we have developed a series of
diamond lattice models of globular proteins. Each
a-carbon is represented by a bead on the diamond
lattice and, for simplicity, two kinds of beads are
considered. One kind is hydrophobic and the other
is hydrophilic. Of course, beads representing all 20
different amino acids could be employed. This was
not done, for two reasons. First, in the context of a
minimal approach this was found not to be
necessary. Second, one wants to keep the number of
parameters to an absolute minimum, 8o as to make
the results as convincing as possible. In addition to
8 hydrophobicity index, there is also a local, short-
range marginal preference for f-states in f-proteins
and for a-helical states in the folding of a-helical
motifs. There are cases where the tertiary structure
adopts a conformation different from the locally
preferred one; see, for example, the requirement for
formation of four-helix bundles with long loops
(Sikorski & Skolnik, 1989b). Finally, there is a co-
operativity parameter that mimics the effect of
hydrogen bonding and local peptide dipole inter-
actions. A key feature of the approach is that inter-
actions between any pair of nearest-neighbor
residues are allowed, and the native state is not
specified in advance. To achieve the above objec-
tives, we employ dynamic Monte Carlo (MC) algo-
rithms (Skolnick et al., 19898a) that must sort out the
myriad of interactions and produce the same unique
tertiary conformation on successive refolding.
Otherwise, we would reject the current approach as
non-viable.

To date, the equilibrium folding of a model, six-
member Greek key analog of plastocyanin (Skolnick
et al., 1989b) and all variants of the left-handed,
four-helix bundle motif (Sikorski & 8kolnick,
1989a,b) have been successfully folded. Not only is a
unique native conformation obtained, but the

conformational transition is well approximated by a
two-state model. We point out that an all-or-none
transition is not an intrinsic property of the algo-
rithm, but is the consequence of the interactions
themselves (Skolnick ef al., 1989a).

At this juncture, & brief description of the
dynamic MC method is appropriate (Binder, 1984,
1987). The system starts out in an arbitrary con-
figuration, which is then subjected to successive
local conformational rearrangements (micromodifi-
cations). Hence, MC sampling is employed to obtain
the solution to a stochastic kinetics equation of
motion that is conjectured to describe the dynamics
of the system (Binder, 1987). This master equation
of motion may be, for example, the Smoluchowski
or Fokker Planck equation (Chandrasekhar, 1943).
Provided that the sampling criterion satisfies
detailed balance, in the limit that the number of
micromodifications goes to infinity, the system will
sample an equilibrium distribution of configura-
tions. If one defines a ‘‘time” step as that when each
individual piece of the system, on average, is
subjected to all possible elementary micromodifica-
tions, then both thermodynamic and time-depen-
dent averages can be obtained from a time average
over the trajectory. The ability to obtain thermo-
dynamic information follows from the ergodic
hypothesis that ensemble averages may be replaced
by time averages and vice versa. Observe that this
method defines everything in terms of a reduced
time-scale and, if only equilibrium sampling is of
interest, it need not correspond to any physical time
step. In our previous equilibrium sampling studies
(Kolinski et al., 1986a,b, 1987a; Skolnick et al., 1988,
1989a,b; Sikorski & Skolnick, 1989a,b), the MC algo-
rithm achieved its high efficiency by the simul-
taneous mixing of both long and short wavelength
motions, thereby producing a distorted time-scale.
As a consequence, the folding and unfolding path-
ways obtained from such an algorithm are suspect.
Therefore, up to now, we have not reported any
information on the mechanism by which the Greek
key or the four-helix bundle motifs assembled.
Recently, we have been able to surmount the
distorted time-scale problem and have been able to
fold our models employing elementary local moves
alone. We report below the results from the folding
unfolding pathways of model Greek key, f-barrel
proteins. The accompanying paper reports similar
results from the four-helix bundle motifs (Sikorski &
8kolnicks, 1990).

The outline of the remainder of this paper is as
follows. Section 2 presents a more detailed discus-
gion of the model and the MC algorithm. The reader
interested in qualitative insights alone can readily
skip the latter subsection. Section 3 presents the
simulation results for the folding and unfolding of
the six-member, Greek key, f-barrel protein and

‘then describes the free energy along the reaction co-

ordinate oonstructed from a simple statistical
mechanical theory. Section 4 summarizes the
qualitative conclusions of this study and points out
directions for future work.
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2. Background
(8) Model

The model protein consists of a consecutive
sequence of n a-carbon sites or beads on a tetra-
hedral lattice; each represents an amino acid residue
that may be hydrophobic or hydrophilic in nature.
By allowing no more than one residue to occupy a
given lattice site, excluded volume is included.
Furthermore, the choice of local moves (see below)
is such that bond cutting does not occur, and there-
fore the effect of topological restrictions on folding is
well accounted for. The conformational state of the
model protein is given by a sequence of n—3 rota-
tional states for the bonds, each of which may be in
either the planar trans (t), or one of the two out of
plane, gauche plus (g*) or gauche minus (g~) states.
A t state corresponds to a f-state conformation, and
; sltlequenoe of g~ states will produce a right-handed

elix.

In order to proceed further, specification of the
allowed interactions is required. We begin with the
local, short-range interactions. Let & be the
intrinsic energy of a gauche state relative to a trans
state. For amino acids involved in f-strand forma-
tion, it is not unreasonable to assume that ¢, is
greater than zero. Since this parameter reflects
short-range interactions, it is used as the basis of a
reduced temperature scale, T'* =kpT'/c,, where kj is
Boltzmann's constant and T is absolute
temperature.

Long-range interactions are assessed as follows.
Imagine that a pair of residues (¢ and j) are non-
bonded, nearest neighbors. As indicated in Figure 1,
if both residues happen to be hydrophobic, then &,
(a negative quantity) is the attractive potential of
mean force that mimics (in a simple way) the hydro-
phobic interaction, taken in the quasichemical
approximation. A potential of mean force is the
effective interaction free energy between residues i
and j when the solvent degrees of freedom are
averaged over (Hill, 1956). Since ¢, is merely an
effective attractive interaction parameter, it might
also represent the reduction in free energy on forma-
tion of a salt bridge. Suppose, however, that one of
the beads is hydrophobic and the other is hydro-
philic. Then &, (positive) is the repulsive potential of
mean force between them. Finally, we need to
specify the interaction free energy when a pair of
hydrophilic residues are non-bonded nearest neigh-
bors. We have examined cases where the interaction
is taken to be zero, slightly attractive or strongly
repulsive (Skolnick et al., 1989a; Sikorski & Skol-
nick, 1888a). Since the native state conformation in
the models described below have all of their hydro-
philic residues exposed, a potential that keeps them
from associating is required. Thus, we take their
interaction to be equal to &, as well; although
qualitatively identical results have been obtained
when their interaction is zero.

A final kind of interaction that has been intro-
duced is a co-operativity parameter &, (Kolinski ef
al., 1987a). This basically allows for non-bonded,

(o)
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V,‘I .-(¢°+2€¢)
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€, =€, Or €,

Figure 1. A representation of the allowed long-range
interactions. Also displayed are the interactions embodied
in the conformational co-operativity parameter &..

second-nearest neighbor coupling when a pair of
adjacent beads are associated with trans conforma-
tions. The explicit form of the conformational
coupling is displayed in Figure 1. Thus, we allow
both native and non-native interactions; that is, no
target potential is introduced into the algorithm. By
oconstruction, there is a lowest free energy conforma-
tion; however, the algorithm has no a priori know-
ledge of this information. This is no less realistic
than in the case of real globular proteins, where the
chain must find the global free energy minimum by
rattling about in oonfiguration space, where all
kinds of conformations are sampled. Note that in
the primary sequences used below, based on short-
range interactions alone there are 3'? isoenergetic
turn conformations and & minimum of 16 isoener-
getic loop conformations. Consistent with a given
conformation, are a manifold of allowed tertiary
oontacts.

The primary sequence is epecified using the
following convention. By(k) is the sth stretch in the
primary sequence that consiste of k residues. The k
residues have an identical &,; that is, they have a
marginal intrinsic preference for trans (¢, > 0)
states. Possible bend regions are denoted by l:, and
are located at the last two residues of stretch ¢ and
the first residue in stretch ¢+1. For convenience,
& = &, = &, = 0, but ¢, need not necessarily be zero.
That is, putative bend regions are weakly hydro-
philic. Putative loop regions are denoted by L(k)
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Figure 2. (a) Native state conformation of the
6-member, Greek key f-barrel 1 in equilibrium with a
representative denatured state oconformation 2. (b) Top

view of Greek key B-barrel, showing the indexing of the
p-strands. The circle denotes the N terminus.
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and consist of k residues with ¢, = 0, but &,, &, and
£, need not be zero.

The native state analog of a six-member Greek
key p-barrel (1) is shown in equilibrium with a
denatured state conformation (2) in Figure 2(a).
Figure 2(b) shows a top view of the native confor-
mation and the indexing scheme that labels
B-strands 1 through 6. It should be pointed out that
the potentials used above are all spherically
symmetric. Thus, both the native conformation and
its mirror image are isoenergetic; both have been
obtained. The folding pathways are identical in
character and thus, to avoid confusion, we present
results for the physically correct conformation.
Note that the introduction of side-chains breaks the
mirror image symmetry. We have done this for a
different lattice (unpublished results) and the prob-
lem of mirror image conformer degeneracy has been
eliminated.

Elsewhere, we have shown that for an n = 74
model protein, a primary sequence pattern of the
type
B,(11)b, By(11)b; By(11)b3B4(12)b4 Bs(11) L(7) Bs(11)
produces an essentially all-or-none transition to the
desired Greek key, 1 of Figure 2(a) (Skolnick et al.,
1989b). The inclusion of loop turn forming regions is

consistent with the primary sequence of plasto-
cyanin (Guss & Freeman, 1983). For B with 1 = 1

through 5, all the odd residues are hydrophobic and
the even residues are hydrophilic; this is consistent
with, but does not necessarily demand, B-sheet
formation, as this juxtaposes hydrophobic residues
a8 nearest neighbors in a f-hairpin conformation.
However, due to the nature of a diamond lattice, for
the native conformation, the even hydrophilic type
residues located on strand 2 are nearest neighbors of
the odd, hydrophobic type residues located on
strand 5. A similar situation obtains for the
contacts of strand 6, with strands 1 and 3, where the
even hydrophobic residues in strand 6 are nearest
neighbors to the even hydrophilic residues of
strands 1 and 3. Thus, to allow for the possible
stabilization of the native conformation due to
hydrophobic interactions, the interactions described
above between all these residues are set equal to ¢,.
The aforementioned interactions hold not only for
native-like conformations and contacts, but also for
every conformation in which a given pair of residues
are non-bonded, nearest neighbors.

The putative loop located at residues 57 through
63 is assigned a uniform attractive interaction of
magnitude ¢, = —¢, with residues 33 and 34, which
lie at the beginning of the turn between strands 3
and 4, in the native state. The loop is also assigned a
repulsive £, with all the hydrophilic residues in
strands 1, 2, 5 and 6. Furthermore, the local ener-
getic preferences for residues 57 through 63 are
—2¢,, 265, —2¢,, —2¢,, 2¢,, 2¢,, —2¢,. A value —2¢,
(+2¢,) indicates that a g* or g~ (¢) state is favored.
Note that without long-range stabilization, the
native loop conformation is one of 16 degenerate,
lowest-energy states. Short-range interactions
therefore do not enforce the native loop conforma-
tion. If the loop does not have at least a marginal
preference for conformations (of the order of
~2kgT) that include the native state, then the
tremendous configurational entropy of the loop
provides a manifold of out of register conformations
of strand 6, namely in the transition region, it is not
a faithful globular protein model (Skolnick ef al.,
1989b).

In previous equilibrium studies, the simplest
amino acid pattern that produced the unique Greek
key 2 of Figure 2 and whose transition is all-or-none
is model A having the primary sequence

B, (11)b3B,(11)b3 By(11)b3B,(12)b3 Bs(11)L(7)Bs(11).

The hydrophilic residues in B had e, =¢, the
hydrophobic residues had &, = —¢,/4, and for all
residues in B, &, = —¢&,/2. bf indicates that g = 0 for
those residues that might be associated with the
turns; namely, residues 10 through 12, 21 through
23, 32 through 34 and 44 through 46. These are
called “turn neutral”, in that the native g*g~g*
state is one of 27 isoenergetic states in the absence
of long-range interactions. Thus, the model has no
local turn bias for the native turn conformation
whatsoever; however, it does not cost any free
energy to form a turn in a b region, whereas it does
at other locations. This proves to be sufficent to
localize the turns to these locations. The native
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conformation bas a oconfigurational energy of
—=705 ¢,.

A natural extension of model A, which has turn
neutral regions, is model B, where trans states are
disfavored in putative turn regions. In model B,
whose primary sequence is

B,(11)b, B3(11)bB5(11)b3 B4 (12)b4 Bs(11)L(7)Be(11),

the turn neutral regions have been replaced by
residues with an energetic preference for any guache
state of magnitude —2¢,. For the bends without
long-range interactions, all of the eight triplets of
gauche conformations are equally probable. Stabili-
zation of the native g*g~g* comes from tertiary
interactions. The native conformation for this
model has a configurational energy of —94'5 ¢,.
Results are reported below for these representa-
tive choices of parameters. In fact, & can be set
equal to zero, if ¢, is augmented. The hydrophilic/
hydrophilic contact parameter can also be set equal
to zero, without qualitatively changing the resuits.
As mentioned above, if the loop does not have any
tertiary interactions in the native conformation, a
number of out-of-register states of strand 6 is
observed in the transition region. If the local stiff-
ness parameter &, is increased too much, then artifi-
cially long single f-strands are observed in the
denatured state (Kolinski ef al., 1986a,b). If £,/¢, « 1
and ¢, = 0, then collapse to a non-unique random
globule having patches of secondary structure
occurs (Kolinski ef al., 1987a). In other words, we
have defined the minimal requirements for the
range of parameters, in a model protein, that
produces a unique native state, obtained by an all-
or-none transition from the denatured state.

(b) Monte Carlo algorithm

In what follows, we assume that the time-evolu-
tion of the model protein is described well by
stochastic kinetics and employ a dynamic Monte
Carlo technique to solve a master equation that has
been shown to give the correct description of the
dynamics of a random coil in the absence of hydro-
dynamic interactions (Kolinski ef al., 1987b). The
use of a dynamic Monte Carlo method to provide
qualitative insight into the dynamics of macromole-
cular systems has a long history in polymer physics
(Baumgartner, 1984); the variant appropriate to the
diamond lattice model is described in detail below.
For the reader interested in the qualitative conclu-
sions only, this section can be skipped.

The model is assumed to be subject to the
following kinds of local rearrangements (Kremer et
al., 1981). (1) As depicted in Figures 3(a), there are
three bond flip motions where the three bonds
located in one half of the chair conformation of a
cyclohexane-like ring jump to the other half; these
serve to diffuse orientations down the chain. (2)
Figure 3(b) displays four-bond kink motions
involving the interchange g* g¥ — g% g*. These
serve to introduce new orientations into the chain.

Q .
! : i+l /
(c)
W

Figure 3. (a) Representative 3-bond kink motion. (b)
Representative 4-bond kink motion. (c) Represenative
2-bond end motion. (d) Representative 4-bond wave
motion previously employed for equilibrium sampling. (e)
Representative 5-bond wave motion previously employed
for equilibrium sampling.

As pointed out by Boots & Deutch (1977), they are
necessary, if excluded volume effects are included,
to avoid an artificial and non-physical time-scale for
the relaxation time of the end to end vector 7. (1
ghould scale as n*? rather than the non-physical
result of 1, going as n? if moves (2) are excluded.)

Moves (1) and (2) have been shown by Iwata &
Kurata (1969) to span the space of all allowed
motions on a diamond lattice comprised of three or
more bonds. We also subject each of the ends to a
two-bond end flip of the type depicted in
Figure 3(c).

A single time step in the algorithm consists of the
following.

(1) Store the energy of the old configuration, E,,.

{2) A bead is chosen at random and a three-bond
flip is attempted.

(3) Then on a randomly chosen sequence of three
beads, a four-bonad flip is attempted. This process is
repeated three times.

(4) Processes (2) and (3) are repeated n—3 times.



794 J. Skolnick and A. Kolinsk:

(5) Each of the ends is subject to a two-bond end
flip.
(6) The energy difference AE between the old
conformation, E;,. and the new conformation, E,.,,,
is calculated. If AE <0, the new configuration is
saved; if not, we apply the standard Metropolis
criterion. That is, the probability P =exp
(~AE/kgT) is calculated, and a random number, R,
is generated. If R < P, the new configuration is
saved; if not, the new configuration is rejected. This
will generate a Boltzmann distribution of probabili-
ties in the limit of a long sequence of steps.

Thus, per unit time, each bead is subjected, on
average to a single, three-bond move and three four-
bond moves; that is, the probability of a three-bond
move Py, equals 0-25 and the probability of a four-
bond move P,, equals 0-75. Thus, there are
3(1)+4(3) = 15 attempts to move each bond, on
average, per unit time. Elsewhere (Kolinski e al.,
19887b), we have shown that this choice of a priori
probabilities generates correct Rouse-like dynamics
with excluded volume (i.e. correct random coil
dynamics in the absence of hydrodynamic inter-
actions) for an athermal diamond lattice system.
Moreover, it even generates the correct local dyna-
mics are probed by standard orientational correla-
tion functions (Valeur ef al., 1975). Thus, it appears
that the essential features of local protein dynamics
are preserved in these models; namely, local orienta-
tional diffusion, creation and annihilation, and
therefore no gross distortion in the inherent time-
scale is expected.

Let the mth bond connect beads m—1 and m;
each vector on a diamond lattice has four bond
vectors, either of the type a,bc,d, or
-a,—b,~¢c,—d, with a=[+1,+1,+1),
b=(1,—1,—1], c=[-1,1,-1], d=[-1,—1,+1].
The stochastic dynamics process described above
satisfies the following master equation for P2(t), the
probability that the mth bond vector lies along a at
a time ¢:

oPZ(t)

is recovered. W, and W, are the a priori transition
rates of three and four-bond motions, independent
of the particular configuration of the chain. In the
particular case chosen here, W,/W, = 1/3. As expli-
citly shown in equation (1), excluded volume incor-
porates long-range interactions into the dynamics;
that is, the jump cannot be made unless the sites
intc which the jump will be made are unoccupied.
Thus, we have opted here for a numerical solution
to the problem.

Replacing 0P;/0t by AP7/At, and multiplying
both sides of equation (1) by At, we see that WAt is
the fundamental unit of time for the simulation and
corresponds to the transition rate of a three-bond
jump in an athermal system.

Furthermore, the two end bonds satisfy:

oPL,

S =W Y 3 {Plgsrs~bir;—a-b)
o Jud
inj
—Poygy(ry—j; 1y —j—1)} (2a)
and
oPL? _
a
W 2 ): {Pi %qx(ta_2+a; 1,y +a+b')
::; 4

=Py gy (r, o +i;rx —2+i+j)}. (2b)

In practice, we have set W, = W,.

A more detailed discussion of the master equation
approach to stochastic dynamics has been presented
by Binder (1987). Because master equations are
constructed to satisfy detailed balance, they will
generate an equilibrium Boltzmann distribution for
the various states in the limit of a long Monte Carlo
run. However, unless the elementary moves corres-
pond to physical processes that occur on compar-
able time-scales, the dynamics may be patently
non-physical. In previous work (Skolnick et al.,

B =Wy 3 {Prj-';tlh(f--x‘"a;‘.-1+°+f)-m{n‘92(’g-:+];f--n+]+i)

tjkiva

+P:'.71?92(f.-3 +j; Tu-3 +j+i) —P:JL?QZ“--S +8; l'--3 +a +i)}

+We Y {PRyags(Ta_ 1 +8; Ty +8+E Gy + 2+ 4]) — PRihgs(fney +P; Fu_y + P+ Ta_y +p+it])

LSk 1Lppa
pwi
peJ

+ P03 (Ta o+ 8, Fa_ g+ 8+ P+ 8 +1+])— P20 (Ca_ g+ P; Tu_a + D+ T +P+ j+i)},

wherein P(t); ;,, is the probability that the mth
bond lies along ¢, the m + 1th bond vector lies along
vector j, etc. and the sum is overall allowed orien-
tations of the diamond lattice vectors. ¢,(r,.r,) is
the probability that the two contiguous lattice sites
given by r, and r, are unoccupied. Similarly,
¢3(F,.Tp.T,) is the probability that sites r,, r,and r,
are unoccupied. If g, and ¢, are set equal to unity,
the master equation first derived by Dubois-Violette
et al. (1869) for three and four-bond motion on a
diamond lattice in the absence of excluded volume

(1)

1988, 1989a,b; Sikorski & Skolnick, 1989a,b), both
four and five-bond wave motions (shown in
Fig. 3(d) and (e), respectively), were permitted on
the same time-scale as the local moves (Fig. 3(a), (b)
and (c)); therefore, short and long wavelength
motions were mixed and the time-scale was dis-
torted. Here, only the smallest scale elemental
steps, Figure 3(a), (b) and (¢c), consistent with the
lattice description of the dynamics are used.

We next examine possible problems with the
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dynamics that may affect the reliability of the
qualitative features of the folding and unfolding
pathways extracted from the trajectories. The most
obvious defect in the algorithm is the apparent
immobility of assembled secondary structures. For
example, a linear f-sheet is immobile in the present
algorithm, as there is no possibility of rigid body
translations or rotations. However, in practice this
restriction turns out not to be severe. The three-
bond kink motions (Fig. 3(a)) can introduce a kink
defect mechanism that allows pieces of trans
stretches to translate. Similarly, an end rotation
followed by a three-bond kink motion can effec-
tively rotate trans stretches. While in practice this
move is not particularly effective on isolated
p-strands because such strands are marginally
stable; f-hairpins have been seen to move about
quite effectively by this mechanism. Moreover, the
probability of a rigid body motion of a given piece
of secondary structure should be exponentially
damped relative to the elemental jumps by the
relative number of residues involved in the motional
units (Baumgartner, 1984). Small sections of iso-
lated p-strands could move but are marginally
stable; larger sections are more stable but also move
far more slowly. Thus, this particular limitation is
probably not important. Finally, due to limitations
of computational resources, we have observed only
a limited number of transitions; thus the N = D and

130 r

D — N transition rates need not converge to their
average values, and the reported transition rates are
to be regarded as only approximate (but neverthe-
less reasonable).

3. Results

In the following, the nature of the folding and
unfolding pathways in the model six-member, Greek
key p-barrel is explored. The analysis proceeds from
the examination of gross conformational properties
to an examination of the finer details of representa-
tive trajectories that show the important events
associated with folding and unfolding. Among the
aspects explored in detail are the nature of the
folding initiation events, the effect of local turn
preferences on the folding and unfolding pathways,
the nature of the transition state itself, and an
approximate free energy analysis of the reaction
co-ordinate.

(a) Equilibrium averages

Because of the local energetic preference for
gauche states, the native conformation of model B
has a lower free energy than model A. Thus, the
N = D transition of model B should occur at a
higher temperature than for model A. This is veri-
fied in Figure 4, where the mean-square radius of
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3
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Figure 4. Plot of mean square radius of gyration (S") versus reduced temperature 7'* for model A in the curves
denoted by the (a) filled diamonds and (b) filled squares, respectively. (b) In the curves denoted by the filled circles
(triangles) <S2) versus T* is calculated via eqns (8) and (10) for model A.
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gyration {(S?) defined by:

a2

(8%) = 2 i; (ri—fem)s (3)

with |r;—r.,| the distance of the ith bead from the
center of mass, r.,, is plotted as a function of 7'* for
model] A in the curve denoted by the filled diamonds
and for model B in the curve denoted by the filled
squares obtained from the equilibrium simulations.
For model A, the reduced transition temperature

is at about 7'* = 1-24 and for model B it is at about
T* =1-33. The data of Figure 4 are obtained using
the equilibrium sampling algorithm, which contains
four and five-bond wave motions that distort the
time-scale. While these moves increase the sampling
efficiency by about a factor of 10 because both local
and long wavelength moves are mixed, the folding
pathways are suspect. (Actually, they turned out to
be the same as when Jocal moves alone were used.)
Thus, we used these highly efficient moves to
prepare an equilibrated configuration in the transi-
tion region. After this, the long wavelength moves

are turned off, and only local dynamics are
employed.

Tables 1 and 2 present for models A and B,
respectively, configurational averages obtained
from a series of runs in the order they were per-
formed. Each run consists of 9x10° time steps.
Column four summarizes the global conformational
transitions (if any) associated with a given run; D is
the denatured state and N is the native state.
Columns five through seven give the average value
of ¢(82), the fraction of trans states, f,, and the
average internal energy per residue, U. In columns
eight through ten, f,.q4, fa, 8nd f,, are the fraction of
successful end flips, three-bond and four-bond
motions, respectively. Observe that, although the
probability of attempt of & three-bond move is only
4 that of a four-bond move, the rate of acceptance
of the three-bond moves -is always higher. This
reflects the difference in the intrinsic probability of
finding a conformation suitable for three and four-
bond moves; as well as the fact that three-bond
moves require only two unoccupied sites to succeed,

Table 1
Summary of configurational properties for model A
Conformation

Run no. Te-1 Te transitions (8 1 Ut Seos Is fo

1 081 1235 D-N 98:2) 0569 —0-0506 02451 011271 002181

2 082 1-220 N 31-82 0765 -—0-7569 00347) 000153 000188

3 081 1:235 N-D 3560 0755 -0-7083 004909 000766 000288

4 08 1235 D-N 7945 0617 —-02247 019251 0-08503 001700

5 081 1235 N 3413 0755 —0-7063 005798 000545 000323

6 08l 1-235 N 32:77 0760 -0-7247 004538 000370 000235

7 081 1235 N 3213 0763 -0-7427 003880 0-00209 000201

8 081 1235 N 34-52 0754 -0-6995 008326 000647 000308

9 081 1235 N 3413 0756 —-0-7112 005838 000547 000269
10 081 1235 N 3294 0761 -0-7279 004749 000365 000230
11 08l 1235 N-D 10917 0535 00785 0-28035 013381 002585
12 08l 1-235 D 115-58 0512 01403 020815 014424 002734
13 081 1235 D 11531 0516 01405 0-30059 014399 002745
14 081 1235 D-+N 85-38 0614 -0-2188 019436 008641 001699
Average of runs 1-14 62:22 0874 —04223 01362 005302 001120
15 0815 1227 N 8199 0763 —~0-7467 003818 000213 000197
16 0795 1:258 N 34'51 0752 -0-8871 0068735 000651 000295
17 0795 1-258 N 3208 0763 —07249 004348 000240 000209
18 079 1-266 N-D 103-99 0547 00157 027108 012693 002428
19 0795 1258 D 12155 0516 01481 030810 014845 002796
20t 0815 1-227 D 12103 0515 01425 0-30032 014511 002724
21 0815 1227 D-=N 6506 0694 -0-4970 011196 004144 000911
22 079 1266 N 32-66 0759 —0-7008 004808 000305 000282
23 079 1-266 N 3171 0762 -~0-7268 003908 000173 000196
24 0815 1227 N-D 3550 0751 -0-7059 005044 000862 000311
25 0815 1227 D 117-82 0517 01404 029909 014399 002713
26 079 1-266 D-N 3042 0741 —06206 008831 001485 0-00460
27 079 1-266 N 3563 0747 —0-6583 008236 000914 0-00348
28 079 1266 N 8514 0748 -0-6881 007720 000812 000328
29 0785 1274 N 34-82 0751 -06724 007147 000717 000323
30 0785 1-274 N 3375 0755 —0-6878 008375 0-00547 000274
31 0785 1274 N=-D 6659 0655 —0-3497 016608 0-06276 001344
32 0815 1227 D 11745 0518 01273 028591 014033 0-02660
33 0815 1227 D-N 8518 0754 -0-7107 004965 000721 0-00294
34 0785 1274 N-D 3931 0738 —0-6209 008328 001479 000447

Eacb run consists of 900,000 time steps.

1 The final configuration of run 18 served as the initial configuration of run 20.

1 Average internal energyfresidue.
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Table 2
Summary of configurational properties for model B
Conformational

Run no. Te-? T transitions (S A Ut I I Jo

] 075 1-33 N—=D—-N-D 50-48 0682 -0-6854 013933 003739 000882
2 077 1-30 D=N 5552 0660 —0-6450 013848 004827 001050
3 075 1-33 N—-D-N-D 4617 0-693 —=07251 013215 003088 000772
4 075 1-33 D=N—~D=N 80-38 0518 —0-2083 027703 011153 002251
& 675 1-33 N 32:67 0757 -0-9123 006082 000397 000256
6 075 1-33 N~D 7048 0574 0-36891 022621 008767 001786
7 ¢75 1-33 D-~N 43-83 0711 -07735 011488 002400 000628
8 075 1-33 N-D 82:92 0546 —0-2008 025359 009797 001996
9 075 1-33 D-N-D 6070 0647 —0-5820 016776 005347 001181
Averaget 60-82 0641 —0-5683 017147 005586 001219

Each run oconsists of 900,000 time steps.
tAverage over runs 1 and 3 through 9; i.e. at T*= 1:33.
$ Average internal energy/residue.

whereas four-bond moves require three unoccupied
sites. In all cases, f.,q is greater than fj, or f,,, an
entirely expected result. Observe further that all
three of these quantities diminish substantially, by
about a factor of 10 for f,,4. and a factor of 30 for
the f3, and f,,, in the native as compared to the
denatured state. Note, however, that even in the
native state there are conformational fluctuations
mainly involving the ends.

(b) Representative time-dependent siatistics

We next turn to representative time-dependent
statistics. Figure 5(a) displays a plot of the instan-
taneous number of native contacts versus time
obtained from runs 11 (top) and 14 (bottom) for
model A; that is, a representative set of runs where
successful transitions from the N to D and the D to
N state are observed. The fully native molecule has
74 contacts. Fluctuations from this value involve
the partial denaturation of strands 1 and/or 6. In
Figure 6(b) and (c) we display, at a finer time
resolution, the number of native contacts associated
with the D —+ N transition of run 14 and the N—+D
transition of run 11. These are representative. Both
reveal the presence of a marginally populated
folding and unfolding intermediate having approxi-
mately 50 native contacts.

In Figure 6(a), we display a plot of the instanta-
neous value of the square radius of gyration §2
versus time obtained from runs 11 and 14, and
Figure 6(b) shows a finer time-resolution that
focuses on the D — N transition region of run 14. In
the denatured state, these are very large-scale fluc-
tuations in 82, characteristic of the broad sampling
of configuration space. Observe that in the transi-
tion region there is a substantial diminution in the
amplitude of S2 prior to the formation of the native
state. (S2) for the native conformation equals 31-7
in model units, where the distance between succes-

sive a-carbon atoms is ﬁ Figure 6(c) shows 82
versus time in the N — D transition region for run
11. Similar behavior is observed for the average

value of all configurational properties as a function
of time. Based on these global properties, in partic-
ular the mean number of native contacts, it is clear
for model A that the transition state involves an
intermediate, I, baving a substantial degree of
native structure, but insufficient information has
been presented to characterize the folding and
unfolding intermediates.

In Figure 7, we plot the instantaneous number of
native contacts N, versus time obtained from run 3
of model B. Once again the presence of a native-like
intermediate is revealed. This run also shows a
number of unsuccessful unfolding attempts.
Figure 8(a) shows S? versus time for run 3 of model
B. Figure 8(b) and (c) show, on an expanded time-
scale S? versus time associated withan N =+ I +N —
D transition and a D — N transition, respectively.
In Figure 8(b), the fluctuation in S? around t =
125,000 arises from the random coil tails formed by
strands 1 and 6 in the intermediate state, which
then refolds around ¢ = 157,000 to the native state.
In all cases, plots of 8% versus time in the transition
region reveal 8 diminution in the amplitude of the
conformational fluctuations prior to collapse in the
native state. The nature of this transition state and
the character of the folding initiation events need to
be explored further.

(c) Folding pathways

Tables 3A and 4A present a compilation of the
folding initiation events for models A and B,
respectively, obtained by a detailed examination of
the protein conformation es a function of time.
Column two indicates that folding is seen to initiate
at or very near to the turn between the pair of
p-strands whose numbering is found in Figure 2(b).
For example, for run 1 of model A, the initiation
event occurred at the turn between f-strand 2 and
B-strand 3; and is labeled 2,3 in column two. We
define an initiation site as follows. The native
conformation associated with the turn must occur
at the start of a successful folding event from
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D— N, must be the first recognizable piece of
secondary structure that exists in the native confor-
mation, and must survive until the fully folded
structure results. While more detailed snapshots
consisting of a single time increment of representa-
tive trajectories have been examined frame by
frame, for the purpose of this Table, we report
results obtained from snapshots separated by 250
time steps. Since too few transitions have been
observed to obtain more than qualitative insights, a
course time-scale is appropriate. Better folding
statistics are present in Table 4A than in Table 3A.
Column three reports the time, tp,, from the initia-
tion of folding wuntil the folding intermediate
congisting of the fully assembled, four-member
f-barrel involving strands 2 to 5 is first obtained;
that is, it is a first passage time from the D — I state
given that intermediate formation will occur. Column
four reports the first passage time, 7y, from I = N.
Column five gives the ratio of tp,/tpy. In all cases,
this ratio is less than unity, indicating that the rate-
determining step is between I and N. This implies
that a nucleation growth model (Wetlaufer, 1973) is
inapplicable as a description of the pathway seen in

these simulations. Once folding initiates it is not
downhill in free energy to the folded structure. There
are intermediates possessing substantial secondary
structure having about 50 native contacts, before
the native state is assembled.

For model A having neutral bends between all the
p-stands joined by tight turns, out of a total of six
folding initiation events, five successful folding
events started at or near the turn between f-strands
2 and 3, and one initiation event was observed
between strands 3 and 4. In the case of model B,
Table 4A, where gauche states of any sign are
preferred, of a total of eight successful folds, four
involve initiation at the turn between f-strands 2
and 3, and three involved the turn between strands
8 and 4. Turn 2,3 involves residues 21 through 23.
Turn 3,4 involves residues 32 through 34, and turn
4,5 involves residues 44 through 46. The reason that
turn 2,3 occurs so often as an initiation gite is
twofold. First, in a number of cases, strand 1-2 first
forms a hairpin that stabilizes f-strand 2, which
then aids in initiation of folding from turn 2,3. The
external strand 1 then rapidly forms and dissolves
throughout the entire course of assembly (examples
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Figure S. (a) Instantaneous number of native contacts versus time for runs 11 (top) and 14 (bottom) for model A.
(b) The number of native contacts versus time at a finer time-resolution associated with the D — N transition of run 14.
(c) The number of native contacts versus time at a finer time-resolution associated with the N — D transition of run 11.

of this behavior are seen below). Furthermore, due
to the excluded volume effect (Teramoto e al.,
1958), turns are statistically more likely in a
random coil at an end rather than in the middle.
This rationalizes the observation that turn 2,3 is a
somewhat more favorable initiation site, but what
about turn 3,4? Actually, here the effect is much
more subtle. For two of the three cases observed
involving turn 3,4 initiation, folding actually began
at strands 2-3. This structure then dissolved,
leaving f-strand 3, which then rearranged to form
3,4. An example of this is seen in Figure 10.

Consistent with the previous equilibrium simula-
tions results, the system spends a substantial frac-
tion of its time either in the denatured state or in
the fully native state, thereby making the transition
thermodynamically all-or-none. For example, for
model B at T*=1-33, the total time sepent
unfolding, folding and in the intermediate state is
359,250 time steps out of a total of 72 x 10° time
steps or about §9%, of the time.

In Figure 9, a representative folding trajectory
extracted from run 14 of model A is shown. The
time indicated in the Figure indicates the elapsed
time from the start of the run. The reader is referred
to ¢ = 540,250 for the final assembled structure. The
Greek key is shown from a side view and all enap-
shots are in the same perspective. At t = 535,750,
strands 2 and 3 have successfully assembled. At
¢ = 536,000, strands 2, 3 and 4 have adopted a
native-like conformation. Observe, however, that
B-strand 5 is in & non-native conformation, being
colinear with strands 3 and 4, rather than ocolinear
with strand 2. It takes until ¢ = 536,750 before this
incorrect fold has dissolved, and until ¢t = 537,250
before the intermediate, now firmly identified as
involving f-strands 2 through 5 has formed. During
the course of assembly, f-strand 2 will dissolve and
reform. See, for example, the snapshots at
t = 539,250 and at t = 539,500. Thus, assembly is
not unidirectional. At ¢ = 539,750, the long loop
plus strand 6 bhas almost worked its way into the
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native state, and at t = 540,250, the lowest energy
native conformation is obtained for the first time.
Observe that the system spends the majority of its
time in the intermediate state (3000 time units) as
compared to the elapsed time for initiation of
folding until the intermediate state first forms (1500
time units).

Figure 10 displays a representative folding trajec-
tory obtained from run 4 of model B that shows the
turn between f-strands 3 and 4 as the initiating site.
At ¢ = 675,500, a native-like turn between strands 2
and 3 has formed. By ¢ = 675,750, f-strands 3 and 4
have fully assembled, and the turn between strands
2 and 3 is non-native; a partially formed f-strand 2
is coplanar with strands 3 and 4. Between
t = 675,750 and 676,500, strands 3 and 4 partially
dissolve and then reform to give the conformation
shown at t = 676,500. By ¢ = 677,000, strands 3 and
4 and the turn between strands 2 and 3 have
reformed. By ¢ = 677,250 strands 2 and 3 are native-
like and strand 4 has partially dissolved. Finally, by
t = 677,500, almost all of the residues in f-strands 2,
3 and 4 have adopted a native-like conformation. At
t = 677,750 strands 2, 3 and 4 are almost native; the

turn between strand 4 and 5 is non-native and
strand § is clearly out of register. By ¢ = 681,500,
the four-member f-barrel folding intermediate is
now intact. The time (i.e. at ¢ = 676,500) from the
formation of the first pieces of secondary structure
that persist to the final folded state, until the forma-
tion of the intermediate is 5000 time steps. The long
loop plus strand 6 will continue to thrash about
antil ¢ = 694,750, an additional 13,250 time units,
before the final native state assembly occurs.

The basic physical picture of p-barrel Greek key
assembly that emerges from a detailed analysis of
the above trajectories, as well as all the other trajec-
tories compiled in Tables 8A and 4A is as follows.
Folding tends to initiate at or near one of the
B-turns; this is followed by the rapid assembly of a
B-hairpin. The system assembles the secondary
structure on site, with already formed secondary
structure acting as scaffolding for subsequent native
state structure formation. Thus, the f-strands zip
up in place starting from the f-turn until the folding
intermediate, the four member f-barrel is formed.
Thus, the excluded volume effect exerted by the
already assembled structure aids in subsequent
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Figure 6. (a) Plot of the square of the instantaneous radius of gyration, 82, versus time obtained from runs 11 (top)
and 14 (bottom) for model A every 250 time steps over the entire run. (b) Finer time-resolution of 82 versus time for the
D — N transition of run 14. (c) Finer time-resolution for the N — D transition of §? versus time of run 11.

assembly. Once the intermediate forms, then the
assembly is punctuated; the remaining long loop
thrashes about trying to locate the very narrow pass
in configuration space to the native state. (As we
show below in a thermodynamic analysis of the
reaction co-ordinate, the barrier on the intermediate
side of the reaction co-ordinate is predominantly
entropic in origin.) For example, the probability of
finding the loop in the native conformation is 0-0135
without native contact stabilization, and with
native contact stabilization it is 0-0607. Thus, even
neglecting the excluded volume effect exerted by

the assembled sections of the protein (see below), -

which will further slow down assembly, there is a
large entropic barrier between the native and the
intermediate state.

It should be further pointed out that, while
sections of the protein are assembling secondary
structure, especially in the early stages, the other
portions of the native state may be dissolving.
Compare, for example, in Figure 10 the conforma-

tion at ¢t = 677,000 with that at ¢t = 677,250. Thus,
assembly s not an srreversible process. However,
while there are a number of pathways to the inter-
mediate, for example initiation at the turn between
strands 2 and 3, 3 and 4, or 4 and 5 for that matter,
the general process of assembly has increasingly
limited possibilities the closer one is to the native
state. This is not to say that folding from the
intermediate state, I, to N is by a single unique
spatial path, for it is not. For example, we have seen
cases where the long loop at the end of strand 5
starts out on the side of strands 1 and 2, then
eventually makes its way under the bottom of the
folded structure before assembling. Here, the
excluded volume exerted by the already assembled
protein can drastically slow down folding. Other
times, it is never on the wrong side of the barrel;
rather, it works its way over strands 3 and 4 before
assembly, etc. Thus, on the microscopic scale, many
ways exist to assemble the protein, but in terms of a
ooarse description, & general pathway exists.
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Figure 7. Instantaneous number of native contacts versus time obtained from run 3 of mode! B.

(d) Unfolding pathways

A compilation of the unfolding statistics is
presented in Tables 3B and 4B for models A and B.
Column two indicates the final element of tertiary
structure of the native state that remains prior to
dissolution to a fully random coil state. For
example, 2,3 indicates that the turn between
p-strands 2 and 3 is the last remnant of the native
state that dissolves. T\ of column three is the
approximate first passage time starting from a
successful dissolution of strand 6 in the N state to
the formation of the four-member f-barrel inter-
mediate consisting of f-strands 2 through 5, with its
attached random coil tails. 7y, of column four is the
approximate time required from the first appear-
ance of the intermediate until no remaining tertiary
structure remains. For model A, half of the final
unfolding events involved the turn between strands
4 and 5 and the other half involved strands 3 and 4.
For model B, of the nine unfolding transitions that
have been observed, three out of nine involved final
dissolution at the turn between strands 4 and 5, five

out of nine involved strands 2 and 3, and one
involved strands 3 and 4. The run in Table 3B at
T* =1227, having t/tp = 40 was extremely
atypical and involved the unraveling from end 1 due
to the formation of a stable, colinear array of
strands 2, 3 and 6.

In Figure 11, a representative unfolding trajec-
tory is shown for run 18 of model A. Starting from
the initiation of unfolding at t = 132,000, the inter-
mediate state is reached by ¢ = 132,750. The system
then oontinues to thrash about until ¢ = 145,000,
after which rapid dissolution occurs. The final
remaining piece of tertiary structure (which is
shown at t = 145,500) is the bend between strands 4
and 5.

In Figure 12, we present a representative
unfolding trajectory from run 34 for model A.
Strand 6 in this case is seen to rapidly unfold from
the native state (at { = 841,500) to the intermediate
at 841,750; that is, in 250 time steps. The dissolved
tail then thrashes about until ¢ = 850,250, where
strand 5 has dissolved and reformed in a non-native
conformation. Dissolution of strand 2 is seen to
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occur between ¢ = 851,000 and ¢ = 851,500. Finally,
by ¢ = 851,750, strands 3 and 4 have dissolved with
no residual tertiary structure remaining after
t = 852,000.

Figure 13 shows a representative unfolding trajec-
tory obtained from run 9 of model B. Starting from
the fully native conformation at t = 745,750, the
intermediate forms very rapidly at t= 746,250.
Dissolution of the four-member f-barrel from both
ends of the C-terminal side is evident by
t = 757,250. By t=7568,250, only the p-hairpin

“involving strands 2 and 3 is evident. All traces of
the native conformation disappear by t = 760,000.

Qualitatively, the picture that emerges is that
unfolding proceeds basically along the reverse
pathway of folding. The key event in the initiation
of an unfolding sequence is the dissolving of strand
6 from the native state. This is followed by the
relatively rapid formation of the four-member
p-barrel intermediate state involving f-strands 2
through 5. Further dissolution may proceed from
either of the two ends of the chain, with all three
turns 2 and 3, 3 and 4, and 4 and 5 having been seen

as the location of the last residual tertiary structure.
After unfolding, the dimensions are seen to expand
as the system unfolds and begins to sample the
broad expanse of configuration space characteristic
of the denatured state.

(e) Free energy of folding and unfolding

Ideally, to substantiate further the qualitative
picture of punctuated assembly, we would like to be
able to extract directly from the simulation the free
energy as a function of the reaction co-ordinate.
Unfortunately, the statistics of folding are too poor
to obtain a reasonable estimate for the entropy in
the transition region from the simulations them-
selves. Adequate techniques do exist for extracting
the conformational entropy outside the transition
region (Miyazawa & Jernigan, 1982; Meirovitch et
al., 1988: these will be employed elsewhere), but for
the transition from D =1 - N, the conformational
entropy is unreliable. Thus, we present below an
approximate analysis designed to calculate the free
energy along the reaction co-ordinate suggested by
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Figure 9; that is, f-strands 2 and 3 assemble first,
this is followed by strands 3 and 4, and then the
four-member f-barrel intermediate forms. Subse-
quently, strand 1 attaches to the native structure,
followed by the loop adopting the native conforma-
tion and then strand 6 zips up into place.

The following assumptions are made. (1) The
excluded volume effect is entirely neglected. (2) The
denatured state is treated as a statistical random
coil where all tertiary contacts are ignored. Thus, its
internal configurational free energy (in units of kg T)
is:

n-3

Adp=-Y InZ,

=1

4)
where Z; is the rotational partition function of the
sth bond:

Z=142e 4T, 6

g is the rotational energy of the ith gauche state
relative to &,. Thus, ¢; = 1, for example, for residues
2 through 9, 13 through 20, 24 through 31, 35
through 43, 47 through 56 and 64 through 72. For

residues 57, 59, 60 and 63, ¢; = —2, and for residues
58, 61 and 62, ¢; = +2. For model B, (A) ¢ = +2(0),
for residues 10 through 12, 21 through 23, 32
through 34 and 44 through 46. For definity, we first
focus on model B (qualitatively identical behavior
follows for model A), whose random coil has an
internal configurational free energy (in units of £z T')
of:

Adp=—(521n (14+2e¢~1T")43 In (1+2¢°2™)
+16 In (1+2¢*™)). (6)

Thus an independent rotational isomeric states
model for the calculation of the configurational free
energy is employed, in which the zero of free energy
is the all-trans state without any tertiary inter-
actions (Flory, 1969).

(3) For a partially folded structure, we assume
that the configurational free energy (in units of kp7T")
of a conformation having N native contacts along
the folding pathway is:

Ay=E— )Y Iz,

iwN,

(7)
where Ey_is the configurational energy (in units of
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Figure 8. (a) Square of the instantaneous radius of gyration, S? versus time. (b) S? versus time on an expanded scale
for N — D transition. (c) S? versus time on an expanded scale for D — N transition. In all cases, the trajectory of run 3,

model B is employed.

kpT) of the folded portion of the molecule having
the specified N, contact pairs, and the remainder of
the unassembled chain is assumed to behave as if
the partially folded structure is absent. The sum is
over those portions of the molecule that have non-
native conformations. See Table 5 for the conforma-
tions and energies associated with the various
values of N,. N, =1 corresponds to the formation of
the native turn between strands 1 and 2, N, =6
corresponds to the formation of the turn between f
strands 3 and 4. N, =12 corresponds to the forma-
tion of the native turn between strands 4 and 5.
Since strand 5 has two neighboring f-strands (2 and
4), N, increases by two each time f-strand § adopts
two additional trans conformations. N, = 21 corres-
ponds to the additional formation of the native turn
between strands 1 and 2, and N, = 26 and 27 corres-
pond to the formation of the native loop conforma-
tion. N, = 28 and 29 correspond to the formation of
the first pair of native contacts between f-strand 6
and strands 1 and 3. N,= 37 is the fully native
state.

Before employing the above approximations to
calculate the configurational free energy along a
reaction co-ordinate, one should be sure that, at the
very least, the approximation is good for calculating
the equilibrium between the native and denatured
state. In Figure 4, the curves denoted by the circle
and triangles give the results for the calculation of
{82) versus T* for models A and B obtained via:

(8%) = fulSRY+ (1 —fn)(8B), (9)

with N and D the denatured state values of {S2); fx
is obtained by:

In = exp{—[Es;—Ap)}/{1 +exp (—(E37—4p)}- (10)
For model A, {(8§2) = 120 and for model B <83) =
©0. In both models {(8%)y = 31-78. Clearly, rather
good agreement with the simulation is obtained.
In Figure 14(a), we plot Ay — Ap, the relative free
energy of the partially folded molecule with respect
to the denatured state versus the number of native
ocontact pairs, N, at T'* =154, 1:33 and 118 for
model B in the curves going from top to bottom;
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Table 3 Table 4
Compilation of statistics for model A Compilation of statistics for model B
Folding Folding
T initiation site ot g T/ Ty Te initiation site it 7% Toe/Tn
A. Folding statistics A. Folding statistics
1-235 23 750 2500 0-30 1333 3.4.5§ 750 84,000 0022
2.3 1250 5000 025 40,750
23 1500 4000 030 23 3000 26,000 012
1-227 23 4250 18,250 023 40,500
34 3250 17,000 019 12,750
1-266 2,3 2000 29,250 0068 3.4 5750 13,250 0434
26.000 23 750 18,250 0039
34 3500 13,500 026
Final 23 250 5250 0048
P unfolding site I Average 2333 22,806 010
olding e b ol welto 1209 3.4 1000 15000 0067
B. Unfolding statistics 1-176 23 7000 80,000 0088
1-23 4.5 250 5000 005
4.5 500 4000 013 Final
1266 4.5 oy 13000 0085 e unfolding site 7] wl e
1297 34 5000 1250 400 K .
1-274 34 750 19,250 0039 B. Unfolding statistics
34 250 10,250 0024 133 23 1000 11,750 0085
4,5 2000 13,250 015
t 1y is the time from successful initiation to the folding of the - 1250 — -
full 4-member f-barrel involving strands 2 through 5. 4.5 750 2000 0375
% v is the time from the )8t appearance of the fully assembled - 1250 — -
4member f-barrel involving strands 2 through 5 to the fully 4.5 750 19,750 0038
assembled native Greek key. - 500 — bt
§ First passage time from the start of unfolding in the fully 2,3 1000 25,250 0040
native conformation to the 4-member f-barrel intermediate 23 1250 15,000 0083
involving strands 2 through 5. 3.4 3500 42,250 0-0061
| Time for complete dissolution of the 4-member p-barrel 23 500 13,750 0036
intermediate. Average — 1250 17,875 0059
1-205 23 3750 10,500 0367

that is, under conditions where the denatured state
is favored, in the transition region, and under
strongly native conditions. The first maximum in
the An.— Ap plot occurs after the f-hairpin involv-
ing strands 2 and 3 has formed, but before the
p-strand 4 has fully assembled. At high values of
T'*, the entropic term dominates and it is very easy
for the -hairpin involving strands 2 and 3 to dis-
solve; that is, it is on a free-energy ledge, not in a
local minimum. Thus, under denaturing oonditions,
it is extremely difficult to stabilize early folding
intermediates. As 7'* decreases, the energetic term
starts to dominate, and then the structure contain-
ing three f-strands becomes trapped in a local mini-
mum. Observe that the lowest free-energy state is
not the fully assembled triplet of -strands 2, 3 and
4, but involves a conformation where the last two
residues of f-strand 4 are frayed. At all tempera-
tures, there is always a barrier of entropic origin
between the three-stranded structure (2,3,4) and the
four-member, f-barrel of strands 2, 3, 4 and 6 that
occurs after the first native contact in f-strand 5.
This is responsible for the punctuated assembly we
have observed in preliminary studies of four-
member, f-barrel folding. The barrier at N¢ = 12
between the three-member f-barrel involving 2,3,4
(four-member, f-barrel state) and the four-member

1 tpy is the time from sucoesaful initiation to the folding of the
fully assembled 4-member p-barrel involving strands 2
through 5.

$ v is time from the 1st appearance of the fully assembled
4-member f-barrel involving strands 2 through 5 to the fully
assembled native Greek key.

§ The initiation site in the run was ambiguous. The lst identifi-
able structure for Af = 250 was S-strands 3, 4 and 5.

|| First passage time from the start of unfolding in the fully
native conformstion to the 4-member f-barrel intermediate
involving strands 2 through 5.

9 Time for complete dissolution of the 4-member f-barrel
intermediate.

B-barrel state with N =18 (3-member barrel)
decreases (increases) from 2-98(3-39), 2:52(5:27),
207(7-19) as T* decreases to 1-54, 1-33 and 118,
respectively. This reflects the fact that the free-
energy barrier from the D eide is mainly entropic,
while from the I side, the barrier is predominantly
energetic. Thus, the four-member B-barrel inter-
mediate becomes more accessible as 7'* decreases,
and it becomes increasingly difficult to dissolve the
intermediate as T'* decreases.

Observe further that there is a broad free-energy
valley evident between Nc = 18 and N¢ = 26; this
corresponds to the assembly of f-strand 1 and for-
mation of the first native contact between the long
loop and the previously assembled native state. The
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Figure 9. Representative folding trajectory extracted from run 14 of model A is shown. The circle denotes the

N terminus.

existence of this broad valley, separated by a large
entropic barrier from the fully native conformation
is the origin of the long pause always observed in
the simulations after the four-member f-barrel was
assembled. The absolute height of this barrier,
which is always located at N¢ = 29, equals 1574 at
T* =164, equals 819 at 7* = 1-33 and equals 0-85
at 7'* = 1-18. Thus, it becomes increasingly easier to
find the native conformation as the temperature is
lowered. In other words, at higher temperatures
where the configurational entropy dominates, it is
very difficult to surmount the free-energy barrier
from the intermediate to the native state; more
explicitly, the barrier calculated as the difference in
free energy between Nc =26 and N¢ = 29 equals

444 at T*=154, 410 at T*=1-33.and 378 at
T'* =1-18. Thus, as the energetic stabilization of the
native state dominates, the barrier due to entropic
contributions between the intermediate and the
native state decreases with decreasing temperature.
In other words, folding from the intermediate to the
N state becomes easier as the temperature
decreases.

Conversely, the beight of the barrier between the
N state and the intermediate (which strictly speak-
ing is seen to be the 4-member barrel plus a popula-
tion of states including various degrees of assembly
of the external strand 1, both with and without the
first native loop contact) increases from 474 at
T*=154 to 660 at T*=133 and to 843 at
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Figure 10. Representative folding trajectory extracted from run 4 of model B. The circle denotes the N terminus.

T* = 1:18. The relative free energy of the N state is
1099 at 7% =154, 1-60 at T* =133 and —7-58 at
T*=118. Thus, the conjecture of Goldenberg &
Creighton (1985) that the native conformation is
kinetically trapped is borne out in this model calcu-
lation. However, unlike their Cardboard Box model
of protein folding, which conjectures that the transi-
tion state is a high-energy distorted form of the
fully folded state, in this model, the transition state
consists of 29/37 native contact pairs. The transition

state is identified as the six-member f-barrel, all of
whose turns and loops are native, and which has the
first two residues of f-strand 6 closest to the N
terminus in the native state; thus, the transition
state lies very close to the native state as required
by experiment. In Figure 14(b), we plot in the lower
and upper curves (filled circles and squares) Ey_and
ANC-ENc—AD versus Nc at T*=1-33. The latter
term is the difference in configurational free energy
associated with oonverting the random coil state
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Figure 11. Representative unfolding trajectory from run 18 of model A. The circle denotes the N terminus.

into the conformation bearing the specified N
native contacts but without any tertiary inter-

actions. It is primarily, but not excluswely entropic
in origin. At T*=1-33, observe that the term
An.—Ex .~ Ap increases from 678 to 725 as N¢

increases from 29 to 37; that is the entropy change
from the transition state to the denatured state is
93:59% of the native state, whereas the energy
changes from —59-625 to —70-875, or about 84 9, of
the fully folded state. Thus, in agreement with the
simulations presented by Taketomi et al. (1988), the
entropy of the transition state and the native state
are quite close.

The qualitative picture that emerges is as follows.
Since the final transition state is very close to the
fully folded structure, the difference between the
transition state and the native free energy is primar-

ily energetic; in this sense, the present simulations
and the Cardboard Box model agree; whereas
between I and the transition state, the difference in
free energy is primarily entropic, (e.g. at 7* =133,
the energy difference between N.=26 and 29
equals 4-885, whereas the entropic contribution to
the free energy increase is 8-96).

Consider further the predicted behavior of refold-
ing as a function of temperature. We focus on the
height of the barrier between the four-member
p-barrel intermediate and the native state. From
T* =154 to T*= 118, the barrier between I and
the transition state (dy.—Ap from N¢ = 26 to 29)
has changed from 4'44 to 3-78 at T* =118, that is, a
change of 359, whereas the change in the free-
energy barrier between N¢ = 29 and N = 37 is 475
at T*=1-54 and 843 at 7* = 1-18. Thus, the rela-

Table §
Compilation of parameters for the free energy calculation along the reaction co-ordinate

Total number of native contact pairs N

Increase in number of

Initial number Final number Representation of Energy of assembled rotational states in

of contact pairs of contact pairs final structure assembled mative section the native conformation
1 5 16¢, +5c, —6¢, 19
6 10 :%-qf 16¢, + B, — 6, 12

1 12 -2 82¢, + 55, —6e, 13

21 25 dwgg' 16¢, + 56, — 8¢, 11

26 27 o2 8 8¢, 7

28 37 23 26z, +20¢, 9
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Figure 12. Representative unfolding trajectory from run 34 of mode! A. The circle denotes the N terminus.

tive rate of unfolding is expected to decrease far
more rapidly (by about a factor of 40) than the rate
of folding increases (by about a factor of 2) as the
free energy of the native state has changed by 1856
(in units of k7). Thus, as pointed out by
Goldenberg & Creighton (1985), the free energy of
the transition state relative to the native state
changes less than the increase in stability of the

native state. This is in qualitative agreement with
experimental observations on different cytochromes
¢ (Brems et al., 1982) and different ribonuclease A
conditions (Tsong & Baldwin, 1978), which indicate
that the rate of folding is altered much less than the
stability of the native state, thereby implying a
greater decrease in the rate of unfolding. Thus, the
punctuated assembly model developed here qualita-
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Figure 13. Representative unfolding trajectory obtained from run 9 of model B. The circle denotes the N terminus.

tively reproduces real experiments. (We point out
that the qualitative features seen here hold for
4-helix bundles as well, and appear to be insensitive
to 99B,he particular topology (Sikorski & Skolnick,
1990).)

Finally, we turn to the question of the relative
rate of folding of model A compared to model B.
Direct comparison at the same value of 7'* is inap-
propriate, since model B has a higher transition
temperature than model A; the two models should
be compared under comparable conditions, for

example at the transition midpoint. Moreover, the
transition times compiled in Tables 3 and 4 are all
approximate, and by no means exact. Thus, we
employ the analytic theory embodied in equations
(4) through (10). For model A, we find T'};, = 1237
and for model B, T'}; = 1:304. In Figure 15, we plot
Ay — Ap for models A and B in the curves denoted
by filled diamonds and squares respectively; observe
Az,— Ap = 0 for both cases. For models A and B,
the first barrier between D and the first inter-
mediate state occurs at N¢ = 6 and is of magnitude
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Figure 14. (a) Plot of Ay — Ap versus N calculated via
eqns (4) and (7) for model B at T'* = 1-64, 1-33 and 1:18 in
the curves denoted by filled squares, circles and triangles,
respectively. (b) Plot of Ey. (circles) and Ay —Adp—Ey,
(the entropic contribution to the relative free emergy
difference: squares) versus N at T* = 1-33.

8:14 for model A and 712 for model B. Similarly,
the height of the barrier at Nc = 12 from the local
minimum 4y, — Ac at N¢ = 9 equals 319 for model
A and 2-44 for model B. Thus, because the forma-
tion of the four-member pf-barrel intermediate
involves the three triplets of energetically stabilized
gauche states in model B as compared to model A,
the folding intermediate is predicted to fold some-

N P N P B e |

o 10

20
Notive contact poirs

Figure 15. Plot of Ay.— A4p versus N¢ at the transition
midpoint for models A and B in the curves denoted by the
filled diamonds and squares, respectively.

what (but not more than an order of magnitude)
faster in model B than in model A. This is reflected
in the simulations by the more frequent appearance
of the intermediate in model B (e.g. see Figs 7 and 8
versus 5). Otherwise stated, the intermediate in
model B is more stable than model A; thus it should
and was observed to form more frequently. We next
consider the transition between I and N. Here, the
energetics of the two models are identical, and
effects due to the difference in transition tempera-
tures of the two models should enter. Basically,
because T'}/, of model A is lower than that of model
B, the configurational entropy term is less impor-
tant in model A than it is in model B. The absolute
magnitude of the transition state .relative free
energy (at N = 29) equals 7-66 in model A and 6-91
in model B. Thus, model B should unfold faster
than model A, and the intermediate, being more
stable, should be more populated; that is, transi-
tions into the intermediate state from both D and N
should be faster in model B than in model A.
Qualitatively, both effects are borne out in the
simulations (compare once again Figs 7 and 8 with
6). The transition-state free energy relative to the
intermediate is best calculated between N = 26
and N¢ = 29, and equals 3-90 for model A and 4-30
for model B. Because the barrier on the inter-
mediate side is entropic in origin, the rate of folding
should be slower for model B from the intermediate
state to the native transition than it is for model A.
Roughly speaking, Tables 3A and 4A indicate such
a qualitative trend.

Overall, based on the comparison of models A and
B, the stabilization of native-like turn conforma-
tions is seen to exert competing effects on the rate of
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folding. For the formation of those sections that are
directly stabilized, it accelerates the folding process.
Moreover, a concomitant condition to the overall
energetic stabilization of the native state is that the
transition occurs at a higher temperature. Because
the barrier between I and N is primarily entropic in
these models, it slows down the transition from the
intermediate to the native state. However, in all
cases the effect is minor, less than an order of
magnitude for the models considered here, even
though the two native conformations differ in
energy by about 15:6 (kpT'); the, at first, surprisingly
small diminution in relative rates is due to the fact
that the relevant free energy difference is between
the native and partially folded conformations of the
same molecule. Stabilizing turn-like conformations
stabilizes both the native and denatured states, and
it is their free energy difference that is important for
the calculation of the free energy along the reaction
co-ordinate.

4. Summary and Discussion

In the context of a highly simplified diamond
lattice model of a six-member, Greek key B-barrel
globular protein, the nature of the folding and
unfolding pathways have been explored. However,
in spite of the simplified nature of the model, it
possesses the essential topological features of f-pro-
teins, and consequently some conclusions applicable
to real proteins can be drawn. Folding is seen to
initiate close to a f-turn, followed by the zipping up
of the adjacent B-strands on site. In the early stages
of protein folding, the existing tertiary structure
acts as scaffolding for subsequent formation of addi-
tional secondary structure that is assembled on site.
Relatively rapid assembly of the four-member
p-barrel intermediate occurs, after which there is a
pause in assembly as the marginally stable inter-
mediate hunts through configurational space to find
the native state. In qualitative agreement with
experiments (Creighton, 1985, 1988), the transition
state is identified to be very close to the native
state. In particular, it consists of S-strands 1
through 5 fully assembled, the long loop in the
native conformation and the first native contact of
the last strand. The transition state is an almost
Jully assembled, but not distorted native state. The
folding intermediate is trapped in a broad free-
energy valley that is separated from the transition
state mainly by the reduction in configurational
entropy relative to the denatured state. In this, the
mode] disagrees with the Goldenberg—Creighton
Cardboard Box model of protein folding. However,
the free-energy barrier between the native state and
the unfolded intermediate is primarily energetic in
origin, in agreement with the Cardboard Box model.
The predicted temperature-dependence of the
unfolding and folding kinetics (Brems et al., 1982;
Tesong & Baldwin, 1978), is in qualitative agreement
with experiment. Thus, these simulations support a
framework model of protein folding. Finally, the

unfolding pathway is basically the reverse of the
folding pathway.

It is worthwhile to compare the punctuated on-
gite mechanism with some previous models of pro-
tein folding. In a number of realizations of the
sequential assembly model (Kim & Baldwin, 1982),
the secondary structure forms first, these then
condense to form un intermediate globular struc-
ture, which then readjusts. In the present model,
there is always fluctuating secondary structure; the
tertiary structure is formed ooncurrently with
secondary structure chacteristic of the native state.
Because these models are on a low co-ordination
number lattice, no subsequent local conformational
readjustment is possible. While we cannot, on the
basis of these simulations, rule out such local
rearrangements, it is clearly not required to repro-
duce all the qualitative features of both the kinetics
and thermodynamics of globular protein folding.

These simulations on f-barrel formation argue
against a diffusion-oollision-adhesion mechanism for
folding initiation. Karplus & Weaver (1976, 1979)
and Lee et al. (1987) have applied the model mainly
to a-helical proteins; we discuss the validity of this
model for the folding of a-helical proteins in the
accompanying paper. Since f-sheets are less stable
without tertiary interactions, no application has
been made to B-proteins. The present models,
having marginally stable f-strands without tertiary
interactons, could assemble via what is effectively a
diffusion-collision-adhesion mechanism. The reason
they do not is that it is simply faster and more
probable to initiate folding at or near a f-turn and
then sequentially zip up rather than assemble the
B-strands and wait for the strands to diffuse
together before they dissolve.

In practice, it may be rather difficult to differen-
tiate between the on-site construction model
proposed here and a model involving preformation
of secondary structure. Consider the case of a
B-hairpin as an early folding intermediate. In both
models, isolated f-strands of marginal stability are
allowed. Thus, the initial (an isolated pair of
strands) and final states (the f-hairpin) are iden-
tical. They differ only in what happens in between
these two conformations. In one case, the isolated
p-strands remain intact and diffuse together, in the
other, perhaps one or both -strands would dissolve,
only to be reassembled at near or a turn with the
p-strands formed by pulling pieces of the random
ooil tails from the denatured state. While it is
certainly true that there are a number of artifacts
present in this model (the degeneracy of mirror
image conformers being the most striking example),
these would tend to increase the number of folding
and unfolding states by stabilizing non-physical
intermediates. Thus, the fact that the folding
pathway is rather well defined and, when coupled to
a simple analytic theory, gives qualitative predic-
tions in agreement with experiment, leads us to
believe that the general mechanism of folding is
physical. The differences in the folding sequence
mainly occur in the early stages of protein folding,
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where the free energies of the pf-hairpin inter-
mediates are essentially equal. While the general
progression of events is better defined the closer one
gets to the native state, there are a multiplicity of
possible spatial trajectories consistent with the
general course of folding events. Moreover, it shoud
be pointed out that there is always a constant
sompetition between tertiary structure assembly
and dissolution. In more than one case, we have
seen formation of f-strands 2, 3 and 4, which then
dissolve because the long tail attached to strand 4 is
too tangled to permit further formation of tertiary
structure. The whole structure then dissolves and
folding may or may not be reattempted soon
thereafter.

In the accompanying paper (Sikorski-& Skolnick,
1990), the nature of the folding and unfolding path-
ways of all the variants of left-handed, four-helix
bundles is explored. We conclude that the punc-
tuated on-site mechanism obtains even when the
diffusion-collision-adhesion mechanism is expressly
implemented as a competitive possibility. Thus, we
believe the on-site construction mechanism is quite
general, and we are applying the simulation tech-
nique to study naive models of ¢n vivo folding as
well as extending the model to a more realistic
lattice description. Much work remains to be done.
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Richardson, Jane Richardson, Andrzej Sikorski, and
Peter Wright are gratefully acknowledged.
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Edited by T. J. Richmond

Note added in proof. Recently, we undertook a series of dynamic Monte Carlo simulations on a 24
nearest-neighbor lattice representation of proteins in which both finite backbone chain thickness and
side-chains are included. The folding and unfolding pathways of a full 99 residue analogue of
plastocyanin have been simulated. The major folding pathway is qualitatively identical with those
reported here with the exception that strands 3,4 serve as the dominant initiation site. Thus, these
pathways appear to be universal; that is. they are independent of the particular lattice realization and
mode) details as well as the choice of local elemental moves.



