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In the context of dynamic Monte Carlo and Brownian dynamics, trajectories of the folding pathways of a-helical hairpin pro- 
teins have been computed by two very diffint models and simulation schemes. The dynamic process is monitored by following 
the number of native contacts and, in the case of Brownian dynamics, also the torsional angles found along the computed trajec- 
tories. An examination of the resulting pathways suggests that the on-site mechanism of assembly previously found in Monte 
Carlo diamond lattice simulations holds in general for the initial stages of protein folding, and validates their independence with 
respect to the lattice geometry and the local movements employed in Monte Carlo calculations. Thus, the essential physical char- 
acter of the computationally very efficient dynamic Monte Carlo simulations is confirmed. 

1. Introduction 

The application of computer simulation tech- 
niques to the elucidation o he properties of proteins 

Y4 has become rather widespre Different methods 
corresponding to distinct points of view of the fold- 
ing problem have been employed. It is clear that an 
exhaustive sampling of the configurational space is 
not possible due to the huge number of degrees of 
freedom involved in the process, and thus two main 
classes of algorithms have been considered. 

In molecular dynamics (MD) calculations [ 11, a 
full atom description of the protein and the solvent is 
depicted (with the exclusion perhaps of hydrogen at- 
oms ) . The movements of these atoms are computed 
by integration of the corresponding classical New- 
tonian equations. This requires the description of a 
very detailed many-body interaction potential and 
allows one to obtain the individual particle motions 
as a function of time. However, the enormous com- 
plexity of the system modelled in this way and the 
limitations in memory and CPU time in contempo- 
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rary computers seriously limit the scope of this ap 
preach. Thus, MD has been mainly applied to the 
study of small peptides [ 2 ] and very local move- 
ments in complex systems [ 3 1, that occur on a time 
scale considerably shorter than that corresponding to 
the folding process. 

On the other hand, dynamic Monte Carlo (DMC) 
simulations have usually taken as their starting point 
considerably simpler models [4]. In addition, the 
configurational space is often drastically reduced by 
considering an underlying lattice whose nodes are the 
only coordinates in space where the units of the model 
can be found. In this case, a discrete potential is de- 
lined, and a set of individual and possibly artificial 
movements tries to mimic the main features of the 
dynamics. Of course, there is not an explicit time step 
in these algorithms, but if the choice. of the move- 
ments is carefully implemented, one can assume a di- 
rect relationship between the number of Monte Carlo 
steps (every one of them usually corresponds to a 
weighted collection of individual movements) and 
the real time, so that the set of successively computed 
conformations can be assumed equivalent to a dy- 
namic trajectory. 

In previous work, we have employed DMC simu- 
lations in a diamond lattice model to investigate the 
folding features of different idealized simple proteins 
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[ $61. Both in the case of a-helical and &sheet type 
structures, an on-site folding mechanism is observed, 
in which an all-or-none transition takes place. Fold- 
ing initiates at a central turn, and from that point the 
different elements of regular secondary structure are 
assembled one after the other, in a number of simu- 
lation steps that is quite reduced in comparison with 
the total length of the trajectory. The tertiary inter- 
actions included in the model stabilize the resulting 
conformation, and when combined with local sec- 
ondary structure preferences, yield the native folded 
state. 

This technique has proved to be substantially more 
efficient than MD calculations in the exploration of 
long processes involving wide explorations across the 
configurational space [ 41. However, at first glance, 
it may be questionable whether or not the resulting 
pathways are physical. First, since the early models 
were constrained to the geometry of a diamond lat- 
tice, one could question if this restricts the possible 
folding pathways by artificially suppressing a num- 
ber of channels that could be followed in a confor- 
mational space different to that allowed by the dia- 
mond lattice. In order to check this point, while still 
retaining the efficiency of DMC calculations, we have 
performed these simulations for a completely differ- 
ent lattice model, in which both the geometry and co- 
ordination of the lattice are changed, and even the 
representation of the protein is modified with respect 
to our previous calculations. The first sections of this 
paper are devoted to the discussion of the model em- 
ployed and the results obtained for the folding path- 
ways of a-helical hairpins. 

In addition, a second point still remains, and that 
is whether pathways based on any dynamic MC al- 
gorithm arc physical. As indicated above, no real time 
is involved in these simulations, and hence the dy- 
namics might correspond to the choice of a set of per- 
haps partially unphysical movements. While there are 
reasons to believe this is not the case, an explicit 
demonstration that this is so would greatly enhance 
our confidence in the folding pathways produced in 
DMC simulations. 

Therefore, in order to try to check the general va- 
lidity of those results, in the second part of this paper 
we employ an alternative methodology, namely 
Brownian dynamics (BD). In this approach, the sol- 
vent is only considered through the dragging effects 

it causes in the movement of the solute molecules and 
through the random displacements that it creates in 
the particles whose sizes are large in comparison with 
the solvent molecules but are still small enough to be 
affected by the thermal movement of the solvent [ 7 1. 
A fundamental real equation of motion for the units 
of the model is formulated, whose solution provides 
a dynamic trajectory in which no artifacts are in- 
cluded (other than the definition of the model 
considered). 

BD simulations are not new in the study of the 
folding problem, but they have been mainly applied 
to very detailed models of small proteins [ 1,8] (al- 
most comparable in complexity with those employed 
in MD, although without including the solvent mol- 
ecules). In order to keep the study of the whole fold- 
ing mechanism computationally tractable, these pre- 
vious studies have introduced a series of 
simplifications. Namely, certain portions of second- 
ary structure or microdomains are kept frozen in the 
conformation corresponding to the final native struc- 
ture. This way, the observed folding pathway a priori 
corresponds to a diffusion-collision mechanism, 
where prebuilt elements of secondary structure dif- 
fuse one against the other to yield the folded struc- 
ture [8]. This result is not coincident with the con- 
clusions obtained in DMC simulations in which, as 
previously mentioned, an on-site construction of both 
secondary and tertiary structure is observed [ 41. We 
shall show in the last sections of this work that BD 
simulations, even though restricted to a very simple 
model, corroborate quite well the DMC simulations. 

There is also one other study [ 91 which uses a sort 
of BD (a modified stochastic molecular dynamics al- 
gorithm) to fold the off-lattice version of our four 
member &barrel [ 61, and while the folding pathway 
results are sketchy, they too confirm the basic valid- 
ity of the lattice DMC picture of protein folding. 

2. MC simulations 

2.1. General description of the model 

In order to further enhance the computational ad- 
vantages of the MC methods, the entire configura- 
tional space is embedded onto an underlying cubic 
lattice. The 2 10 lattice protein model used here [ lo] 
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employs an a-carbon and Pcarbon representation of 
each residue, where each a-carbon occupies a central 
site along with the six nearest neighbor sites on the 
cubic lattice. For glycines, this constitutes the entire 
representation of the residue. For non-glycine type 
residues, each side chain is described by a -bon 
representation, where the side chain is composed of 
four lattice sites, three of which are fee vectors (vec- 
tors of the type [ f 1, f 1, 0] ) from the central a-car- 
bon vertex, and the fourth site is a diamond lattice 
vector (avectorofthetype [fl, +l, kl]) which 
serves as the center of the hydrophobic-hydrophilic 
interaction. Both hard and soft core repulsive inter- 
actions are included between u-carbons. In no case 
can a lattice site be multiply occupied. 

The local conformation of the ith residue is de- 
scribed by the specification of the square of the dis- 
tance between the centers of a-carbons i- 1 and i + 1, 
rf, with allowed values of rg=6, 8, 10, 12, 14, 16, 
and 18. The energetic preferences of these states are 
specified by tg( ra). To fully specify the conformation 
of these chains, the dihedral angles associated with 
consecutive bonds connecting a-carbon centers must 
also be given. The energy associated with the dihe 
dral angle preference is specified by e,+, and accounts 
for medium range interactions in the context of the 
model. 

The model also contains a cooperative type inter- 
action that has been included to mimic the effects of 
dipolar interactions and hydrogen bonding. The 
strength of this interaction is specified by a parame 
ter E, and it allows for secondary structure stabiliza- 
tion. The exact details of this interaction have been 
described elsewhere [ lo]. Here, we shall only men- 
tion that t, type interactions can couple conforma- 
tions down the chain, as well as residues spatially close 
but far down the chain contour. 

Finally, there are interactions between pairs of si- 
dechains. Sidechains are labelled as hydrophobic and 
hydrophilic. Pairs of hydrophobic residues interact 
with an attractive potential of mean force [ 111 whose 
magnitude is e:phob-phob, typical values of which are 
0.75. Pairs of hydrophilic residues interact with a 
weak repulsive potential of mean force, e,hir_pha, typ 
ical values of which are 0.25. Most importantly, hy- 
drophobic-hydrophilic pairs interact with a repul- 
sive potential of mean force e&ii+&, whose 
magnitude is typically 1.0. For further details con- 

ceming the construction of the sidechain-sidechain 
interaction matrix, we refer the reader to reference 

[lOI. 
As in diamond lattice simulations, all the energetic 

parameters are scaled by a reduced temperature fac- 
tor, T *. For a renaturation run (that beginning in an 
unfolded state), the system is started off at a large 
T*, allowed to equilibrate, and then T* is dimin- 
ished. This sequence is repeated until the system 
passes through the transition region and a folded 
conformation is obtained. 

The primary sequence is specified by the conven- 
tion that Ai( k) denotes the ith stretch in the primary 
sequence containing k residues that are arranged in 
an amphipathic aminoacid pattern and which locally 
prefers helical conformations. For the approximate 
realization of the a-helix described here, a helix con- 
sists of a consecutive sequence of ‘rf = 12 states ar- 
ranged with right-handed chirality. This produces a 
helix with a four residue repeat, consistent with which 
every first and fourth residue are hydrophobic and 
the remainder are hydrophilic. For this class of se- 
quences, E~( 12) =O and all the other E&r:) = 
0.25/T*. It should be pointed out that the above 
preferences are small in that the native conformation 
is in no way enforced, and give rise to denatured state 
populations with helical contents of the order of sev- 
eral percent. 

Putative turn regions are denoted by b,(j), and 
consist of j residues located at the interface between 
the putative ith and (i+ 1)th a-helical stretches. 
Typical turn propensities translate into native-like 
turn populations of about 1% in the denatured state. 
Thus, as indicated above, the native conformation has 
to be found by the dynamic Monte Carlo algorithm, 
which lacks a target potential associated with tertiary 
interactions. 

2.2. Dynamic Monte Carlo algorithm 

The model chain is subjected to a random se- 
quence of elemental motions previously described 
[ 121, whose acceptance is determined by the stan- 
dard asymmetric Metropolis scheme [ 131. The al- 
gorithm is capable of rotating and translating assem- 
bled pieces of secondary structure; thus, the relative 
contribution of prefabricated versus on-site con- 
struction mechanisms to the assembly process can be 
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examined. This algorithm rather efficiently samples 
configuration space, and for the random coil state 
produces the correct global and local dynamics in the 
absence of hydrodynamic interactions [ 121. There- 
fore, it is hoped that the observed folding pathways 
are physically meaningful and independent of the de- 
tails of the model and choice of local moves One such 
check, as stated in section 1, is to compare them with 
the diamond lattice results [ 51. As it turns out, the 
pathways are qualitatively identical, therefore 
strongly arguing that the results are universal. Oth- 
erwise stated, they are independent of lattice, the re- 
alization of the model and the choice of local elemen- 
tal moves. In the second part of this paper we shall be 
able to check that, in addition, they are also indepen- 
dent of the simulation theoretical scheme. 

We now examine the nature of the conformational 
transition from the denatured state to a model u-hel- 
ical hairpin containing 38 residues, depicted in fig. 1, 

1 

Fig. 1. Fully folded conformations of the a-helical hairpin used 
in DMC simulations shown in top, 1, and side, 2, views that in- 
chute both a-carbons and the interacting side chain sites. A top 
view displaying the a-carbon backbone is shown in 3. 

The desired native conformation is shown in top, 1, 
and side, 2, views that include both the a-carbons and 
the interacting side chain site. A top view displaying 
the a-carbon backbone alone is shown in 3. The top 
view, 1, in particular, shows the hydrophobic core, 
and the side view, 2, shows how these hydrophobic 
residues interdigitate to produce a close packed inter- 
face between the two helices. Observe that, as in real 
helices, the sidechains point towards the N-terminus. 
The first (second) helix contains 16 ( 18) residues. 
The native turn involves residues 17-20. Residue 17 
is the last hydrophobic residue at the C-terminus of 
the first helix, and residue 20 is the first hydrophobic 
residue at the N-terminus of the second helix. Resi- 
dues 18 and 19 are both hydrophilic. The native turn 
contains residues 17-20 in the bond angle confor- 
mations 14, 10,8 and 14. In the fully native confor- 
mation there are 7 pairs of sidechain contacts. 

A small chain comprised of 22 residues gives qual- 
itatively identical results to those described below. 
Here, the longer molecule is chosen so as to increase 
the likelihood of long lived isolated he&es, and hence 
the possibility of preformed construction as the dom- 
inant pathway of assembly. However, as shown be- 
low, even under these conditions on-site construc- 
tion dominates. 

2.3. Equilibrium results 

PrimarysequencesofthetypeA,(16)b,(4)A2(18) 
were examined, in which for the Ai portions of the 
sequence, ee( 12) =O, and all the other +=0.25/T*. 
For the residues included in putative helical frag- 
ments, co= -0.6/T*, and the ed are zero for all the 
other states. For the turns, ee=O for the native con- 
formation, and te=0.25/T* for all the other states. 
Q= - 0.6 ( y) / T * for nativelike conformations, with 
y= 0.6 and 1 .O in two different cases considered, and 
the e+, are zero for all the other states. For the native 
conformation, the total short range free energy, Ee= 0, 
and the total torsional energy, E,= -20.04/T* and 
-21.0/T*, for y=O.6 and 1.0, respectively. The to- 
tal side chain interaction free energy, Eaik= - 5.251 
T*, and the cooperative free energy, EC= -&55/T*. 
Thus, the total free energy of the native conforma- 
tion is EN=-33.84/T* and -34.8/T*, for the 
y= 0.6 and 1 .O cases. Using an analytical expression 
previously described [ 10 1, an estimated native state 
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population for the y= 1.0 case based on short range 
interactions in the transition region at T*=0.41 of 
about lo-‘5 is obtained. Thus, based on intrinsic 
propensities alone, the native conformation is defi- 
nitely not enforced. 

In a total of 5 simulation runs for the y=O.6 case 
and a total of 4 simulation runs for the y= 1.0 case, 
the in-register, folded hairpin conformation was ob- 
tained every time. However, a variety of turn confor- 
mations were observed. Some involved an additional 
hydrophobic contact between residues 14 and 20. For 
the y=O.6 case, 3 out of 5 runs, and for the y= 1.0 
case, 4 out of 4 runs produced the native turn. The 
conformational specificity for a unique turn popula- 
tion can be increased, either by further augmenting y 
or by changing the intrinsic preference for turns so 
that the conformation permitting an additional hy- 
drophobic contact is also the lowest energy 
conformation. 

In fig. 2, the number of native contacts, N,, be- 
tween pairs of sidechains is plotted versus time (a) 
at T*=OS under denaturing conditions, (b) at 
T*=0.43, in the transition region, and (c) at 
T* =0.40, under strongly folding conditions for the 
y= 1.0 case. In fig. 2a, as would be expected for un- 
folding conditions, No fluctuates around zero, with 
only an occasional contact of any sort. In the transi- 
tion region, fg 2b, Nc is seen to undergo a relatively 
rapid jump from 0 to 2 native contacts (this is asso- 
ciated with a native turn plus a single helical turn in 
one of the helices and a pair of helical turns in the 
other helix). This conformation persists for 40000 
Monte Carlo time steps before the helix completely 
zips up. Observe that, subsequent to the formation of 
the helical hairpin, there are substantial fluctuations 
in NC; as shown in fig. 2c, these persist at lower tem- 
peratures as well. Examination of the folding trajec- 
tory indicates that, in addition to the fully helical 
hairpin, there are a manifold of conformations com- 
posed of varying amounts of unfolding at the hairpin 
ends. Thus, we conclude that an all-or-none transi- 
tion is not built into the model itself, nor into the 
Monte Carlo algorithm that provides the conforma- 
tional sampling. If, for a given set of circumstances, 
a conformational transition is found to be of an all- 
or-none character, then this is a consequence of the 
physics, and it is not obligatory from the folding al- 
gorithm that we have employed. 
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Fig. 2. Number of native contacts between pairs of side chains 
plotted versus number of DMC steps (a) at T*=O.S, denaturing 
conditions; (b) at T*=0.43, in the transition region; and (c) at 
T*=0.40, under strongly folding conditions. All correspond to 
they=1 case. 

2.4. Folding pathways 

We next turn to a discussion of the mechanism of 
assembly of these model hairpins. Two representa- 
tive folding trajectories will be presented in figs. 3 and 
4, both dealing with the y= 1.0 case. The various 
snapshots are shown at perspectives that allow the 
important features of a particular conformation to be 
readily ascertained. The times indicated in the figure 
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t=1.90,000 1=185,000 

1~195,000 t=ZOS.OOO 

r=aao,ooo 

1=295,000 

Fig. 3. DMC folding trajectory corresponding to the plot off& 
2b, at a temperature T*=O.43. See text for details. 

(expressed as number of MC steps) are from the start 
of the simulation run. Fig. 3 presents the folding tra- 
jectory corresponding to the NC versus time plot of 
fig. 2b, at a temperature T* =0.43. This run is partic- 

ularly interesting in that an intermediate of two na- 
tive contact pairs lived for 40000 time steps. At 
t= 170000 steps, one of the helices present in the 
hairpin has formed. By t= 175000, this helix has par- 
tially dissolved. Then, at t = 180000, the first two na- 
tive contacts located near the helical turn have 
formed. These will persist until the successful com- 
pletion of folding. Observe that there is a second bro- 
ken helix that could possibly swing into place. How- 
ever, the t = 185000 snapshot indicates that this has 
not happened, and in fact all that is left of the first 
helix is a single helical turn. The unfolded tails will 
continue to thrash about until t = 2 10000, where the 
second helix now contains three turns and the first 
helix has a single turn. Note the presence of extended 
chain in the unfolded tails. The latter then zips up to 
form 6 of the 7 native contacts at t=220000. It will 
take until t=295000 for the fully assembled helix 
containing 7 native contacts to form. The elapsed time 
from the first appearance of a tertiary contact until 
the construction of the native hairpin took 125000 
time steps, with the majority of the conformation 
formed in 50000 time steps. 

Another folding trajectory displayed at a factor of 
ten finer time resolution than fig. 3 is shown in fg. 4. 
At t = 548000, folding of one of the two hairpin hel- 
ices has initiated. By t=548500, three of the helical 
turns have formed, and by t=550000 the helix has 
zipped up to its end. This single helix persists until 
t= 552500, when the first pair of native contacts has 
formed at the turn. The t=553500 snapshot shows 
that the first helix has partially dissolved, and a single 
turn of the second helix has formed. The first and 
second helices have four native contacts, thereby sta- 
bilizing this portion of the hairpin. The ends of the 
helices will continue to fluctuate in helix content. By 
t=555500 both helices contain three helical turns. 
Finally, by t= 556000 both helices have four helical 
turns, and the molecule contains six native contacts. 
Thus, the folding of the majority of the molecule has 
occurred in 8000 time steps. It takes until b= 564000 
time steps (not shown as no new information is con- 
tained) for the full 7 native contacts to appear for the 
first time, and the total elapsed time from folding ini- 
tiation is 16000 time steps. 

For the other two runs, both at T*=0.41, folding 
took 25000 and 35000 time steps, respectively, from 
the start of successful initiation. Since the statistics 
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I3 
1=547,000 

1=548,500 

1=548,000 

& 
t:555.500 

=a e 
1=556.000 

are far too crude to obtain folding rate constants, we 
report these values just to give the reader a feel for 
the order of magnitude involved. 

In all the cases observed, folding of helical hairpins 
has occurred by a sequential zipping up of the helices 
in place, starting from the turn. In many cases a sin- 
gle helix appears, followed by formation of the sec- 
ond helix beginning at the location of the native turn. 
It may then almost fully dissolve as in fig. 3, 
(t = 205000) with side-by-side construction of both 
helices subsequently occurring. Other times, as in fig. 
4, the majority of the first helix will persist through- 
out the entire assembly process, with the second helix 
using the first helix as scaffolding onto which it is 
constructed. Observed that folding is not unidirec- 
tional; helices constantly dissolve and reform during 
the course of assembly. In fact, many unsuccessful at- 
tempts at folding occur prior to a successful initia- 
tion. We have also observed folding to initiate from 
sites quite far from the native turn, in which a hydro- 
phobic sidechain attached to the randomly coiled tail 
assembles onto a helix that already exists. This con- 
formation, being unstable and non-native, relatively 
rapidly dissolves. An alternative method of assembly 
involves the direct initiation from the native turn of 
the pair of helices. This mechanism is not as common 
here, because the intrinsic probability of the native 
turn is very small. Using the previously mentioned 
analytic theory [ 10 1, we obtain an estimate of about 
a 0.6% turn population in the denatured state at 
T*=O.41. 

Thus, we find that the mechanism of folding is the 
same as in the diamond lattice model [ 5 1. For both 
the diamond and the 2 10 lattice representation, fold- 
ing of helical hairpins occurs by on-site construction, 
where at least one of the helices present in the hairpin 
zips up into place. If both a four and a twenty-four 
nearest neighbor lattice, using very different DMC 
moves, give identical results, it is fairly certain that 
the results are universal; i.e., they are independent of 
the particular lattice realization. Moreover, it is very 
suggestive that the results are applicable in general. 
Let us examine now the results of a completely differ- 
ent approach to the problem to see whether this is 
indeed the case. 

Fii 4. DMC folding trajectory at a finer time resolution, at 
T*=O.425. 
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3. Brownian dynamics simulations 

3.1. Description of the model 

On suppressing the lattice and passing to the con- 
tinuous space representation necessary for the use of 
BD algorithms, the calculations become very com- 
puter intensive. Thus, in order to keep the system 
computationally tractable, we employ a very simple 
model, which is a continuous representation of the 
diamond lattice model, instead of the more detailed 
2 10 lattice model described in the previous section. 

This way, the protein is modeled as a linear chain 
composed of N spheres, each representing one resi- 
due of the real molecule, connected to their first 
neighbors by means of harmonic springs. No con- 
straints have been introduced into our BD simula- 
tions at this stage. The chain motion is governed by 
the stochastic equation of Langevin, which we solve 
employing the algorithm originally proposed by Er- 
mak and McCammon [ 141. If the initial position of 
subunit i is ry , its position after a dynamics time step 
At is given by 

. 
ri=rY+ 

(1) 

where ks is Boltzmann’s constant, T is the absolute 
temperature, F,” is the force acting on unit j at the 
beginning of the time step, and Ri is a vector of Gaus- 
sian random numbers with zero mean and a vari- 
ante-covariance matrix given by 

(Ri( At)Rj( At) ) =UtD$) (2) 

0: being the hydrodynamic interaction tensor be- 
tween units i and j. Here, we have neglected these in- 
teractions (that is, we arc employing the free-drain- 
ing approximation). Then, the expression of D, has 
the simple form 

Dij= ( > s /do, (3) 

where S/j is the Kronecker delta, I is the 3 X 3 unit 
tensor, a is the radius of the units comprising the 
model, and q0 is the solvent viscosity. Obviously, this 
form of the diffusion tensor is independent of the 
model configuration, so that the gradient term in eq. 

( 1) vanishes (something that, on the other hand, also 
happens with the usual expressions for D, when hy- 
drodynamic interactions are carefully considered 

[151). 
The Ermak-McCammon method is a first order al- 

gorithm; thus, it requires a smaller time step and has 
a greater numerical error than other more sophisti- 
cated algorithms [ 16 1. However, it has been widely 
used in both macromolecule [ 171 and biopolymer 
[ 181 simulations; its simplicity guarantees the solu- 
tion of the stochastic equations of motion in a ma- 
sonable amount of computer time, and hence it is es- 
pecially suitable for the calculation of very long 
trajectories as are needed in our study. 

The most important point for the solving of cq. ( I ) 
is the form of the forces Fj acting on the different units 
of the model. Since we want to check the folding 
pathways obtained from the MC lattice simulations, 
we have to keep ourselves as close as possible to the 
potential employed there, taking as our reference the 
diamond lattice model. However, no lattice is now 
present in BD simulations, so that instead of the dis- 
crete additive contributions defined for the different 
kinds of interactions, we have to construct a contin- 
uous potential whose derivatives provide the force 
vectors that we need to solve the equations of motion 

1191. 
As usual, the total potential can be split into a se- 

ries of separate contributions: bond lengths, bond an- 
gles, torsional angles, hydrophobic-hydrophilic in- 
teractions, and cooperative interactions associated 
with helix formation (we consider here structures 
composed only of a-helices and turns). The excluded 
volume forces, although not explicitly mentioned, 
have been included in the model through the rcpul- 
sive part of the hydrophobic-hydrophilic pair 
potential. 

For both bond lengths and bond angles, we con- 
sider harmonic potentials of the form 

(4) 

(5) 

where 69 is the equilibrium bond length between units 
j- 1 and j, corresponding to the lattice unit, fI$’ is the 
equilibrium bond angle centered in unit j- 1, that is 



A. Rey, J. Skolnick /Folding of ar-helical hairpins 201 

made equal to the tetrahedral angle, and bj and 6, are 
the time dependent values of these quantities. The 
force constants kbl and kb. have the same value for all 
the units of the model. 

The form of the torsional potential is somewhat 
more complicated. A diamond lattice allows for the 
three values of the torsional angle $, corresponding 
to the truns(t), gauche+ (g+) and gauche- (g-) 
states, which are usually considered in the rotational 
isomeric state model [ 201. We want to consider sit- 
uations, both in helical fragments and in turns, where 
only one of the states (e.g., g- in right handed hel- 
ices) is energetically favoured with respect to the 
other two states. In addition, the shape of our poten- 
tial function (one deeper minimum and two other 
minima roughly equivalent to each other, as shown 
in fig. 5 ) is not well reproduced neither by the usual 
cosine expansions [ 191, nor by a Fourier sine and 
cosine series [ 211, for a wide set of parameters. 
Hence, we have employed a more flexible procedure, 
consisting of the numerical construction of our po- 
tential from a combination of harmonic functions, 
and the subsequent tit of the result to a Redlich-Rist- 
ner polynomial 

U(#)=U~is+X,X~ 1 Cj(X2--XI)‘-’ 9 (6) 
i=l 

where LTcis is the energy corresponding to the cis bar- 
rier, ntcrms - 1 is the order of the polynomial, ci being 
adjustable coeffkients, and xl and x2 are simple 
functions of the torsional angle (expressed in 
radians), 

I I I 1 I 

Fig. 5. Shape of the torsional potential employed in BD simula- 
tions with favoured helical secondary structure. 

l+T. x*+X,=I_L x1= 2 2rr’ 2 2x’ 

According to this definition, and now expressing the 
torsional angles in degrees, the cis barrier is situated 
at #= f 180”, and the trans conformation corre- 
sponds to @=O. The gauche minima are situated at 
@= f 120”. 

For the different parameters employed in the ini- 
tial numerical construction of the potential (mainly 
the energetic depth of the three minima and the bar- 
riers between them), we have found that a sixth or- 
der polynomial ( h,,, = 7) fits the potential function 
rather well. The fitting is not perfect, since the ener- 
getic differences are made smaller and the positions 
of the minima are slightly shifted from their previ- 
ously defined values. This is not a real problem, and 
as a matter of fact is doubly advantageous. For the 
gauche- states, it yields right handed helical confor- 
mations more similar to actual ones than those ob- 
tainable on a diamond lattice. For the trans states, it 
precludes possible divergences in the computation of 
the Cartesian components of the forces [ 19 1. 

For the hydrophobic-hydrophilic interactions, two 
different options are considered, as was done in the 
MC diamond lattice simulations [ 5 1. When the in- 
teracting residues are a pair of philic-philic or philic- 
phobic residues, a repulsive potential is defined. On 
the other hand, for a phobic-phobic pair, a Lennard- 
Jones potential is considered, where the attractive part 
appears with a minimum at a distance corresponding 
to one lattice unit, and a repulsive core acts at short 
distances. The form of this potential is an 8-6 Len- 
nard-Jones equation, where the exponent of the re- 
pulsive part has been lowered to eight from twelve. 
This is done to avoid a huge increase in the magni- 
tude of the force caused by a close approach of the 
interacting beads at high temperatures, where the 
Brownian displacements that mimic the jostling of the 
protein units due to the thermal agitation of the sol- 
vent are more important. Thus, the mathematical 
forms of these potentials are 

(8) 

(9) 
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In both cases, a cut-off distance is introduced to save 
lengthy computations. This distance is chosen so that 
the magnitude of the potential is quite small at it. This 
way, no corrections are required to account for this 
small discontinuity in the calculation of the forces. 

As previously mentioned, both potentials are re- 
pulsive at small distances, so the excluded volume ef- 
fect does not have to be explicitly included in the 
model as a separate contribution. 

In eqs. (8) and (9), r is the distance between any 
pair of residues in the model, that is, no target poten- 
tial associated with tertiary interactions is assumed. 
On the other hand, the final contribution to the po- 
tential, the helical cooperativity interaction, acts only 
between residues j and j+ 4 when both are included 
in a helical portion of the protein. These interactions 
try to mimic the cooperative stabilization of helical 
structures due to hydrogen bonds (also a rather spe- 
cific process) and tend to favour the growth of helical 
fragments without the necessity of forcing the sec- 
ondary structure of the model through the torsional 
potential. In this case, the same form of an 8-6 Len- 
nard-Jones potential given in eq. (8) is assumed, al- 
though the parameters and the cut-off distance arc 
different (the value of a, 4, is now chosen so that the 
potential minimum corresponds to the distance be- 
tween unitsj and j+ 4 in a helical portion constructed 
on a diamond lattice). 

The combination of this last contribution and the 
torsional potential favouring the secondary structure 
corresponding to the native conformation gives as a 
result a high population of helical states not only in 
the folded but also in the unfolded state. Although 
this was the case considered in the initial diamond 
lattice MC simulations [ 51, later MC simulations 
have included weaker native propensities for the sec- 
ondary structure [ 221, consistent with the marginal 
population that is found experimentally in the un- 
folded situation [23]. This is also the case in the 
DMC simulations described in the first part of this 
paper. In order to account for this, we have also run 
simulations in which the conformational preferences 
associated with the torsional potential are inverted in 
the putative helical regions; that is, the gauge- con- 
formation corresponding to the native state has a 
higher energy than the other two states. In this case, 
in order to avoid the formation of bulges due to the 
spherical definition of the helical cooperativity inter- 

actions, a restriction is introduced so that it only ap 
pears when the two internal torsional angles that de- 
fine the conformation of residues j- (j+ 4) are in the 
correct gauche- state. Employing the terminology of 
the helical-coil transition theory [ 241, the effect of 
these modifications is to increase the tendency to 
propagate a helical fragment while simultaneously 
increasing the cost of helix initiation. 

In addition to the parameters defining the differ- 
ent contributions to the potential, an important 
quantity is the length of the time step At appearing in 
eq. ( 1). As mentioned previously, the simplicity of 
the algorithm obliges us to use a small value of At. 
Yet, practicality recommends using as large time step 
as possible, in order to save computation time. A 
compromise value was chosen that is still consistent 
with the average values of bond lengths and bond an- 
gles obtained along the trajectory. It could be claimed 
that constraining these quantities, especially the bond 
lengths, to constant fixed values would allow for an 
increase in At, without significantly perturbing the 
physical behavior of the system [ 251. While that is 
true when one is only concerned with the statistical 
averages of the model geometry, we checked that the 
use of a larger time step causes problems for those 
conformations where the hydrophobic interactions 
attract two phobic residues into compact structures 
corresponding to the native structure. In this case, 
even with the reduction in the exponent of the repul- 
sive part included in the potentials of eqs. (8) and 
(9), a bigger time step sooner or later results in a too 
close approach of the residues; the corresponding in- 
crease in the repulsive force blows the molecule apart 
in the following simulation step. Hence, a smaller 
value for Aa is preferable, even at the cost of larger 
number of steps and computation time, and there- 
fore the introduction of rigid constraints was not 
useful. 

The value of the time step and of the different pa- 
rameters characterizing the simulation are included 
in tables 1 and 2. The following reduction of units 
has been employed in the simulation algorithm: 
lengths are scaled according to B”, the equilibrium 
length between two units of the model (that is as- 
sumed identical to the diamond lattice unit, although 
this last consideration has no effect on these calcula- 
tions); the friction coefficients appearing in the free- 
draining diffusion coefficient are reduced by 
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Table 1 Table 2 
Parameters of the system and the simulation. Torsional 
potential favouring secondary structure (g- states favoured in 
the putative helical regions) 

Parameters of the system and the simulation. Inverted torsional 
potential in the putative helical fragments (the parameters not 
included in this table are identical to those of table 1) 

Bond length potential 
b”= 1 (fundamental length unit) 
k,,,{(b”)Z/Kg}=1.2x103K 

Bond angle potential 
e”= 109.5” 
k,{l/Kr,:,)=1.2x102K 

Torsional potential (values after fitting to eq. (6) ) 
&* = + 105” 
@,= 1.3” 
+;+ = f 58” (location of the barrien between different 

minima) 
gauche- state 

t,-/Ka=OK 
t,+/KB=q/KB=4.0K t;+jKB=t;_IKB=13.5 K 

gauche+ state 
tg+/Ke=OK 

Torsional potential (values after fitting to eq. (6) ) 
@** = + 109” 
&= 1.0” 
@:A = ? 63” (location of the barriers between different 

minima). 
gauge- state 

t&K, = 10.7 K 
t,+ /KB = t,IKs = 0 K 
t;+IKB=t;_IKB= 19.7 K 

gauw + state 
t,+/K,,=OK 
.+/Ks=q/Ka=11.5K 
t;+lKB=t:-lKB=21.5 K 

trans state 
tJK,=O K 
cr../Ka = t,+/Ka = 9.6 K 
t;+/Ka=t;_lKe=18.7K 

t,_/KB =t,/K, ~4.3 K 
t;+/KB=t;-/KB= 13.6 K 

trans state 
t,/K,=O K 

Hydrophobic-hydrophilic potential 
r&/bOE (3.0-3.5) 

t,-/KB=t,+/Ke=3.4 K 
t;+/KB=t;-lKB=12.0K 

Hydrophobic-hydrophilic potential 
r,,&/bOe (2.5-3.5) 

a,lb”=u2/bo=\/j/4=0.87 
Attractive-repulsive 

t,IKaE(21-27) K 
Purely repulsive 

t2/Kr,e (9-12) K 

o,/b”=o~lbo=J57;i=0.81 
Attractive-repulsive 

tIIKae(24-48) K 
Purely repulsive 

~lK+(9-18) K 

Helical cooperativity potential 
t3/KSE (78-96) K 
u3/b0=2.0 

r,,,/bOe (4.0-4.5) 

Transition temperature: rtrc (1.1-1.2) K 

Helical cooperativity potential Range of the annealing processes: 7’~ ( 1.6-0.8) K 
t3/KBc (12-30) K 
a3/b0=2.0 
rCu,,tr/boe (3.5-4.0) 

Transition temperature: T,,e( 1.5-1.7) K 

Range of the annealing p recesses: T~(3.0-1.0) K 

Reduced time step: A1=2.Ox lo-’ 

<= 6xr,+,a, so that it is not necessary to specify the ra- 
dius a of the beads (although of course at least an 
estimation is required in order to guess the equiva- 
lence with real units). For the potentials, the usual 
factor k,T, with kB being the Boltzmann constant, is 
employed in the reduction. In these conditions, the 
time unit is given by <(bO)*/keT. Supposing that the 
solvent is water, a value of a/b”=0.3, b”- 4 %, and 
the transition temperature found in our simulations, 

the reduced time step At=2X 10e5 used here roughly 
corresponds to a real time step of the order of some 
picoseconds (about three or four orders of magni- 
tude larger than the time steps used in MD calcula- 
tions). If we consider that real proteins fold in a time 
scale of the order of seconds or minutes, even taking 
into account the possible reduction in some order of 
magnitude due to the small size and simplicity of our 
model, one can have an idea of the difficulty inherent 
in this kind of simulations. 

Here, it is important to clarify that the apparently 
small values of the temperature employed in the sim- 
ulations and listed at the end of tables 1 and 2 result 
from purely numerical considerations, and are not 
related with a physical scale. The justification for 
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these small values is that the potentials, after being 
transformed to real units, are about two or three or- 
ders of magnitude lower than those employed in de- 
tailed simulations [26]. The first reason that ex- 
plains this fact is that we are dealing with virtual bond 
lengths and bond angles, since our model does not 
consider all the chemical details of the structure in- 
cluded into the units that comprise it. The second 
reason is purely practical. All the values have been 
scaled according to those employed in the construc- 
tion of the torsional potential, chosen so that the an- 
alytical form fitted according to eq. (6) could prop 
erly reproduce the desired shape of the potential 
function. Thus, the temperature scale has to be con- 
sidered in a relative sense, and does not mean that 
the folding process is taking place at a regime close to 
the absolute zero. The units of the temperature have 
been kept for consistency with the other values in the 
tables. 

In the next section, we shall describe the different 
folding pathways obtained through both procedures 
(favoured and unfavoured helical secondary struc- 
ture) for the case of an a-helical hairpin with N=22. 
The representation of the model is equivalent to 3 in 
fig. 1, although the number of units is less. 

3.2. Analysis of BD trajectories 

The starting point for every BD trajectory is an ini- 
tial conformation randomly constructed on a dia- 
mond lattice, the only restriction being the prohibi- 
tion of multiple occupancy of the lattice sites. It is 
important to remark once more that this is the only 
stage during the whole simulation in which the lattice 
appears, since all the movements constituting the dy- 
namic pathway are computed in a continuous space. 
In some cases, an annealing process is employed, be- 
ginning at a high temperature and progressively re- 
ducing it in discrete steps. The number of steps for 
every temperature is large enough to guarantee ther- 
mal equilibrium. The trajectory is stored in all the 
steps in order to keep track of the time evolution of 
the system. This annealing sequence was the only way 
to proceed in the initial simulations, in which the dif- 
ferent factors appearing in the global potential of the 
model made an a priori estimation of the transition 
temperature very difficult. Once this temperature was 

determined, several simulations were also run at con- 
stant temperature, the results obtained being com- 
parable to the corresponding annealing simulations. 

The quantitative analysis of the simulations poses 
some practical problems. Since the size of the mole- 
cule is smaller than in the cases considered in the dia- 
mond [ 51 or the 210 lattice, and the number of na- 
tive contacts in the folded conformation is also 
reduced, the monitoring of these quantities as a func- 
tion of time or simulation steps is not usually enough 
to create a good picture of the dynamics. Similarly, 
for small molecules the radius of gyration (S*) does 
not substantially differ between the folded and the 
unfolded states, and thus it is not shown. On the other 
hand, a simultaneous enumeration of the native con- 
tacts, together with the torsional angles that have the 
value corresponding to the folded structure, allows 
one to visualize the folding pathway. For further clar- 
ity, in one case we also include snapshots obtained 
along the trajectory, that help to understand the fold- 
ing process. It is important to remember that the chain 
is composed of 22 units, arranged into two right 
handed a-helices joined together via a central turn. 
The sequence of states for the 19 internal torsional 
angles corresponding to the native conformation is 
(g-_g--g--g-_g-_g--g-)-(t-g-_g+)_(g--g-- 

g--g--g--g--g--g--g), where the brackets are 
included to mark the different regions (helix I)- 
(turn)-(helix II). In addition, there are 5 native 
contacts between pairs of hydrophobic residues in the 
folded state. Proceeding out from the central turn, the 
pairs of residues involved in these contacts are ( 14- 
9), (15-6), (l&5), (19-2), and (22-l). Theother 
12 units are considered as hydrophilic residues in the 
calculation of the tertiary interactions. 

We begin by considering the trajectories computed 
in the context of the model that favours the native 
secondary structure; that is, one whose potential for 
the torsional angles has a deeper minimum in the state 
corresponding to the native conformation (g- in the 
helical fragments, and the corresponding states in the 
central turn as described above). A representative 
example of the folding pathway obtained is shown in 
fig. 6, where the existing native contacts and the cor- 
rectness of the torsional state are monitored as a 
function of the number of simulation steps. A spot in 
these plots indicates the existence of the correct con- 
tact or torsional angle. 
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Fii 6. Results of an annealing BD folding trqjectory with g- favouring torsional potential in the helical regions. (a) Time evolution of 
the torsional states with the number of simulation steps. (b) Dynamic mapping of the native contacts. See text for details. 

When the temperature is well above the transition 
value, quite chaotic movement is observed, mainly 
driven by the amplitude of the random displace- 
ments of the units. The transition rate between dif- 

ferent torsional states is quite high, and although some 
native contacts can be sporadically observed, the 
magnitude of the tertiary interactions in these con- 
ditions is not sufficient to keep them stable. Of course, 

I . . . . I . . . . I . . . . 

Helix I 

b 
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since the phobic-phobic interaction is not restricted 
to the native contacts, many other contacts occur from 
time to time without being recorded in fig. 6. In sum- 
mary, the behavior of the chain at high temperature 
is in complete agreement with that expected for a 
random coil. 

When the temperature is decreased, the influence 
of the Brownian component of the movements is re- 
duced, while the effect of the forces corresponding to 
the model potential begins to be apparent. As a con- 
sequence, it is possible to find helical fragments that 
live for several thousand simulation steps, although 
sooner or later the torsional angles change state and 
the helix dissolves. Something similar simultane- 
ously happens in the central turn. This turn, how- 
ever, is of crucial importance in the folding pathway, 
as can be noticed on observing the region corre- 
sponding to 5- 13 million steps in figs. 6a and 6b. At 
the beginning of this time period, there is a high hel- 
ical population in the residues corresponding to the 
helical fragments, especially those in helix II (in other 
simulations beginning with a different conformation 
or with slightly modified potential parameters, helix 
I appears first). Since the turn is not formed, the chain 
adopts a rather extended conformation, without any 
possibility for the tertiary interactions to stabilize the 
structure. Nevertheless, once the central turn is in 
position, the number of tertiary interactions quickly 
increases, as is observed in the map of native con- 
tacts. This effect, together with the temperature de- 
crease, is enough to stabilize the preformed helix II 
for times considerably longer than those previously 
seen. The discontinuous lines appearing in the tor- 
sional states of helix I indicate that this helix is still 
not formed. However, the native contacts clearly show 
that the hairpin conformation is more or less achieved 
between 7 and 11 million time steps. At about 12 mil- 
lion steps, a fluctuation dissolves the central turn. 
Immediately, the tertiary interactions disappear, and 
the helical fragments also partially dissolve. When the 
turn is again recovered, the tertiary contacts begin to 
stabilize the structure, starting obviously from those 
positions closer to the central turn. The different tor- 
sional angles acquire their native values, in a process 
that can be clearly catalogued as on-site construction, 
at least for one of the helices (the stability of the first 
helix that is formed varies slightly for the different 
trajectories computed; in three of them it is partially 

built simultaneously with the second one from the 
central turn, while in other six cases it has been pre- 
viously formed and remains stable while the second 
helix is being built on it ) . 

In the last steps of the simulation, the chain is in 
its folded conformation and stays in it, stabilized both 
by the influence of the secondary and the tertiary in- 
teractions. The temperature is low enough so that the 
native conformation is stable, and the rotational and 
translational diffusion of the whole folded molecule 
can be observed. In some cases, “breathing” move- 
ments in which one of the helices move slightly apart 
from another due to small distortions (without 
changing state) in the torsional angles are observed; 
this results in the disappearance of the native contact 
joining the ends of the chain. However, these move- 
ments are very fast and do not affect the global struc- 
ture of the folded state. 

An important result of these simulations is that they 
require about 20-40 million steps to obtain a folded 
conformation from a pure denatured state. Taking 
into account the equivalence between the simulation 
time step At and the real time, the total length of the 
trajectories corresponds to the order of ten microse- 
conds. Even if one considers the purely qualitative 
character of this estimation, it is remarkable its prox- 
imity to the physical time one could expect for a small 
protein with a very simple structure (since this is the 
value observed for the folding of helical domains in 
real proteins), and is consistent with the time scales 
of isolated helix assembly seen in polypeptides [ 27 1. 

In nine out of ten of the folding trajectories com- 
puted this way, the main features of the dynamic 
pathways are equivalent to those described in the 
preceding paragraphs. Local details as to which helix 
forms first (if any) or the exact sequence of steps ap- 
pearing in the last stages of the simulation differ 
slightly from run to run, but the essential scheme of 
on-site construction of one or even both helixes from 
the central turn (with the first formed helix, when it 
exists, acting as some kind of scaffold for the growth 
of the second helix), is always observed. 

However, one of the simulations showed a slightly 
different pattern. The torsional states and native 
contacts for this trajectory are shown in fig. 7, corre- 
sponding again to an annealing process. The most 
important part of these plots is that seen between 14 
and 20 million steps. At the beginning of this period, 
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Fig. 7. Results of an annealing BD folding trajectory with g- favouting torsional potential in the helical regions. (a) Time evolution of 
the torsional states with the number of simulation steps. (b) Dynamic mapping of the native contacts. See text for details. 

both helices are formed, even though the turn is not rects the wrong position of the central turn and the 
yet in the correct state, with the logical consequence native conformation arises. This can be also ob- 
that tertiary contacts are absent. Then, in a quite fast served in the almost simultaneous appearance of the 
process, the diffusive approach of the two helices cor- five native contacts in fig. 7b, in comparison with the 
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gradual growing of the number of native contacts in 
fig. 6b. 

While the formation of this hairpin could be con- 
sidered as a support for the diffusion-collision model 
of assembly, the following steps in the dynamics of 
this very trajectory reveal the existence of a compet- 
itive mechanism, i.e., helix dissolution/creation on- 
site. At about 24 million steps, one can observe that 
the structure is not yet completely frozen in the folded 
state, but it is still able to dissolve partially. And the 
helices do not diffuse apart, but rather they create lo- 
cal defects in certain torsional states that give rise to 
the existence of a bulge in helix I. At the same time, 
the end of helix II loses its native conformation, which 
is simultaneously recovered by both helices, that re- 
main now in the correct folded structure for the rest 
of the simulation, 

The final conclusion we can extract from this set of 
calculations is that, even though certain processes in- 
volve the diffusion of preformed microdomains of 
secondary structure along the dynamic pathway, on- 
site construction seems to be the mechanism mainly 
responsible for the folding process. This result is par- 
ticularly meaningful when one takes into account that, 
due to the torsional potential employed, the percent- 
age of native population for the torsional states in the 
unfolded conformations is quite high (reaching even 
40-50% depending on the exact trajectory) for tem- 
peratures only slightly larger than the transition tem- 
perature. Since the diffusion-collision mechanism of 
preformed helices appears only marginally under 
these conditions and the native populations existing 
in real proteins in the unfolded state are still quite 
smaller than those employed so far here, we can con- 
clude that the on-site construction appears to be a 
more probable mechanism for the early stages of pro- 
tein folding; an identical conclusion was obtained in 
the lattice MC simulations [ 4-6, lo]. 

In order to clarify this point even further, let us dis- 
cuss now the results obtained with inverted prefer- 
ences associated with the torsional potential in the 
putative helical regions. The practical way of getting 
this is to define a potential with two equivalent min- 
ima corresponding to the t and g+ states, while the 
minimum for the g- state is energetically higher. 
Thus, the g- conformation is still stable, but its sta- 
bility is considerably reduced with respect to the pre- 
vious BD simulations, so that the helical contents in 

the unfolded state are rather lower (about lo- 15%), 
and are a closer approximation to physical reality. The 
parameters that differ in this series of simulations 
with respect to the previous ones are included in ta- 
ble 2. 

In fg. 8, we show the time evolution of the tor- 
sional states and the native contacts for one of the 
trajectories obtained under the present conditions, in 
which the temperature was kept constant at the mid- 
point transition value (T= 1.2 K, in this case). The 
snapshots extracted from the trajectory are included 
in fig. 9. As a general comment before describing in 
detail the different steps observed in the trajectory, it 
is important to compare the differences between figs. 
6a and 8a. It is quite evident through this comparison 
the effect of inverting the propensities for the tor- 
sional potential in the putative helical fragments. Now 
the transitions among the states are substantially 
faster, and the stability of the helices is much more 
coupled to the existence of tertiary interactions than 
it was before, even in spite of the increase of the hel- 
ical cooperative interactions employed in the simu- 
lations (compare the values of e3 in tables 1 and 2 ). 

In fig. 9, we can see in 1 that the initial conforma- 
tion of the trajectory is purely random, as it was in 
the previous BD simulations. At 2 and 3, it can be 
seen that some kind of turn has been formed, al- 
though from fig. 8a we can appreciate that it is not 
the native one. As a consequence of this turn, some 
tertiary interactions occur, the chain acquires a hair- 
pin-like structure, and the number of native contacts 
increases. However, since the turn is not in the cor- 
rect conformation, the number of hydrophobic con- 
tacts is not enough to stabilize the structure. Thus, 
the system wanders around this hairpin conforma- 
tion for several million steps (snapshots 3 to 5), but 
finally it dissolves, with the tertiary interactions dis- 
appearing (see fg 8b about 9 million steps). Hence, 
we can consider that at 11000000 steps, snapshot 6 
in fg 9, the process begins again. Nevertheless, the 
previous steps clearly indicate that the folding pro- 
cess is not enforced at all in the simulation scheme, 
but the system has to find its own way across the con- 
figurational space driven by a quite physical poten- 
tial (for the model considered ) . 

The folding now seems to take a different path. In 
fg 8b, on coming to 15 million steps one can observe 
that there is a high helical population in the two 
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Fig. 8. Results of a constant temperature BD folding tqjectory with an inverted torsional potential in the helical regions. (a) Time 
evolution of the torsional states with the number of simulation steps. (b) Dynamic mapping of the native contacts. The numbers (l- 
22) over the BD time step axis correspond to snapshots shown in fq. 9. 

branches of the hairpin, even though it is opened and 
lacks native contacts. This is confirmed by 7 in fg. 9. 
However, the two helices do not diffuse to yield the 

native conformation. On the contrary, helix II dis- 
solves and begins again to form from the central turn 
attached to helix I, which remains stable during the 
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Fig. 9. Snapshots of the BD trajectory corresponding to fig. 8. See text for details. 
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whole process (with some minor modification in the 
torsional states of the end bonds). Snapshots 8 to 15 
show detailed images of the process. Also in figs. 8a 
and 8b we see how the torsional states of helix II suc- 
cessively take on their native state values, while si- 
multaneously the five native contacts appear one after 
the other, beginning from the central turn. Hence, 
once more, the formation of one helix and the central 
turn seems to be the limiting step in the folding path- 
way, and once that is accomplished the whole folding 
happens in a relatively short time (about 2000000 
million steps in this trajectory, less than 10% of the 
total simulation time at constant temperature). It is 
important to note how similar this pathway is to the 
on-lattice trajectories shown in fw. 3 and 4. 

Gf course, since we are at the transition tempera- 
ture, the folded structure is not completely stable, and 
in snapshots 16 to 19 of fg 9 we can see how it can 
partially dissolve. In this case, it is helix I which 
changes the torsional states of some of its &mds, and 
the weakening of the tertiary interactions brings as a 
consequence a partial dissolving of helix II. Since the 
turn retains its native conformation (although a sub- 
stantially longer simulation would show the global 
unfolding of the model ) , the refolding process is again 
quite fast. 

In these conditions, five trajectories run at con- 
stant temperature showed exactly the same pattern. 
Only one out of three trajectories corresponding to 
annealing processes showed something similar to the 
preformed diffusion-collision mechanism. How- 
ever, since now the helices are not completely stable 
in the absence of tertiary interactions (something that 
we have checked running a trajectory for a single he- 
lix at the transition temperature), the time required 
to fold at the transition temperature is longer than in 
the simulations which favour native torsional states 
in the helical fragments, so that the observed path- 
way in these annealing conditions could be affected 
by a too fast cooling rate. 

4. Summary and conclusions 

In this work we have studied the folded pathway of 
u-helical hairpins through two rather different meth- 
ods. DMC simulations of a detailed model in the 2 10 
lattice show that the pathways previously obtained in 

diamond lattice models are independent of the ge- 
ometry and coordination of the lattice, and of the set 
of movements used to simulate the dynamic proce- 
dure. Furthermore, BD off-lattice simulations show 
quite conclusively that those results are also indepen- 
dent of the physical scheme underlying the simula- 
tion technique. Since the results of the BD calcula- 
tions, obtained through the solution of a fundamental 
real equation of motion, are fully consistent with the 
DMC folding pathways, the latter are clearly vali- 
dated. This is a very important result if we take into 
account the different computational efficiency of the 
two types of algorithms. The calculation of a BD 
folding trajectory takes between 10-25 CPU hours 
(depending on whether only a temperature or a whole 
annealing process is considered) on a Cray Y-MP 
(about 15 times more on a Sun Spare 2 workstation). 
Nevertheless, the DMC simulations of these simple 
models take a time of the order of minutes in the Spare 
2 workstations. If we consider that any real protein is 
much more complicated than the model employed in 
the diamond lattice (whose continuous version has 
also been employed in the BD calculations), it is clear 
that BD is not a suitable method for studying the 
whole folding mechanism of a real protein, unless one 
introduces a series of simplifications (e.g., prebuilt 
helices) that, as we have shown, seriously affect the 
resulting dynamics. On the other hand, we have 
proven with this work that the introduction of the 
lattice and the partially artificial movements in- 
cluded in DMC simulations do not have any signifi- 
cant effect on the pathways. Moreover, if one relates 
the approximate folding times on the 2 10 lattice and 
BD models, an elemental time step on the 2 10 lattice 
roughly corresponds to l-10 nanoseconds, values 
consistent with previous conjectures [ 10 1. Hence, we 
are now much more confident in the possibility of 
using DMC algorithms to reproduce the folding 
pathways of real proteins [ 22 1, with a certain secu- 
rity that the observed results cau appropriately re- 
produce the physical features of the folding process. 

Acknowledgement 

This work was supported in part by NIH grant 
GM37408 and a grant from the Polymer Program of 
the National Science Foundation. AR also acknowl- 



A. Rey. J. Skolnick /Folding of a-helical hairpins 219 

edges a M.E.C./Fulbright Scholarship from the US- 
Spanish Joint Committee for Cultural and Educa- 
tional Cooperation. The Cray CPU time was kindly 
provided by Cray Research, Inc. 

References 

[ 1 ] J.A. McCammon and SC. Harvey, Dynamics of Proteins 
and Nucleic Acids (Cambridge Univ. Press, Cambridge, 
1987). 

[2] K.D. Gibson and H.A. Scheraga, J. Comput. Chem. 11 
(1990) 468. 

[ 31 M. Karplus and GA. Petsko, Nature 347 ( 1990) 63 I. 
[4 ] J. Skolnick and A. Kolinski, Ann. Rev. Phys. Chem. 40 

( 1989) 207. 
[ 5 ] A. Sikorski and J. Skolnick, J. Mol. Biol. 2 12 ( 1990) 8 19. 
[ 61 J. Skoinick and A. Kolinski, J. Mol. Biol. 2 12 ( 1990) 787. 
[ 7 ] N.G. van Kampen, Stochastic Processes in Physics and 

Chemistry (North-Holland, Amsterdam, 198 1). 
[8] S. Lee and M. Karplus, Biopolymers 26 (1987) 481. 
[ 91 J.D. Honeycutt and D. Thirumalai, Proc. Natl. Acad. Sci. 

USA 87 (1990) 3526. 
[ IO] J. Skolnick and A. Kolinski, J. Mol. Biol. ( 199 I ), in press. 
[ I 1 ] T.L. Hill, Statistical Mechanics (McGraw-Hill, New York, 

1956). 
[ 121 A. Kolinski, M. Milik and J. Skolnick, J. Chem. Phys. 94 

(1991) 3978. 

[ 131 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. 
Teller and E. Teller, J. Chem. Phys. 21 ( 1953) 1087. 

[14]D.L.ErmakandJ.A.McCammon,J.Chem.Phys.69(1978) 
1352. 

[IS) H. Yamakawa, Modem Theory of Polymer Solutions 
(Harper & Row, New York, 197 1). 

[ 161 M. Fixman, Macromolecules 19 (1986) 1195. 
[ 171 S.A. Allison and J.A. McCammon, Biopolymers 23 ( 1984) 

363; 
A. Rey, J.J. Freire and J. Garcia de la Terre, J. Chem. Phys. 
90 (1989) 2035. 

[18]S.LeeandM.Karplus,J.Chem.Phys.81 (1984)6106; 
R.J. Lewis, S.A. Allison, D. Eden and R. Pecora, J. Chem. 
Phys. 89 (1988) 2490. 

[ 191 M.P. Allen and D.J. Tildesley, Computer Simulation in 
Liquids (Oxford Univ. Press, New York, 1987). 

[ 201 P.J. Flory, Statistical Mechanics of Chain Molecules (Wiley, 
New York, 1969). 

[ 211 A. Chung-Phillips, J. Chem. Phys. 88 ( 1988) 1764. 
[ 22 ] J. Skolnick and A. Kolinski, Science 250 ( 1990) I 12 1. 
[23] H.J. Dyson,M.Rance, R.A.Houghten,P.E. WrightandR.A. 

Lemer, J. Mol. Biol. 201 (1988) 201. 
[24] D. Poland and H.A. Scheraga, Theory of Helix-Coil 

Transitions in Biopolymers (Academic Press, New York, 
1970). 

[ 25 ] W.F. van Gunsteren and M. Karplus, Macromolecules 15 
(1982) 1528. 

1261 J. Skolnick and E. Helfand, J. Chem. Phys. 72 ( 1980) 5489. 
[27] R. Zana, Biopolymers 14 ( 1975) 2425. 


