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Dynamic Monte Carlo simulations of the folding pathways of a-helical protein motifs have
been undertaken in the context of a diamond lattice model of globular proteins. The first
question addressed is the nature of the assembly process of an a-helical hairpin. While the
hairpin could, in principle, be formed via the diffusion-collision-adhesion of isolated
performed helices, this is not the dominant mechanism of assembly found in the simulations.
Rather, the helices that form native hairpins are constructed on-site, with folding initiating
at or near the turn in almost all cases. Next, the folding/unfolding pathways of four-helix
bundles having tight bends and one and two long loops in the native state are explored.
Once again, an on-site construction mechanism of folding obtains, with a hairpin forming
first, followed by the formation of a three-helix bundle, and finally the fourth helix of the
native bundle assembles, Unfolding is essentially the reverse of folding. A simplified analytic
theory is developed that reproduces the equilibrium folding transitions obtained from the
simulations remarkably well and, for the dominant folding pathway, correctly identifies the
intermediates seen in the simulations. The analytic theory provides the free energy along the
reaction co-ordinate and identifies the transition state for all three motifs as being quite
close to the native state, with three of the four helices assembled, and approximately one
turn of the fourth helix in place. The transition state is separated from the native
conformation by a free-energy barrier of mainly energetic origin and from the denatured
state by a barrier of mainly entropic origin. The general features of the folding pathway seen
in all variants of the model four-helix bundles are similar to those observed in the folding of
B-barrel, Greek key proteins; this suggests that many of the qualitative aspects of folding
are invariant to the particular native state topology and secondary structure.

1. Introduction

JMB285T2 |

In spite of the extensive attention received during
the last 15 years, the mechanism for the formation
of the biologically active conformation of a globular
protein is still far from understood (Kim & Baldwin,
1982; Anfinsen, 1972; Ghelis & Yon, 1982;
Creighton, 1985, 1988). Tt is not easy to study the
pathway of folding experimentally because the

process of folding is highly co-operative and rela- -

tively fast (Creighton, 1988). Thus, studies of poss-
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ible intermediate states in the folding process were
relatively rare and mainly involved disulfide bridge
trapping of intermediates (Creighton, 1974, 1977a,b,
1979, 1985, 1988). More recently, preliminary
experimental studies have emerged employing,
among other techniques, hydrogen exchange
labeling methods (Roder et al., 1988; Udgaonkar &
Baldwin, 1988). However, the general mechanism of
protein folding is not well established, nor are the
general rules of protein folding well understood
(Wright et al., 1988). Recently, the nature of the
protein folding process has been examined in a series
of papers (Kolinski et «l.. 1986a,b, 1987 Skolnick et
al., 1988, 1989a,b; Sikorski &Skolnick, 1989a,b) by
means of Monte Carlo simulations. In the present
work, these techniques are applied to study the
mechanism of folding and unfolding of all the motifs
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of four-helix bundles (Richardson, 1981; Ford et al., -
1984; Abdel-Meguid et al., 1987); a similar analysis .

of the pathways of protein folding in Greek key,
f-barrels appears in the accompanying paper,
hereinafter designated Paper I (Skolnick &
Kolinski, 1989).

The organization of this paper is as follows.
Section 2 presents a brief description of the model.

For more details, the reader is referred to section 2

of Paper T Skolnick & Kolinski, 1989). Section 3
begins with a discussion of the mechanism of
assembly of an a-helical hairpin and addresses the
question of whether or not a diffusion-collision-
adhesion-model  involving  preformed
describes the mechanism of assembly. Then, the
nature of the folding/unfolding pathways of four-
helix bundles having tight bends and one and two
long loops is explored. The section concludes with a
theoretical analysis of the free energy along the
reaction co-ordinate of the four-helix bundle motifs
having tight bends and one and two long loops.

Section 4 summarizes the qualitative conclusions

gleaned from these simulations.

2. Overview
(a) Description of the Model

The model chain consists of a consecutive
sequence of n amino acid residues connected by
n—1 bonds, confined to a tetrahedral (diamond)
lattice. The model can be viewed as a crude,
a-carbon representation of a protein chain. Because
of lattice constraints, each a-helical turn consists of
four residues (contrary to the 3:6 residues/turn in a
real a-helix). A pair of adjacent a-helical stretches in
the model helix bundle can only be antiparallel.
This is to be contrasted with the case of real
proteins, where the helices are not exactly parallel
(the angle of crossing can be up to 20°) and may not
be perfect; that is, they sometimes are broken into
smaller pieces (Richardson, 1981; Janin & Chothia,
1980; Barlow & Thornton, 1988). Furthermore, on a
diamond lattice, it is impossible to mimic the super-
twist of the helix bundle that is observed in real
proteins (Richardson, 1981; Weber & Salemme,
1980). Nevertheless, using this simple lattice model,
one has a correct representation of the topologies of
real proteins at low resolution, and thus these
models can perhaps help elucidate the general rules
about the pathways involved in the folding of
tertiary structures.

In the model of helix-forming proteins, the helical
wheel effect is implemented to accommodate short-
range interactions as follows. If five consecutive
residues form two ¢~ states (i.e. a single a-helical
turn has been formed) and if this conformation is
preferred, then the ith and (14+4)th beads interact
with an attractive potential of mean force & (a
negative quantity). The addition of the next g~
state to this sequence leads to a decrease in free
energy equal to €.

We have defined the reduced temperature of the

helices .

(=)
%

Figure 1. Representation of topologies (left) and the
folded native configurations (right) for models 0, 1 and 2.

model system as 7'* = kgT'/e,, where ky is the
Boltzmann’s constant, 7' is the absolute tempera-
ture and g, is the hydrophilic residue pair inter-
action parameter. A further, more detailed
description of the hydrophobic/hydrophilic pattern
of interactions corresponding to amphipathic
sequences is given by Sikorski & Skolnick (1989a).

As in our previous studies, we employ the
following shorthand notation to specify the primary
sequence. Hy(k) denotes a piece of the chain that can
form the ith putative a-helical stretch in the native
state and possesses the appropriate amphipathic
sequence consisting of & residues. b corresponds to
a short bend neutral region containing three
residues, and L;(k) indicates the i¢th putative loop
region composed of k residues. We once again
emphasize that this is only a primary sequence
description, and there is no a priori restriction of the
allowed conformations of the chain.

There are three variants of the four-helix bundle
under consideration. Model ). whose native state
topology and folded conformation are shown on the
right and left-hand sides of the top of Figure 1,
consists of n = 48 amino acid residues. The native
structure contains four almost identical o-helices
(each containing almost 4 helical turns) connected
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by three short bends (each bend involves 3
residues). The first turn (connecting helices T and IT)
consists of residues 11 through 13, the second turn !
(connecting helices IT and ITI) consists of residues’
23 through 27 and the third turn (connecting helices
IIT and TV) consists of residues 35 through 37. Two
different primary sequences were used for the case
of model 0: (I)a central turn neutral region:
H{12)H,(10)b3H;(11)H,(12) (model Onl) and (2).
three neutral bends H,(10)b3H,(9)b3H;(9)b3H,(11)
(model 0n3). When no b] is specified, the pattern in
the putative bend region (in the native conforma-
tion) is assumed to be consistent with that in the
adjacent helical strands H; and /I, ,, (the Ist 2
residues belong to f; and the last residue belongs to
H,,y).

In model 1, whose native state topology and
folded conformation are shown on the left and right-
hand sides, respectively, in the middle of Figure 1,
the chain consists of » = 61 residues; the native
conformation has virtually the same o-helical
bundle as in model 0. The main difference between
the two models lies in the topology of connections
between the helices; see Figure 1. In model 1, helices
IT and IIT are connected by a long loop involving |
residues 23 through 38. The two remaining connec- '
tions between the helices are short bends located at
residues 10-11 and 46-48. Two distinct primary
sequences have been studied for this motif: (1)
model In having two-turn neutral, tight bend
regions, H(9)bH,(10)L,(16)H;(9)b3H,(11); and (2)
model 1h, whose primary sequence is entirely
devoid of residues having a local preference for tight
bend formation H,(11)H,(11)L,(16)H5(11)H,(12).

In model 2, whose native state topology and
folded conformation are shown in the left and right-
hand sides, respectively, at the bottom of Figure 1,
the chain consists of n = 78 residues having two
long loops and one short bend between helices I1
and III. The short bend involves residues 41
through 43, and the loops involve residues 13
through 30 and 54 through 67. The primary
sequence studied for this model are: (1) model 2n,
which possesses a single central turn neutral bend
region, H (12)L,(18)I, (92, (1 1) L,(14) I, (11);
and (2) model 2h, which is devoid of a turn neutral
region, H,(12)L,(18)H,(Y1)[1,(12)L,(14)1,(11).

In addition to the mean radius sequence gyration,
{8%), defined in equation (3) of Skolnick & Kolinski
(1989), another property of interest is the
normalized helix content, @, defined by:

Ry — [
Hr =f}7l—7[?q' (1

where f(T'*), fooir and f,,, are the fraction of helical
states at the temperature 7%, in the denatured
state, and in the native configuration, respectively
(Sikorski, & Skolnick, 1989«,b). 0, in equation (1)
assumes values close Lo zero in the denatured state
and unity for the pure native state. It is assumed,
for the sake of simplicity, that f.; = 1/3. To make
results of models 0. 1 and 2 comparable, values of 0,

are calculated only for the residues that form |
a-helical bundles. Values of f,, are found to be'’
0-8464, 0-8667 and 0-8919 for models 0, 1 and 2, |
respectively. !

'
I

3. Results
(a) General considerations *

The main goal of these simulations is to elucidate |
the folding and unfolding pathways of four-helix |
bundles having different types of interhelix connec- |
tivities. Models having differences in primary struc- |
ture (type “n” models versus type “h”” models) have |
been studied to clarify the influence of short bends |
and long loops on the folding pathway, especially in -
the early stages of folding, and to find out if slight
modifications of the primary sequence (which does
not change the native structure) lead to different
pathways. Simulations were made for the same set
of interaction parameters as reported in our
previous papers; namely, & =¢, =¢,/2=—¢,/2
(Sikorski & Skolnick, 1989a,b). There, it was demon-
strated that the folding transition has the same
features over a broad range of parameter space. As -
shown below, similar behavior has been found for
the folding pathway; changes in the ratio of inter-
actions over a broad range of parameter space does
not change the observed pathways. Thus, for the
sake of brevity, only representative results are
presented.

(b) Folding of a-helical hairpins

Because of lattice restrictions, pieces of secondary
structures like f§-strands and a-helices are immobile
if only the local moves discussed in the previous
section are used. Thus, the algorithm cannot move
an assembled a-helix without dissolving it. (In prac-
tice, a 3-bond kink motion can effectively move
p-strands about; see Paper I, section 2). In reality,
of course, the solvent exerts Brownian forces
(Chandrasekhar, 1943), which can move assembled
secondary structural elements; it is precisely this
mechanism that the diffusion-collision-adhesion
model involving helix preformation invokes as the
dominent feature of tertiary structure assembly
(Karplus & Weaver, 1976, 1979; Lee et al., 1987).
Thus, in order to examine the validity of the diffu-
sion-collision-adhesion model, we have used a modi-
fied version of the algorithm that explicitly allows
rigid helix rotations and translations.

The Monte Carlo simulation algorithm that has
been applied to a-helical hairpins contains in addi-
tion to the three-bond, four-bond and end flips, two
additional kinds of motions. One of them, shown in
Figure 2(a), translates an a-helix in a random direc-
tion a distance of 8'/%; (this is the smallest possible
distance an o—helix can be translated on the
diamond lattice). The translation also slightly
distorts one end of the helix but does not affect the
other end. The shorter of the two random coiled
tails attached to the helix is translated as well. The
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(a) (b)

Figure 2. Example of long-distance moves of secondary
structures involving the translation of (a) a helix and (b)
rotation of a helix.

second move is a rotation of a helix. As shown in
Figure 3(b), the entire helix (and shorter tail) is
rotated around the first residue located outside the
helix. Due to lattice restrictions, the angle of
rotation can take only the values 27/3 or 47/3.

In order to include these new motions without
significantly distorting the time-scale (they involve
the motion of a larger number of beads than a 3 or
4-bond motion), these moves have to be penalized
relative to the elemental three and four-bond jumps
by weighing them appropriately. The main idea is
that any translation or rotation can be treated as a
combination of three-bond kink motions (which
form the basis of the time unit). In a single three-
bond kink motion (see Fig. 3(a) of Paper I), two
residues are shifted by a distance of 8'/2. The proba-
bility of a single three-bond motion in a particular
direction is equal to 0-5, because there are two
different possibilities for this move. Consider a helix
of r residues. Thus, the simplest approximation for
the frequency of the attempted translation of a
helix is given by (1/2)72 (there are r/2 3-bond
motions in this same direction, because each 3-bond
motion shifts 2 residues). Similarly, the probability
of a rotation can be decomposed into the probabi-
lity of a consecutive sequence of the three-bond
motions. Here, however, the distance that each
residue in the rotated helix moves is different. The
frequency of rotation of a helix can be written as
(1/2)q, where

where 4; is the number of three-bond motions
required to rotate residue 7. By employing the
above, rigid body helix rotations and translations
are implemented into the algorithm by penalizing
them at every time step by the appropriate factor.

1 =1451 t=1452 1=1453 '
\/5 | %\/\/\ ’ ﬂ '
/

]
1=1454 /=456 t=1630 1=1710

A G d

Figure 3. A representative folding trajectory of a single
hairpin using the extended algorithm with the possibility
of translations and rotations of helical fragments (the
hydrophobic/hydrophilic pattern is the same as in the 1-2
hairpin of model On3 with a neutral bend) at a -
temperature 7% = 0-5.

This new algorithm, which in principle permits
diffusion-collision of preformed helices to occur, has
been applied to the simplest model system, a hairpin
with a short bend between helices and that is
composed of 22 residues having the primary
sequence H(9)bJ0H(10). In Figure 3, we present a
representative folding trajectory of the o-helical
hairpin from the denatured state. As is clearly seen,
the hairpin does not form by the formation of
isolated helices which then diffuse together as the
diffusion-collision-adhesion ~ model  conjectures.
Rather, folding initiates by the formation of one or
two hydrophobic contacts near the native turn as
conjectured by Matheson & Scheraga (1978), and
then the helices are constructed on-site. These
rotations and translations of helical fragments do
occur, but these seem to be rather rare events.
Because they are marginally stable prior to
assembly of the native state (the denatured state
has about 309, helix content), the translated and
rotated, isolated helices are not long-lived and
undergo dissolution by micromodification. In other
words, it is faster and more probable to assemble
them on-site (which is downbhill in free energy after
the Ist few steps), than to wait for the isolated
helices to form and then diffuse together. This
process is too slow relative to the mean lifetime of
the isolated helices.

To avoid underestimating the role of relative
helix diffusion, we have artificially assigned the
probability factors described above to have higher
(and non-physical) values, up to the square-root of
their original values. It should be pointed out that
these probabilitics are already overestimated by
neglecting the constraints caused by one (shorter)
tail that is translated (rotated) with the helix
without incurring any additional penalty. This
dramatic increase in the probability of moving the
a-helices does not change the mechanism of folding,
and the hairpin is again assembled step-by-step on-
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Figure 4. Plot of the mean-square radius of gyration {S?) versus the reduced temperature T* averaged over
foldingfunfolding sequences. (Model Onl (open circles), model 1n (filled circles) and model 2n (open triangles). The
broken curves correspond to results obtained from the analytical model, according to eqns (5) and (6).

site as in Figure 3. If the rotations and translations

are not penalized at all relative to the three and-

four-bond kind motions, but are equally weighted,
then assembly predominantly occurs by diffusion-
collision-adhesion of preformed helices. In this non-
physical case, there is a competition between these
two mechanisms of folding, but for realistic esti-
mates of the probability of rigid translations and
rotations, the on-site construction mechanism is the
dominant one. (This does, however, suggest that
rigid rotations and translations be incorporated into
equilibrium sampling algorithms where the path-
ways need not be physical.) Therefore, in what
follows, we return to the original algorithm
possessing only local three and four-bond motions
and chain end modifications, as these are respon-
sible for the assembly of native structure in these
models.

(¢) Folding of four-helix hundles

The analysis of the equilibrium properties of all
models has been fully discussed in our previous
work (Sikorski & Skolnick, 1989a,b). Here, we
present only representative equilibrium results as a
function of temperature. Figure 4 presents results
for the temperature dependence of the mean-square
vadius of gyration, {82, for models Onl (open

circles), In (filled circles) and 2n (open triangles).
{8?> changes its value on refolding because the
native conformation of the protein is compact and
densely packed, unlike the random coil state. In the
case of the presence of long loop(s), {S?) weakly
decreases even at temperatures below the transition
regime, because only the native helical bundle is
stable; the loop(s) undergo further small-scale
l'eal'rangement,s on cooling.

The folding statistics are compiled in Tables 1, 2
and 3 for models 0, 1 and 2, respectively. For every
single simulation run, the total number of Monte
Carlo steps is given in column two. Column three
gives T*, the temperature of the refolding
(unfolding) transition for which the pathway of
folding (refolding) pathway is analyzed. The confor-
mational properties, averaged over these steps, are
given in column four for the mean energy per
residue in units of kyT. Column five presents the
mean-square radius of gyration {S?), and column
six gives the helix content, caleulated according to
equation (1). Column seven describes the changes in
conformation, and column cight gives a short
description of the pathway of foldm;s (refolding) l)y
listing the number of helices in the sequence in
which they assembled. Column nine presents the
fraction of total simulation time for which a native
hairpin was stable independent of whether folding is
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Table 1
Summary of conformational properties of model 0
Run ¢10° T+ {E[n) 8% (O Transition Pathway 15/t Tyoft st 1ol 7§
A. Model 03n
1 2 0-667 —=0-2151 6795 0242 D — 0-075 0 — —
2 2 0-667 —0-8564 31-22 769 D-N (3—4)—2=1 0-040 0015
3 2 0-667 —0-7092 36-55 0690 D-N (3—4)—2-=1 0090 00130 1000 400 800
4 2 0625 —0-8976 2644 0-866 D-N (324)—2-1 0-030 0030 1000 600 6200
5 2 0625 —1-06069 23-36 0-815 D-N (122)=3-4 0015 0030 800 1400 5000
6 2 0-667 —0-2166 66-08 0-263 D — 0105 0030 — — —
7 2 0625 07976 41-36 0-684 D-N (2-3)—1—4 0075 0010 300 2000 2100
8 2 0625 —1-1038 1854 0973 D-N (4—3)—2—1 0015 0060 — — —
9 2 0625 —09938 24-16 0-895 D-N (3—4)—4—1 0025 0-050 1000 2200 9400
10 2 0625 -0-5310 4506 0-542 D—-N (2—3)—1—4 0135 0030 800 1400 9000
11 25 0769 —0-2500 59-57 0-283 N—=D=N (1-4)—-2-3
12 25 0769 —-09701 1707 0966 N — — — — — —
13 25 0769 —0-3732 5172 0375 N-D (1-4)23-2
14 25 0769 —0-9686 17:08 0966 N — — — — — —
15 20 0667 —06653 41-56 06201 DoN-D (1-2)—3-4 0-060 0020 900 1800 700
4=21-(2-3) 200 500 600
B. Model 01In
1 25 0667 —0-6661 39-84 0-621 D-XN (2-3)—1-4 0012 0020 500 500 1000
2 2 0-667 —0-8630 30-27 0-810 D—-N (3—4)—2—1 0-060 0
3 2 0667 —-02539 67-67 0302 D —_ 0-060 0010 — — —
4 2 0667 —0-8682 28:30 0833 D-N (2-3)—4-1 0-050 0050 1000 1250 9000
5 2 0-667 —09571 27-32 0-857 D-N (2-3)—~1-4 0040 0020 400 400 3000
6 2 0-667 —-02584 66-29 0334 D — 0072 0024 —_ — -
7 2 0-667 —0-5934 4557 0579 D-N (1=2)=3-4 0085 0035
8 2 0-667 —0-4289 55:36 0470 D-N {(2—3)—4-1 0040 0025 100 3500 2300
9 2 0-667 —1-0907 1877 0973 D-N-D (2—3)—=4-1 0010 0085 750 3250 17,250
100 2 0667 —1-0176 24-34 0901 D-N (2—3)—=1—4 0010 0-005
11 2 0667 —0-7446 37-87 0-713 D-N (2—23)—=4-1 0030 0045 250 2500 7750
12 25 0769 —0-5924 36-18 0655 N-D 451-(2-3) 0020 0001
13 25 0833 —1-1414 61-15 0-368 N-D 4=1-(2-3) 0-010 0020 1450 750 300
4 25 0769 —0.8637 24-29 0-852 N-D 0-020 0080
15 1 0769 —0-8463 31-07 0787 D-N (2—3)—~1-4 0-120 0012 750 1250 7250

t For a folding transition, t% is the time from initiation of folding to the formation of a helical hairpin, given that a successful folding
event will occur. For unfolding, 7% is the time from the 1st appearance of the hairpin until the last remaining native contacts have

dissolved, given that unfolding has occurred from the N state.

{ For a successful folding transition 1}, is the time from the 1st appearance of the hairpin until the 3-helix bundle has formed. For an
unfolding transition. 1y, is the time from the 1st appearance of the 3-member barrel until the 1st appearance of the helical hairpin, i.e. it
is the time for dissolution of 1 of the helices in the 3-member bundle, given that unfolding of the entire molecule will occur.

§ For a successful folding transition 7} is the time from the lst appearance of the 3-helix bundle until the native state is formed. For
an unfolding transition, 1} is the time from the initiation of unfolding until the 3-helix bundle 1st appears, given that 1 of the 4 helices
will completely dissolve, and that unfolding of the entire molecule will occur.

successful. Column ten presents the ratio of the
lifetime of the three-member bundle intermediate
state to the total simulation time, independent of
whether folding is successful. Column 11 presents
the time from the initiation of folding to the first
appearance of a native hairpin, 5, given that a
successful folding event will occur. Column 12 gives
the elapsed time for assembly of a three-helix
bundle (the 2nd intermediate state), from the
formation of the hairpin, t,4.. Column 13 gives the
time of assembly of the native state from three-
member bundle, ty..

Figure 5, presents a plot of the instantancous
value of the mean-square radius of gyration, 82,
versus time for model Onl at 7* = 0:667. corres-
ponding to the transition region extracted from the
11th simulation run). For the first 3 x 10% time
steps, the chain has not collapsed, and its dimen-
sions, characteristic of the denatured state. strongly

fluctuate between the values 30 and 120. After
3 x 10* steps, the radius of gyration diminishes and
rapidly approaches values close to 20, and the
amplitude of the fluctuations become much lower.
This suggests that an ordered structure has formed,
but the dimensions and size of the fluctuations
indicate that it is not yet in the native state. When
t = 38x 10%, the radius of gyration becomes lower
(8% = 17:0), assuming native-like values with small-
scale fluctuations. Figure 6 shows the change in the
number of instantaneous native contact pairs, Ng,
versus time for the same simulation run. The maxi-
mum value of N, in the native configuration, is 21,
for the model under consideration. One can see that
during the first portion of the simulation for times
up to 3x 10%, the number of native contacts fluc-
tuates between 0 and 5. Five native contacts indi-
cate that the formation of a hairpin has occurred.
After 3x10* time units, the number of native
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Table 2
Summary of conformational properties of model 1

Run ¢/10° 7= (En) (8% O Transition Pathway T/t Ty0/t %t 130l 78
A. Model In

1 25  0-556 —0-4075 56-71 0-698 D — 0440 0-100 — —_ —

2 25 0526 —0-5187 5550 0769 D — 0420 0-300 — - -

3 25 0526 —0-8280 3004 0921 D—N (122)=3-4 0140 0140

4 2 0-526 —0-9681 20-66 0923 D-N (3—24)—2—1 0 0704

5 65 0526 —0-7193 52:83 0907 D—=N (12+2)=3—-4 0410 0-225 500 3750 13,000

6 10 0526 - 1-1050 22-90 0979 D-N (1=22)—=3—4 0020 0060 250 18,500 5250

7 56 0-526 —0-6827 46-16 0818 D-N (3~4)—=2-1 0-320 0-220 1000 3750 10,750

8 5 0526 —-0-7071 4509 0816 D-N (3—4)—=2-1 0-280 (r140 3100 13,600 24,000

9 25 0588 —1-0282 20-62 0-983 N — — — — — —
10 1 0-588 -07079 3592 0-768 N-D (1-22)=(3—4) — —_ 1600 1200 2800
i1 10 0528 —1-1535 19-58 0987 N — — — — — —
B. Model 1h

1 5 0-526 —0-4628 6362 0751 D — 0-400 0120 — — —

2 6 0-538 —0-4124 67-96 0-731 D — 0-380 0040 — — —

3 25 0526 —0-8048 42:12 0-893 D—N (2-4)-1-3 0160 0-120 450 400 18,375

4 4 0-526 —0-7503 3973 0-889 D-N (2-4)=1-3 0-120 0-300 750 4500 39,750

5 4 0-588 -1:0101 19:92 0979 N - - — — — —

6 4 0588 —1-0163 19-97 0-986 N — — — — — —

7 25 0641 —0-3742 62-91 0-674 N-D 4=1)=2-3 0-020 0020 250 2250 200

8 3 0-500 -1-:0150 28-29 0-925 D—N (1-2)—=3—4 0160 0-080 500 6000 25,000

9 5 0526 —-06520 44-88 0-841 D—-N (1-+2)—=3-4 0010 0220 800 3800 102,400
10 8 0-556 —0-9602 4896 0818 D—-N (3—24)—22-1 0180 0030 250 5500 2250

For details, see the footnotes to Table 1.

contact pairs increases rapidly to 10 and then fluc-
tuates above this value. This corresponds to the
formation of a three-helix bundle, and fluctuates
about this value. This corresponds to the formation
of a three-helix bundle, and the location of this

structure in time is the same as that of ordered
structure in Figure 5. Hence, for a time-interval of
about 3 x 10* steps, a transition from the denatured
state, D, to the intermediate state, I, has occurred.
The intermediate state is short-lived, and the

Table 3
Summary of conformational properties of model 2

Run ¢10% T* (E[n) (8% <0y Transition Pathway T5ft 7,0/t %t 5ol 7§
A. Model 2n

1 5 0526 —0:3345 76-84 0-349 D — 0-220 0-010 — — —

2 5 0526 —0-3638 7171 0472 D — 0240 0-020 — — —

3 5 0521 — 10362 2529 0977 D-N (2—-3)—1—4 0-000 0-0605 1000 2000 23,000

4 5 052  —08770 2965 0-932 DN (2-3)=1=4 0110 0040

5 10 0526 —0-9150 22:99 0979 D-N — — —

6 10 0526 — 06287 46:16 0818 D-N (2—3)—4—1 035 0210

7 5 0520 —-0-7072 4509 0-816 D-N

8 5 038 —08430 2365 0-842 N - — — - — —

9 5 0588 —-03709 7979 0585 N=D (1=4)=(2-3) — — 1400 2400 4000
10 5 (588 —0-8548 2342 (0-859 N — — — — — -
11 1 0625 —-0-7622 28-95 0-851 N-D l=4=(2-3) 0180 0080 750 22,750 22,750
12 75 0526 —0-5799 48-80 0637 D-N (2—3)—d—1 0134 0231 1000 2500 5500
B. Model 2h

1 5 0521 —05132 57-01 0-663 D-N (2-3)—4—1 0240 0-008 2000 6000 32,000

25 0500 —09822 2489 0963 DN @2-3)=d=1 0020 0008

3001 0625 —03798 2775 08499 N-D [=4=(2-3) 0060 0003 1000 2500 5000

45 052 —03038 8732 0-492 D 0400 0000 - -

5 1 0888 —02581 80-14 0214 N=D (H#-1)=(2-3) - 200 200 2400

6 1 0625 —07786 2358 0897 N : - — .- - —

71 0A88 —06412 4274 0648 N=D d=1=(2-3) 0200 0080

8 1 0625 —07966 2382 0948 N : -

9 8 0521 —05392 5157 0658 DN 2-3)-1=4 0025 0073
10 4 0521 —0854 3309 0-902 D-N 2=3)=4=1 0080 0080

For details, see the footnotes to Table 1.
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Figure 5. Plot of the instantaneous radius of gyration versus time for model Onl at a temperature T* = 0-667.

Figure 6. Plot of the instantaneous number of native contacts versus time for the

T* = 0-667.
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1=292,500

1=92,250
t =90,000

$=92,750 1=93,000 f=95000

ﬁ! 103,250
1=102,000 %
g ‘

Figure 7. Representative folding trajectory for model
Onl (at a temperature (7* = 0-667).

-

second transition to the native state, N, occurs; this
is indicated by the very rapid increase of the
number of native contact pairs up to 21, at a time
= 3-8 x 10*. After this time, the number of contacts
fluctuates, basically between 19 and 21. This
suggests that only the ends of the chain can change
conformation, and the native state is stable for the
conditions under consideration. It is impossible to
find out precisely from Figures 5 and 6 what the
pathway and mechanism of folding are. This ques-
tion can be answered by a detailed analysis of the
folding trajectories.

In Figures 5 and 6, a single D—I— N transition
has been shown and discussed. For temperatures
where N and D are equilibrium, the model chain
undergoes a series of folding and unfolding transi-
tions at any moment in time, the entire chain is
almost always randomly coiled or in the native
state, and the time spent in intermediates is small
compared to that of a native state. This means that

the folding transition has an all-or-none character,

as in real proteins (Tanford, 1968; Privalov, 1979).
The population of the native state in the transition
region increases with decreasing temperature, and
eventually, only the native state is stable at lower
temperatures.

1=262,200 1=262,400 1=262,600

7 =265,000

1 =266,600 1 =359,945 + =359,949 4 =370,000

<, . S
SOE JL AR

Figure 8. A representative folding trajectory for model
Ih (at a temperature 7'* = (-556).

It should be pointed out that the behavior
described above is common to all three topologies
under consideration. There is no qualitative differ-
ence between the behavior of S% and N versus time
for models 0, 1 and 2. Of course, the introduction of !
a long loop(s) makes the folding time relatively |
longer, and intermediate species (hairpins and
3-helix bundles) are more populated. This is because
the formation of a three-helix bundle intermediate
involves a huge reduction of loop(s) entropy
(Jacobson & Stockmayer, 1950; Flory, 1956). The
population of hairpins is larger for models 1 and 2,
because their folding transition occurs at lower
temperatures, where a hairpin is more stable. The ;
presence (or lack) of neutral bends does not make a :
significant difference in the case of models with long | |
loops (In, 1h, 2n and 2h), and the temperatures of -
folding differ only slightly (this effect is discussed by ]
Sikorski & Skolnick, 1989b). There is no essential |
difference between the conformational transition of !
models Onl and On3; for both models, the unique |
native structure (Fig. 1(a)) is obtained. The discus- |
sion of the equilibrium effect of short bends and ;
long loops is presented elsewhere (Sikorski &
Skolnick, 1989b)

It is, of course, possible to monitor the configura- |
tions of the chain during the simulation runs, and | ‘
thus check what the folding pathways are explicitly.
This has to be repeated many times to determine |
whether well-defined folding pathways exist. Due to |
limitations in computer time, we were able to
examine about 20 folding events for each topology.
In the series of pictures presented in Figures 7, 8
and 9, representative folding trajectories for models
0, 1 and 2 are shown. Generally, the number of .
different configurations during a single Monte Carlo
run is very large (of the order of 10° to 10°), but

i

162,000 1=62,100

¢ g

1=264,800

? 1 =65,000

)

$=71,200

Figure 9. A representative folding trajectory for model
2h (at a temperature T'* = 0-528).
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only a few configurations are interesting because !

they are important for the folding pathway; thus we

have selected the relevant folding events. During

the time between the displayed snapshots, the

model chain remains in very similar configurations. |
For example in Figure 9, between times { = 266,600 '

and ¢t = 359,945, the motif formed from a-helical
strands 1, 2 and 3 is preserved, and the remaining
part of the chain hunts through configuration space

without forming any additional, stable, long-lived '

secondary structure(s).

It is immediately apparent from Figures 7, 8 and
9 that all three models, having different native
topologies, undergo folding along very similar path-
ways. There are a number of distinguishable stages
in the process, common to all models under con-
sideration. The first order motif that forms from a
denaturated protein chain is a hairpin or eyelet. We
use the term hairpin to describe two antiparallel
a-helical stretches connected by a short bend, and
the term eyelet to describe a pair of antiparallel

helices joined together by a long structureless loop. -

The latter motif is observed with considerably lower
frequency in the case of models 0 and 1. Hairpins
and eyelets are relatively stable (the hairpin is of
course more stable) but, during longer periods of
time, they can dissolve as well. In the case of model
Onl, the central hairpin (formed from helices 2 and
3) is predominantly formed (see the configurations
between ¢ = 90,000 and ¢ = 92,750 in Fig. 7). Intro-
duction of three neutral bends (as in model 0n3)
leads to the more frequent occurrence of the two
remaining hairpins (1-2 and 3-4). Hence the hairpins
consisting of the pair of helical stretches 1-2, 2-3 or
3-4 can lead to the native state for model 0 (Table 1,
column 8). In the case of models 1 and 2, the
presence of tight, neutral bends has no influence on
hairpin formation (Sikorski & Skolnick, 1989b). In
model 1, hairpins 1-2 or 3-4 lead to native states,
and in model 2, only the 2-3 hairpin lead to the
native state. A helical hairpin in models 1 and 2 is
formed in the same way as described above; see
Figure 8 (t <262,600) and Figure 9 (¢ < 64,900).
For models having long loops, it is possible to get
the native state from an eyelet of the 1-3 or 2-4
type, but the probability of this pathway is
relatively small.

The formation of a-helical hairpin (evelet) can
start from any residue (see below), but the most
frequently observed initiation of folding occurred in
the vicinity of a bend. At the initiation of folding,
one or two hydrophobic contacts are formed. and

then, or sometimes simultaneously, the formation of

one or two helical turns occurs. This resembles the

hydrophobic pocket formation in the carly stages of

folding that was conjectured by Matheson &
Scheraga (1978). The formation of a few hydro-
phobic contacts probably partially compensates for
the loss in configurational entropy (Flory, 1956:
Jacobson & Stockmayer, 1950). Very quickly
following the formation of the first few contacts, the
helical stretches of the remaining hairpin form. At
other times, the process of hairpin assembly can be

l

more asymmetric; that is, almost an entire helical

stretch and only one (usually close to the bend) |
helical turn of the second stretch is formed at first. |
Thus, it appears that the formation of a-helical
hairpins is a co-operative event in which both short ’
and long-range interactions are involved. |

It should be pointed out, however, that there is a |
difference in the stabilization energy of a-helical and |
B-strand hairpins. From Table 5 in Paper I]j
(Skolnick & Kolinski, 1989), we find that the energy
of the 2-3 hairpin is —12-3 kT at the transition |
temperature (7* =1-237). The energy of the first
folded helical hairpin at the transition temperature !
is —17-8 kyT for model 0, —23-1 kuT for model 1 :
and —24-0 kg7 for model 2. The loss of the configur- |
ational entropy associated with hairpin formation :
at a given strand length is virtually the same for:
both a-helical and f-strand cases (see section 3(e)).
In the case of an a-helical hairpin, the much larger
decrease in energy arising from hydrophobic
contacts can override the entropy barrier. Thus, the
formation of a a-helical hairpin starts from a:
contact pair down the stretch as well as from a'
bend. When combined with the hairpin assembly
results of (section 3(b)), these simulations provide :
no evidence for microhelical domain coalescence as
the mechanism of hairpin assembly. Because the
simulations are performed at low temperature, there
is a relatively large amount of a-helical states in
denatured state, but these helices are not involved
in the forming of tertiary structures; that is, the
helices that lead to successful tertiary structure
formation are constructed on-site. There is only one
center of initiation, and both helices are formed -
from this single centre.

Folding from a random coli does not have to lead
directly to an in-register hairpin. It is possible that
out-of-register structures are assembled. There are
distorted hairpins with non-native (hydrophobic)
contacts, helices whose length is greater than that of
a native stretch, which are stabilized by
hydrophobic contacts (especially when there is no
intrinsic bend preference between 2 native helical
stretches) and mirror image hairpins. All these
structures are located in local minima on the free-
energy surface, and a model chain has to spend
some time trapped there. If the system is
considerably quenched, it is possible that the model
chain can be trapped for times at least comparable
to that of the simulation and a native state will not
be obtained.

The next step along the folding pathway is the
formation of a three-member, a-helical bundle that
involves the addition of the third helix to an
existing hairpin. This is the relatively long-lived
folding intermediate (see Tables 1, 2 and 3, columns
11-13). In the case of model 0, this stage of folding
begins with the formation of the native bend at one
of the ends of hairpin, and successively the helical
turns are formed; the next helix zips up. For models
1 and 2, the situation is different because the third
helix to be formed is attached to the hairpin by a
long loop. Because the entropic barrier to be
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surmounted is higher, the life-time of the helical |
hairpin is longer. There is no substantial difference
between the entropy of assembly starting from any ‘
point in the third a-helical stretch; hence, one can |
observe that the process of the formation of the
third helix can start from anywhere in this helix,
with possible subsequent rearrangement to insure .
registration. There are many equally probable !
states involving the loop plus nascent and perhaps
not-in-register helix; this effect is mainly responsible
for the pause following formation of the hairpin
prior to correct third helix assembly. Out-of-register
helices can be eliminated by bubble formation that
produces registration and/or complete dissolution of
the non-native helix.

The final step in assembly corresponds to the
addition of the last helix to the bundle. For model 0,
this step resembles the previous one. The fourth
helix starts to fold beginning from the bend and zips
up (e.g. Fig. 7, t = 93,000). In the case of models 1
and 2, the formation of the last helix must also
surmount a higher entropic barrier; the chain that
forms the fourth helix must snake its way up to a
channel formed by the first propagation and
stabilizes the three-member, helical bundle but, on
the other hand, long, coiled loop(s) located close to -
the bundle restrict the ways of assembling the-
native state due to the loop’s excluded volume.
Hence, the life-time of the intermediate species t},
(3-member bundle) is longer here than for model 0;
nevertheless, this state is still much less populated
compared to the native and denaturated states.
This means that the process of folding retains its all-
or-none character for protein models containing
long loops.

There is no single folding pathway for the models
under consideration. For all topologies, a large
diversity of folding pathways is possible in principle
but, due to the configurational entropic barriers,
some of them virtually do not occur (e.g. assembling
via eyelets). In the beginning, the number of
possible pathways is the largest and decreases the
closer one is to the native state. For example, if we
consider model 0, one of three hairpins can be
formed, then there are two ways of assembling the
third helix, and finally there is only one way to form
the native state from the three-member bundle.

(d) Unfolding pathways of four-helix bundles

In Figure 10, a representative unfolding pathway
is presented for model 2h. One can see that, in
general, it is the reverse of the folding pathway; one
of the end helical stretches (1 or 4) dissolves,
starting from a chain end or from the side of long
loop, as is shown for ¢ = 87,500 and 88.000. The
remaining folded structure, the three-helix bundle,
is relatively stable and forms a long-lived
intermediate. Then the next helix (that connected
by a long loop) starts to dissolve from the end, in a
similar way as the first one, leaving only a single
hairpin, the hairpin lives for relatively less time
than the three-member helical  bundle.  and

000 |
1 283,000 1=87,500 1=88,000 +=88,500 '
oS
£=92,000

1=69,500 #=91,000

\%/\. dgg,ﬁ%og

Figure 10. A representative unfolding trajectory for
model 2h (at a temperature 7* = 0-556).

eventually dissolves. Similar to the folding process,
there is more than one pathway of unfolding. In the
case of unfolding transitions at slightly higher
temperatures, the unfolding process is very fast, and
helices 1 and 4 dissolve virtually simultaneously.
The quantitative character of unfolding is similar
for models 1 and 2, but the stability of the native
state increases with the decreasing of the number of
loops. In model 0, unfolding starts much more
frequently from a free end of the helix, but if this
process occurs at higher temperatures, it is possible

to see the dissolution of a helix starting from a tight -

bend.

(e) Free energy along the reaction co-ordinate

The calculation of the free-energy change along
the folding and unfolding pathways can provide
substantial insight into their nature. Unfortunately,
due to computational difficulties, it is impossible at
present to obtain a reasonable estimate for the free
energy in the transition region directly from the
simulations. Thus, an alternative method for a
crude estimation of the free energy is proposed. It is
based on the Zimm & Bragg (1959) statistical
mechanical theory of the helix—coil transition. To
enable us to calculate the partition function, some
simplifying assumptions are made. First, the
excluded volume is neglected and second, in the
denatured state, all long-range interactions are
neglected. The free energy of the denatured state is
given by:

A D :ASYD

-——==—InZp,
IC“ D

(2)

where Zjp, is the configurational partition function of

denatured state. Further details concerning the
calculation of Zp are given in the Appendix a. In the
case of model 0, we neglect all entropic

contributions to the free energy of the native state.
This is a good approximation, because only the tails -

fluctuate under these conditions. Thus, the free
b
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energy of the native Ay state is given by:
ANJkgT = EylkgT, (3)

where Ey is the configurational energy of the native
state.

The estimation of free energies of the native
states for models 1 and 2 is more complicated.

Loops in the native structure are not completely
immobile near the transition temperature, and thus |
their entropic contribution to the free energy must |
be considered. In the Appendix a, we give a

prescription  for estimating their entropic
contribution to Ay. For these cases, the free energy
of the native states is calculated according to:

AN/ICBT = EN/,CBTY"'II] ZN’ (4)

where Zy is the configurational partition function of
the loop in the native state.

The first question that must be addressed is the :
ability of this analytic theory to correctly reproduce |
the transition curves, e.g. {8?) as a function of 7'*.

The approximate transition temperature midpoint

T%;2, can be estimated by equating An(T*) and

Ap(T*) and is found to be 0-667, 0-541 and 0-500 for
models Oln, 1h and 2h, respectively. The transition
temperature is in very good agreement with that of
the simulation (Table 1) for model 0.

is slightly lower because of the underestimate of the
entropy of the native states (compare with Tables 2
and 3). The mean-square radius of gyration in the
transition region is calculated and analytically
according to:

(82> = (SWn+ (1= fru)<SBD, (5)

where (S%) and {S3) are the mean-square radius of
gyration of the native and denatured state, and the
probability of being in the native state fy is given
by:

fy= X (—(An—Ap)/kgT') ‘

N7 T+exp (= (An—Ap)/ksT) (6)
The values of {(SZ) are taken from the simulations
results and are 170, 19-3 and 224 for models 0, 1
and 2, while {(S3) are 655, 70-0 and 850 for models
Oln, 1h and 2h, respectively. In Figure 3, in the
curves denoted by the broken lines (§2), calculated
via equations (8) and (9) of Paper I, is plotted versus
temperature. One can see excellent agreement

between theory and simulation of model 0, and

slightly (and negligibly) shifted curves for models 1
and 2, because of the reasons outlined above.

On the basis of the good agreement between the
simulations and analytic theory for the equilibrium
aspects of the conformational transition. it seems
reasonable to construct the free energy along the
reaction co-ordinate relative to the denatured state.
The free energy of a partially folded chain
containing N¢ contact pairs is:

AN T = BNy T =0 Z(N ). (7

where £(N¢) is the energy of the assembled part of

In the
remaining cases, the calculated transition mid-point

15 T
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Figure 11. The plot of the relative free energy !
(Anc— Ap)/kgT versus the number of native contact pairs, |
N¢, for model Onl. 7* = 0-833 (open circles), 0667 (filled :
circles) and 0-588 (open triangles). ‘

the chain with N¢ contact pairs and includes both
secondary and tertiary interactions. Z(N¢) is the
configurational partition function of the random
coil parts of the chain attached to the assembled
part of the chain having N contact pairs (see the
Appendix a for details). The most frequently
observed pathway of folding is chosen to calculate
the changes in free energy according to equation (7).
Hence, it is assumed for model Onl that the hairpin
consisting of helices 2 and 3 forms first with folding
initiating at the bend, and then the helical turns
appear according to the zipper model.. In model 1h,
the chosen pathway involves the formation of the
hairpin from helices 1 and 2, followed by the start of
assembly of helix 3 (with the loop attached to the
hydrophilic residues of the 1-2 hairpin) and, finally,
the assembly of helix 4 follows. In model 2h, the
hairpin composed of helices 2 and 3, forms first.
Subsequently, helix 1 assembles with loop 1
interacting with the exterior of hairpin 1-2 and,
finally, helix 4 is formed with loop 2 interacting
with the exterior of the three-member (1-2-3 helices)
bundle. The number of native contact pairs can be
treated as the reaction (folding) co-ordinate, but one
has to remember that this is a simplified folding
model! that takes into account only the steps that
strictly and directly lead to the native state. All
incorrectly folded species a priori are omitted. In
Figure 11, the free energy of a model Onl chain -
having N¢ native contact pairs relative to the free
energy of a denatured chain (Ay.—Ap)/kgT is
plotted versus the number of native contact pairs N¢
at three temperatures, 7* = (833 (where the
denatured state is preferred), at 7* = 0-667 (in the
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transition region) and at 7'* =(-588 (where the !

native state is preferred).

One can see from Figure 11 that at the very |

beginning of folding (up to N¢ = 2) there is a steep
barrier, the height of which does not change very
much with temperature. This is because the process
of forming a neutral bend plus one or two
hydrophobic contacts is dominated by the reduction

in entropy, and the dependence of entropy on |

temperature is weak. The next steps (up to N¢ = 4)
correspond to the completion of folding of the entire

2-3 hairpin. The free energy of the chain increases .

during this stage, but this increase is less than up to
Nc=2 because of the additional hydrophobic
contacts. The height of the barrier at N. = 2 takes
the value of 876 at T* = 0-833, 6-80 at 7™ = 0-667
and 542 at T*=0588. Finally, for Nc =5, the
energy decrease overrides the loss of entropy and a
local minimum in the free energy appears. The free
energy at this point decreases with increasing

temperature and assumes the values 846 at -

T*=0833, 576 at T*=0667 and 384 at
T* = 0588. The presence of this minimum is the
reason why relatively stable hairpins are present
even at temperatures higher than the folding
transition; moreover, this is the most stable
intermediate state in the vicinity of the transition.
This differs from the folding of the Greek key,
p-motif, where a single B-hairpin is not stable
(Skolnick & Kolinski, 1989). The following steps (up
to Nc = 7) are very similar to the first (N¢ > 2) and
correspond to the formation of the bend between
helices 2 and 1 and the initiation of helix 1, a
process that is entropically controlled. The next
step (up to Nc =10, where helix 1 is completed)
leads to a local minimum of the free energy that
corresponds to a three-helix bundle. The difference
of free energy between this state and the denatured
state changes strongly with the temperature and is
12-75 at T* = 0-833, 7-76 at T* = 0-667 and 4-20 at
T* = 0-588. Between the three-helix bundle and the
native state there is a small barrier of entropic
origin, but the assembly of this last helix (up to
Nc = 21) produces twice as many native contacts
per step as for the previous ones. The entropic
barrier between N¢ = 10 and N¢ = 13 is very small,
and equals 1-81 at 7* = 0833, 1-01 at 7* = 0-667
and 044 at 7*=0-588. The transition state at
N¢ =13 consists of the three-member bundle plus
the native bend and three-quarters of the first
a-helical turn in the fourth helix. Hence, this state is
close to the native state in both configuration and
entropy, and its energy differs from that of the
native state by g,+8¢. The remaining steps are
characterized by a large decrease in energy. The
native state is always in at least a local free-energy
minimum and, at lower temperatures, this is the
global minimum as well. The barrier height with
respect to the intermediate is much less dependent
on the temperature than with respect to the native
state. This implies that the rate of unfolding
decreases more rapidly with the change in
conditions than that of refolding, in agreement with
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Figure 12. A plot of the relative free energy
(Ane— Ap)/ksT versus the number of native contact pairs,
N¢, for model 1h. T* = 0-588 (open circles), 0-541 (filled
circles) and 0-500 (open triangles).

experimental results (Brems et al., 1982; Tsong &
Baldwin, 1978).

In Figure 12, the relative free energy
(Ane— Ap)/kgT versus the number of native compact
pairs, N¢, is plotted for a representative folding
pathway for model l1h. The temperatures 0-588,
0-541 and 0-500 are chosen to be representative of
the denatured state, the transition region and the
native state, respectively. The change of the free
energy due to the assembly of the first hairpin is
virtually the same as in model 0. But it should be
pointed out that the transition temperature is much
lower for this model, and thus both intermediate
states (hairpins and 3-member bundles) are more
stable. The difference of free energy between the
denatured state and a hairpin is 3-85 at 7* = 0-588,
2:59 at T'* = 0-541 and 1-37 at T* = 0-500. The main
difference between models 0 and 1 lies in the huge
free-energy barrier between the first hairpin and the
beginning of the third helix (between N¢ = 5 and 6).
This is a predominantly entropic barrier, which is
caused by freezing of this loop from a random coil
with one end pinned to only a few, very similar,
configurations. The dominance of the entropic
contribution produces a barrier that is almost
independent  of temperature; the free-energy
difference between these two states is 11-18 at
T*=0588, 1059 at T*=0541 and 988 at
T* = (0-500. The assembly of the entire third helix
{Nc = 10) leads to a local free-energy minimum,
which is deeper than that for model 0, because of
the lower transition temperature. The relative free
encrgy of a three-member bundle is very high; 13-55
at 7T*= 0588, 1091 at 7*= 0541 and 831 at'
T* = 0-500. The assembly of the last helix is very
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Figure 13. A plot of the relative free energy’

(Ane— Ap)/kpT versus the number of native contact pairs,
Ng, for model 2h. 7* = 0-556 (open circles), 0-500 (filled
circles) and 0-455 (open triangles).

similar to that in model 0. There is a relatively small
entropic barrier between the three-member bundle
and the native state, located at Nc = 11. The height
of this barrier is 239 at 7'* = 0-588, 225 at
T*= 0541 and 2:12 at T* = 0-500. The transition
state at Nc =11, corresponding to this barrier,
consists of a three-helix bundle plus the native bend
and three-quarters of the first a-helical turn in the
fourth helix. The energy difference between the
native state and the transition state is ¢, + 8¢..

It should be pointed out that a single hairpin (1-2
or 3-4) is a very stable intermediate state and has a
free energy comparable with that of denatured state
(for T* = T7),), thus it is a rather well-populated
state. This is confirmed by the direct simulation
results in Table 2. The three-member bundle
intermediate has a higher energy and is much less
populated over the entire simulation run.

In Figure 13, for model 2h, the relative free
energy (An.— Ap)/kgT is plotted versus the number
of native contacts N at temperatures 0-556
(denatured), 0-500 (transition) and 0-455 (native).
The changes of free energy during the assembly of
the first (2-3) hairpin are very close to those in the
previous case. The free energy of this hairpin is low;
340 at T* = 0-536, 1'79 at 7* = 0-500 and 024 at
T* = 0-455. Thus, at lower temperatures the hairpin
should be populated equally with the denatured
state, which is in good agreement with direct
simulation results (Table 3). The next intermediate
state, the three-member bundle, has a higher free
energy (10-76 at 7'* = 0-556, 6-96 at T'* = 0-500 and
2:34 at T*= 0-455). Between the first hairpin and
the three helix bundle, the configuration of the long
loop L, is almost frozen, and consequently there is a

huge entropic barrier as in the previous case. The
height of this barrier is 10-83 at 7"* = 0-556, 9-56 at
T*=0500 and 828 at 7T*=0-455. The second
entropic barrier between Ng=10 and N¢ =12,
caused by freezing of the second loop, has a height
of 8:24 at T'* = (-556, 7-57 at 7"* = 0-500 and 6-68 at
T*=0455. Both thesec barriers are weakly
dependent on temperature because of their entropic
nature. But contrary to models 0 and 1, the three-
member helical bundle is located in a relatively deep |
local minimum surrounded by barriers on the left |
and right. This means that this state becomes more |
populated over the entire Monte Carlo run, and |
when a successful folding event takes place, the |
model chain is in this state for longer periods of time !
than in the hairpin conformation. The transition
state corresponding to the barrier at N.=12.
consists of a three-member bundle with the second

loop frozen on the external surface of the bundle ,
plus half of the first a-helical turn of the fourth

helix. The energy difference between the native !
state and the transition state is 9¢,+11e,. |

4. Summary and Conclusion

Here, we have examined the folding and
unfolding pathways of a-helical hairpins and all-
variants of left-handed, four-helix bundles. The |
folding of an a-helical hairpin is designed to explore
whether the diffusion-collision-adhesion model,
wherein isolated a-helices form first and then diffuse
together to produce the hairpin (Karplus & Weaver, -
1976, 1979; Lee et al., 1987) is correct. While this
mechanism is a competitive possibility, in fact, .
folding was seen to initiate at or near a native turn,
accompanied by the formation of a hydrophobic
cluster, followed by growth of both helices on-site.
In general, whether or not the on-site construction
mechanism dominates over a diffusion-collision-
adhesion mechanism depends on-the relative ratio of
the mean life-time of isolated a-helices compared to
the mean time of their coalescence. If the isolated
helices live sufficiently long relative to the time for
successful coalescence, then the diffusion-collision-
adhesion mechanism of assembly dominates the
folding process. However, for cases where the
isolated a-helices are marginally stable (for example,
here, where the model in the denatured state has a
mean helix content of 20 to 309,), it is faster and
more probable to dissolve them and construct the
hairpin on-site. Thus, the latter mechanism domi-
nates for the physically reasonable range of helix
stabilities.

Turning to the folding pathway of all variants of
four helix bundles, two folding intermediate states
are found. The first is an a-helical hairpin, and the
second is identified to consist of three of the four
native helices assembled. Assembly initiates from
the formation of an a-helical hairpin to which the
next helical stretch attaches. The hairpin state is
separated from the denatured state by a predomin-
antly energetic barrier and is separated from the
second intermediate by an entropic barrier. The
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first barrier is virtually the same for all models

under consideration, and the second barrier is much '

higher for models with a long loop(s). The three-

helix bundle is separated from the native state by a .

free-energy barrier of mainly entropic origin. This
barrier is relatively small in the case of models with

only tight bends and with one long loop. The free -

energy of the denatured state and that of the
a-helical hairpin are comparable in the transition

region and, thus, the conformation of the model !

" chain oscillates between the randomly coiled state

and a hairpin with coiled tail(s). The only exception -
to this is the model with tight bends; here, the

a-helical hairpin is not so stable because the transi-
tion occurs at a higher temperature. After the
assembly of an intermediate state, the remaining
random coil tail(s) thrashes about searching for the
relatively narrow pass in configuration space to the
native state. The excluded volume effect exerted by
already assembled tertiary structure aids in
assembly in the early stages and (especially in the
case of models containing long loops where the helix
may have to “snake’ under the loop in order for the
native state to form) hinders assembly in the later
stages.

The dominant mechanism of assembly for the
four-helix bundle with tight bends, consisting of
sequential assembly of a pair of adjacent hairpins,
followed by attachment of the adjacent third and

then fourth helices, differs from the folding path-

ways of cytochrome ¢ deduced from hydrogen-
exchange labeling and proton nuclear magnetic
resonance spectroscopy by Roder et al. (1988),
where the N and C-terminal helices assemble first.
While we have seen such events, they are very rare;
the reduction in configurational entropy required to
form the N and C-terminal helical eyelet with a long
intervening random coil loop between them is very
large. Perhaps these folding initiation events could
be made more frequent by increasing the stability of
the N and C-terminal helices (all the helices in these
simulations are equally stable.) More likely, this
reflects the influence of the heme group on the
folding pathway, an effect that is entirely absent in
our model. In forthcoming simulations, we shall
attempt to identify conditions in the model that
reproduce this folding pathway. To clarify the
experimental situation, hydrogen-exchange studies
should be done on the synthetic, four-helix bundles
of uniform stability synthesized by Regan &
DeGrado (1988).

While a general trend of folding has been
observed, there are (especially in the early stages) a
multiplicity of pathways that lead to the early

intermediates. As the folding progresses further,
while the number of options becomes more limited
in a general sense, there remains many spatial i
trajectories consistent with the overall pathway of |
assembly. For example, after the three-helix bundle |
intermediate has formed, the random coil tail |
depending on chance, may be on the correct side of |
the protein to fold, or on the wrong side; in which :
case, it must work its way around to the correct side |
before assembly can occur. All the above events can |
be described as thrashing about of the tail before
final assembly, but the details differ from one'
folding event to the other. ‘

We have also performed, using an approximate
analytic theory, an analysis of the free energy along
the dominant folding pathways. The transition
state is identified for all cases as an almost fully
assembled, but not distorted native conformation;
this is to be contrasted with the “Cardboard Box”
model proposed by Goldenberg and Creighton
(1985), which conjectures that the transition state is
a distorted native conformation. The free-energy
barrier relative with respect to the intermediate is
primarily entropic in origin, with the transition
state being very close in entropy to the native state;
the free-energy difference between the transition
state and the native state is predominantly ener--
getic. In this, the mechanism of assembly agrees
with the Cardboard Box model, which also conjec-
tures that the native state is kinetically trapped.
Qualitatively, the simulations agree with experi-
ment in both the relative temperature dependence
of folding and unfolding (Brems et al., 1982; Tsong
& Baldwin, 1978) with the latter being more sensi-
tive to conditions, and the fact that the transition
state lies close to the native state.

In conclusion, while this is a highly simplified
model of a-helical proteins, nevertheless it exhibits a
remarkable number of features of the equilibrium
and dynamic aspects of the globular protein folding/
unfolding conformational transition. Since the on-
site construction mechanism obtains for both
o-helical and f-protein models, we believe it to be
quite general, and this qualitative description of
folding should be applicable to real proteins. Never-
theless, further refinement of this class of models is
required to make them more realistic and less
idealized; such generalization are in progress.

APPENDIX
Calculation of the Configurational Partition Function of a
Modified Zimm-Bragg Model

In our simple analytical model, we consider a
chain consisting of » residues having » — 3 rotational
degrees of freedom. A rotational state specifies
whether a given residue is in a helical (h) or coiled

(c) state. A helical state corresponds Lo a ¢~ state
and a coiled state to g* or ¢ states. The kth
conformational state is formed by the (k)th,
(k+ 1)th, (k+2)th and (£+3)th residues, and hence

7 5
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conformational states are defined for residues 1,

.., (n=3). The coupling of the conformational
states occurs due to the helical wheel-type
interactions and involves five consecutive residues:
residue 7 can interact with residue i 4+4, and thus the
number of these coupled states is n—4. In our
notation, the jth helical wheel interaction involves
residues from j to j+4. A given conformational
state can participate in different helical wheel
interactions; the 19th helical wheel interaction
(between residues 19 and 23) involves the 19th and
20th rotational states, and the adjacent helical
wheel interaction number 20 (between residues 20
and 24) involves the 20th and 21st rotational states.
In order to make the analytical model tractable, we
assume that a denatured chain has no excluded
volume and that tertiary interactions are absent.
This means that the many-body problem is reduced
to a nearest neighbor, one-dimensional Ising model
(Poland & Scheraga, 1970), and hence it is easily
soluble. This simplification enables us to calculate

the thermodynamic functions of a purely denatured -

state taking into account only the entropic and local
energetic contributions. TFor partially folded
structures, this implies that the entropic and
tertiary energetic contributions can be calculated
separately.

In order to calculate the configurational partition
function of the denatured state, we have to
construct statistical weights matrices for adjacent

states interacting with a helical wheel potential &;:

BT« o he  hh
ce 4 2 2 w
ch 4 2 2w w?

Ti= . 4 5 2 w (AD
hh 4 2 2w W

where w = exp (—é&c/kgT), and ¢ runs from 0 to
(n—2)/2. It is assumed that the statistical weights
of coiled states are equal to 1. The first column,
being devoid of helical wheel interactions should
contain only fours; similarly, the second and the
third column should contain only twos. The
appearance of any new helical wheel interaction
introduces an additional factor w. Four the first and
the last states in a chain, special matrices are
constructed. A dummy coiled state should be added
before the first and after the last state. If the
number of rotation states is odd, then the matrix
associated with rotational state n—3 is:

ce ch he hh
ce 2 0 1 0
T..2 c¢h 2 0 w 0
= A2
5= he 2 0 1 o (A2)
hh 2 0 w 0

In the case of a neutral bend/loop region, matrix
(A1) is slightly modified by setting w =1 for the
appropriate  states.  According to  the classical

treatment by Flory (1969), the configurational |
partition function of a denatured chain is given by: |

|

(mn) !
Zp=(1,0,0,0) [] T:(1,1,1,1)T :
i=0 (A3) !
where n,=(n—3)/2 if n is even, and n,= f
(n—4)/2+1 if n is odd. i
All the above considerations deal with a model [
chain without tertiary interactions, and hence can |
be applied to the high-temperature denatured chain,
where the number of nearest-neighbor contacts is
very small and can be neglected. In the case of a
partially folded chain, we assume that it is possible
to consider the contributions to the free energy of
the tertiary interactions and the short-range
interactions separately. The total free energy of the ,
folded chain, calculated from equation (10) of Paper
I, is divided into two parts. The energetic
contribution, Ey_, includes tertiary and secondary .
interactions of a partially assembled chain having !
N contact pairs. Z(Ng) is the configurational
partition function of the remainder of the chain that
is devoid of native contacts. We assume that the
statistical weight matrices of these unfolded parts of |
the chain remain unaltered on comparison with the .
denatured state and are thus given by equation (Al)
or (A2), where appropriate. The folded part of a
chain has different matrices. For example, the
allowed conformations of the pair of residues at the
start of the native helical stretch are of the form:

ce ch he hh

ce 0 2 0 w
ch 0 2 0 0

T.= he 0 2 0 w (Ad)
hh 0 2 0 0

that is, we assume that the residue immediately
preceding the native conformation is randomly
coiled. Furthermore, the matrices corresponding to
rotational states inside a folded helix have the
following form:

ce ch he hh
cc 0 0 0
ch 0 0 0 0
he 0 0 0 o (89)
hh 0 0 0 1

because only hhhh sequences exist in a helix (with
statistical weight 1). Finally, the matrix associated
with interfacial residues to the right of the
assembled tertiary structure is of the form:

ce ch he hh
e Q0 ] ) ()
_— ch 0 0 0 0 .
=" e 4 2 2 w (A6
hh 4 2 0 0
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For models 1 and 2, the long loop(s) can be in a Model 1 |
purely random state (see above) or can be in the |
“native” state connecting native helices. In the . Residue no. ;
latter case, it is assumed that the loop has limited 21 g* i
mobility and that the number of energetic contacts 29 gt—""_ Ty |
with the hydrophilic exterior of the already 23 ¢ ¢ !
assembled structure is constant. This number is 94 g* g"/ Ty
taken from the simulation. There are five contacts 25 gt g gt
in model 1 between loop L; and hairpin 1-2. In 2 ¢ g gt
model 2, there are eight contacts between loop I, 27 g g gt !
and hairpin 2-3, and there are five contacts between 28 g~ g t
loop L, and the three-member bundle 1-2-3. Loops L, 29 g* g* T
can locally change their conformation between 30 t t T
contacts and can also change conformation by 31 g* g* g*
shifting contacts over short distances (2 to 3 32 ¢ t ¢
segments). This behavior is actually observed in the 33 ¢ ¢ ¢
simulations at lower temperatures. Hence, the 34 g"/ gt g"/ ~ g* g‘/ g*
entropic contribution to the free energy is non-zero 35 ¢ ¢ ¢ ¢ .t
even in the native state where loops are present,. 36 g g* g g* g~ gt
Here, we explicitly list the rotational states of the 37 ¢ g* g g* g gt
loops that are allowed in the native states and that 38 ¢ gt ¢ g* g g*
are used in statistical weight matrices by assigning 1
to the state indicated below and zero for all other
conformations of the residue.
Model 2
Residue no.
10 g
12 g* g-
13 g* 9-
14 ¢ ¢
15 g+ g"‘/ \‘ g+
16 g* g* g~
17 ¢ t g
18 9 g~ g*
19 g+ g+ g+
Ly 20 g* g* g*
21 t g* ¢ g* t gt
22 g9 g- gy g- g- g-
23 g~ g g- g~ g~ g-
24 9 g” 9 9- g- g-
25 g ¢ g ¢ g ¢
26 gt ¢ g* t g* t g t gt ¢ g*
27 ¢* 9” g* 9~ g* g g* g g* g9 g* 9
28 ¢~ t g t g t g t g t g t
29 g¢° g- 9" g g- 9 g g g g- g g-
30 ¢ g t g- g- g~ g~ g g g g- g-
Sl g
52 g°
53 gt TTT———y"
54 ! t
55 g g T
56 g' g g
57 gt ! g
58 g g g
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Model 2

Residue no.

L, 59
60
61
62
63
64
65
66
67

|
|

1
|

+
+

. WD T T ey ™~
QN TR ™ G~
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