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We present an analytical method for generating a whole protein backbone structure from the coordinates of
the a-carbons. The procedure begins by automatically positioning the f-carbons for every residue, and then
the positions of the carbonyl groups and the amide nitrogens are also computed. The method is based upon
the simultaneous minimization of a number of geometrical constraints that appear in real proteins and that
can be very easily formulated as a set of trigonometric relations between the coordinates of the atoms involved
in the backbone reconstruction. The resulting algorithm has been tested for proteins of very different sizes
and topologies, and can advantageously compete with other methods proposed for this goal both in accuracy
and in computational requirements. Possible ways of further refinement of the resulting structures are

discussed.

INTRODUCTION

During the past several years, the reconstruction of
the full-atom representation of a protein from the
coordinates of its a-carbons has received a lot of
attention. There are a number of reasons for this.
First, the map of the a-carbons is usually generated
in the early stages of the solution of a new crystal
structure studied through X-ray diffraction. In ad-
dition, a fraction of the structures compiled in the
Brookhaven Protein Data Bank! only contain the a-
carbon coordinates. Finally, but most important, pro-
tein modeling techniques for the prediction of the
structure of proteins are continuously employed.? In
this context, it is useful to have a series of tools that
allow one to pass from a simplified representation,
usually based only on an a-carbon trace, to more
sophisticated models that include all atoms con-
tained in the protein backbone and, if possible, the
side chains, thereby allowing for the study of more
detailed, specific processes.

Most procedures usually employed in the full-atom
reconstruction are based upon different kinds of
“backbone dictionaries.”>% The sequence of a-car-
bons is split into several fragments, and for every
one of them a series of well-refined structures in-
cluded in a certain crystallographic database is
scanned for patterns with the same (or very similar)

*Permanent address: Departamento de Quimica Fisica, Facul-
tad de Ciencias Quimicas, Universidad Complutense de Madrid,
E-28040 Madrid, Spain.

tAuthor to whom all correspondence should be addressed.

Journal of Computational Chemistry, Vol. 13, No. 4, 443-456 (1992)
© 1992 by John Wiley & Sons, Inc.

topology. These matching patterns are used as tem-
plates for the placement of additional atoms. One
usually encounters a problem when trying to join the
different fragments and close the possible remaining
gaps. This is a difficult procedure that usually re-
quires several complicated refinement steps.

On the other hand, some methods avoid the use
of statistical databases by making a refinement of
the structure along with its construction? i.e., an
energy minimization procedure is run after position-
ing every full-atom amino acid (with the side chains
restricted to the S-carbon in the first stage) so the
protein is sequentially rebuilt. This method is ca-
pable of providing accurate final structures, although
it seems to be rather expensive from the computa-
tional point of view, especially for proteins contain-
ing a medium to large number of residues.

One additional point that needs to be taken into
consideration is the problem that arises when o-
carbon coordinates do not exactly correspond to the
set of distances observed in the existing database of
crystal structures. A clear example appears in the
theoretical studies of dynamical processes that use
a lattice projection of the protein.” Even by choosing
alattice spacing consistent with the average distance
between a-carbons found in real proteins the ge-
ometry of the backbone is clearly distorted so meth-
ods based on the overlapping of fragments of real
proteins are essentially useless under these condi-
tions. Nevertheless, it would be useful to have a
method that would allow for a full-atom reconstruc-
tion of the protein for these models, both as a test
of the quality of the lattice representation and to
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provide the possibility for further improvements of
the model.

In this article, we propose a method for building
the backbone atoms of a protein, including the g-
carbons, from any set of real or reasonable approx-
imate a-carbon representation. An important differ-
ence between this method and those mentioned
previously is that the procedure has a purely ana-
lytical basis, resulting from the trigonometric rela-
tions existing between the different bond lengths and
bond angles involved in the protein backbone. The
possible ambiguity arising from the rotation around
single bonds (or, in other words, from the different
values of the torsional angles ¢ and y in the back-
bone) disappears when the positions of the a-car-
bons are known. In addition, the possible existence
of multiple solutions to the problem as a conse-
quence of the rotation of the peptide plane around
the axis that joins two adjacent a-carbons also van-
ishes once the positions of the f-carbons have been
determined.

This is not the first time an analytical method has
been proposed for backbone reconstruction. Almost
10 years ago, one other method was developed for
this purpose.® This method was formulated in terms
of the torsional angles ¢ and y, instead of the Carte-
sian coordinates we shall employ here, and propa-
gated the reconstruction of backbone atom positions
from an initial guessed estimation of a (¢;, y,) pair
for an inner residue. While this method provided
excellent results for ideal rigid protein geometries,
its application to an a-carbon trace taken from a real
protein did not yield a very good fit, especially due
to the divergence between the real a-carbon trace
and the ideal one. As shown below, our method is
not so dependent on the rigid geometry assumption
(although, due to the fixed bond lengths and angles,
it provides the best results for idealized structures),
and does not depend on any initial guess for the
varying geometrical parameters along the chain.

DETERMINATION OF
B-CARBON POSITIONS

The first step in our reconstruction method, and in
fact a remarkable result on its own, is the possibility
of determining the coordinates of the f-carbon po-
sitions from the a-carbon trace of the protein. As a
matter of fact, the feasibility of this procedure is not
a surprise. If statistical methods based upon the
scanning of databases can build the whole protein,
with the multiplicity of torsional angles involved,
there must be geometrical (or chemical) reasons that
allow the direction of the bond joining a- and g-
carbons for every residue to be fixed. The only prob-
lem, then, is to find an adequate reference system
that allows the definition of a series of geometrical
constraints that uniquely position the f-carbon. Ob-
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viously, any external frame is discarded since the
different global orientations of the protein do not
have any effect on the relative position of the atoms.
The natural reference system for this problem should
be centered in the a-carbon of the considered resi-
due, with the axes directed according to the local
backbone geometry. Thus, to position the S-carbon
of the ith residue, we have defined the reference
system in the following way (see Fig. 1): The first
axis, u,, is computed in the direction of the cross-
product of the two vectors that join atoms C¢ with
C¢,1 and C¢ with C{_,, named as Y and r;;_,
respectively, and is thus perpendicular to the plane
defined by these three atoms (which can never be
found in a linear configuration neither in a real pro-
tein nor in any valid model representation). The sec-
ond axis of the reference system, u,, is defined by
the direction opposite to the sum of the same two
vectors normalized to unit length. This second vec-
tor, consequently, is in the plane of the three a-car-
bons and thus is normal to u,. For the third axis that
completes the reference system, w,;, two different
options exist, corresponding to the two possible ori-
entations of the cross-product between the first two
axes. To avoid problems in the definition, we always
choose the solution that makes the reference coor-
dinate system right handed. Also, the vectors be-
tween a-carbons are normalized before being used
in the construction of the reference axes to avoid
distortions in the definition due to fluctuations
around the average values of the distance between
contiguous a-carbons. Then, the mathematical
expression of the reference system is

Yii+1 Yii-1
el = T Gi-1 =T 1
Pui1 |l'i,i+l| Pii-1 |ri,i—1' M
Pii+1 X Pig_y
u = ————=u- 2
! |piie1 X Piioil @
Piiv1 T Pii-y
W = ———— T 3
’ IPiie1 + Pisoi| @
U =w X u C))

Figure 1. Schematic representation of the reference co-
ordinate system that fixes the position of the f-carbon
with respect to the a-carbon trace.



RECONSTRUCTION OF A PROTEIN BACKBONE

and depends exclusively on the coordinates of the
two a-carbons contiguous to the ith a-carbon (lo-
cated in the residue whose reconstruction is being
attempted). Thus, this step of the procedure is valid
for any residue in the protein with the exception of
those situated at the ends of the chain, whose f-
carbon reference system remains undetermined. As
shown below, however, a partial reconstruction of
the terminal residues can also be handled.

As depicted in Figure 1, the position of Cf with
respect to C¢ is completely determined by the dis-
tance of the chemical bond C*—C¥, d,4, and the three
director cosines of the angles d,, J;, and J; this bond
forms with the axes of the reference system previ-
ously defined. The distance of the chemical bond is
almost constant for every residue so if the values of
the director cosines also lie in a very narrow range
then the localization of the f-carbon position is
straightforward.

To check if this conjecture is true, we scanned a
subset of well-refined crystallographic structures in
the Protein Data Bank (PDB), and for every internal
residue (those not situated at the ends) the construc-
tion of the reference system was accomplished and
the values of the distance d,; and cosine directors
cos d,, Cos J,, and cos J; extracted. To examine the
consistency of these results, both the average and
the rms deviation of these quantities were calculated.
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An additional test for uniqueness of the values ob-
tained, in the case of the cosine directors, is the
proximity of the average values to the geometrical
constraint cos? §; + cos® d, + cos? d; = 1.

When no distinction is made among different res-
idues, both the deviations in the bond distances
andinthe director cosinesare toolarge forthe average
values to be considered acceptable parameters. On
the other hand, if an amino-acid-dependent average
is computed, deviations are substantially reduced.
However, the final mean values of the director co-
sines deviate from the constraint previously defined
(the sum of the squares of the cosines drops in some
cases as low as 0.8). This is not a completely un-
expected result. One can consider that as the virtual
bond angle formed by vectors r;;,, and r;;_, varies
the position of the C# will be slightly different to
accomodate the new situation. Therefore, our final
computation of these geometrical values was done
both in an amino-acid-dependent and a distance
doi-1y-oi+1-dependent basis (this distance is the
separation between C¢_, and C{.,). Subject to these
conditions, the sum of the squares of the average
cosine directors is always larger than 0.93, while the
rms deviations are usually less than 1% of the average
values. These average values are collected in Table
L. They have been normalized so that the sum of
their square values equals unity, and thus no further

Table I. Distances and director cosines for positioning f-carbons from the C trace.

dn(i— D-oafi+ l)/A
Residue dolA @45-51)  (5.1-56) (5.6-6.1) (6.1-6.6) (66-70)  (10-74)
Gly 1070 cos 3, 0.3757 05160 05273 05169 06122 0.5606
cos 5, 0.4164 0.1553 0.1718 ~0.09351 -0.07438  —0.01542
cos &, 0.8279 0.8422 0.8321 0.8509 0.7872 0.8280
Ala 1530  cos 3, 0.6971 0.6449 0.7207 0.8657 0.8755 0.8255
coss, —01275  —01556  —0.08253 ~0.1034 -009963  —0.03687
cos 3 0.7056 0.7482 0.6884 04897 04728 0.5676
Ser 1530  cos 3, 0.6776 0.6829 0.7623 0.8512 0.8694 0.8205
coss,  —01096  —0.1178 ~0.03786 —0.09848 —0.09478  —006116
cos & 0.7272 0.7210 0.6461 05156 0.4849 0.5684
Cys 1528  cos d, 0. 0.6452 0.7445 08337 08771 0.8271
cos , 0. ~0.1641 ~0.07196 - 0.02966 ~0.1084 —0.05202
cos 3, 0 0.7462 06637 05515 0.4680 0.5595
val 1540  cos 0. 0.6800 0.8093 09112 0.9159 08713
cos , 0. ~0.1573 —0.03760 —0.05248 —003961  —0.07040
cos 8, 0. 0.7162 0.5861 0.4086 0.3994 0.4856
Thr 1560  cos 8, 0.6570 0.6942 0.7684 0.8893 0.8974 0.8382
cosd,  —01423  —0.121 ~0.03911 —0.08801 -009638  —0.09259
cos 3, 0.7403 0.7110 0.6388 0.4488 0.4306 05375
Ile 15564  cos B, 0. 0.6653 0.7822 09158 0.9237 0.8805
cos 3, 0. —0.1784 —0.07882 ~0.03813 -004544  —0.03661
Cos 3, 0. 0.7250 0.6181 0.3998 0.3803 04727
Protrans 1527  cos$, 0.5695 0.6266 0.7396 0.8376 0.8279 05471
cosd,  —01088  —008485  —0.01203 —0.05556 -0.1142 ~0.2859
cos 3, 0.8148 0.7747 0.6729 05435 0.5491 0.7867
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Table I. (continued)
da(-'— |)—n(-'+1)/A
Residue d.g/ A (45-5.1) (5.1-5.6) (5.6-6.1) (6.1-6.6) (6.6-7.0) (7.0-74)
Pro cis 1.5636 cos d, 0.9128 0.9241 0.8906 0. 0. 0.
cos d, -0.3725 -0.3791 —-0.4545 0. 0. 0.
cos 9, 0.1675 0.04790 -0.01835 0. 0. 0.
Met 1.628 cos 9, 0. 0.6901 0.7643 0.9168 0.8829 0.8437
cos d, 0. —0.1462 —-0.05222 —0.04566 —0.1008 —0.05434
cos 9, 0. 0.7087 0.6427 0.3966 0.4586 0.5340
Asp 1.633 Cos d, 0.6749 0.7044 0.8113 0.8872 0.8974 0.7365
cos d, -0.1616 -0.08610 -0.01579 —0.009180 —0.07950 —0.06435
cos 0.7199 0.7033 0.5844 04614 04339 0.6733
Asn 1534 cos d, 0. 0.6944 0.8009 0.8859 0.8800 0.8247
cos d, 0. 0.03277 0.03813 —0.007092 —0.06561 —-0.07913
cos §, 0. 0.7188 0.6976 0.4638 04704 0.5600
Leu 1.536 cos d, 0.6660 0.6573 0.7878 0.8931 0.8816 0.8602
cos 9, 0.08749 —0.1408 -0.04661 -0.04922 —0.08487 —0.05791
cos d, 0.7408 0.7404 0.6142 0.4472 0.4643 0.5066
Lys 1.528 cos 9, 0. 0.6489 0.7417 0.8756 0.8854 0.8482
cos d, 0. -0.1717 -0.07902 —0.08511 —0.08652 -0.1117
cos 0. 0.7412 0.6660 0.4756 0.4566 0.5179
Glu 1531 cos 9, 0.6119 0.6460 0.7308 0.8769 0.8893 0.8381
cos §, -0.2138 —0.1882 —0.09939 —0.08536 —0.09156 -0.07577
cos 3, 0.7615 0.7398 0.6753 0.4730 0.4480 0.5402
Gin 1.529 Cos 9, 0.6056 0.6625 0.7377 0.8826 0.8952 0.8543
cos 5, -0.1582 -0.1519 —0.06338 —0.07839 -0.1010 —0.07040
cos d, 0.7799 0.7335 0.6721 0.4636 0.4341 0.5150
Arg 1.532 cos J, 0.6541 0.6810 0.7404 0.8952 0.8878 0.8209
cos 3, —-0.2221 -0.1514 —-0.06434 -0.07840 —-0.09276 -0.07128
cos &, 0.7230 0.7164 0.6691 04387 0.4509 0.5667
His 1.542 cos 9§, 0. 0.7121 0.7612 0.8475 0.8739 0.8261
cos d, 0. -0.09347 —0.05836 —0.08140 - 0.04959 —-0.07366
cos 9, 0. 0.6958 0.6458 0.5246 0.4835 0.5586
Phe 1.534 cos §, 0. 0.6617 0.7826 0.9175 0.9041 0.8593
cos 8, 0. -0.1687 —0.04809 -0.02742 —0.1004 —-0.07982
cos &, 0. 0.7327 0.6207 0.3968 04154 0.5051
Tyr 1541 cos 9, 0. 0.6738 0.7864 0.8790 0.9010 0.8602
cos b, 0. —-0.09011 —0.04526 —0.03848 —0.06856 —-0.09126
cos 9, 0. 0.7334 0.6160 0.4753 0.4285 0.5017
Trp 1534 cos d, 0. 0.7030 0.7703 0.8776 0.9028 0.8594
cos d, 0. -0.1222 -0.006324 -0.07555 ~0.1082 —0.06459
cos d, 0. 0.7006 0.6377 04734 04162 0.5073
Cyx 1530 cos 3, 0. 0.6817 0.7679 0.8665 0.8861 0.7897
cos d, 0. -0.1275 —0.09261 —0.09657 —-0.1004 —-0.07276
cos &, 0. 0.7205 0.6339 0.4898 0.4524 0.6091

See the section on the problem of glycines for explanation of glycine values.

corrections are needed to keep the distance d,; at
the correct value. The definition of the grid corre-
sponding to the distances d; - 1)- o+ 1) requires some
explanation. Although several possibilities are al-
most equivalent, we have chosen one consistent with
a lattice representation previously employed in our
group.’ While the division seems a bit arbitrary

(since it is based in the square of the distance
@o(i-1)-oii+ 1) @nd not in the distance itself), it has the
advantage that the different bins are small enough
to discriminate the dependence of the director co-
sines on ;) 4+1y but still large enough to allow
for a statistical population in every one of them that
confidently validates the final averages. As a matter
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of fact, the bins whose population was not large
enough are discarded in the calculation of the av-
erages. This is the origin of the missing values (set
equal to zero) in Table I. To avoid possible singu-
larities, the final algorithm is implemented so these
empty bins are filled with the value in the adjacent
bin for a given amino acid.

Another point in Table I is the separation of the
values of proline in the cis and trans conformations.
This was done during the analysis of the crystallo-
graphic structures based on the value of the distance
between residues C¢_, and C¢. While the average
distance between two contiguous a-carbons is about
3.8 A for the majority of the residues (with a trans
configuration of the peptide bond), the distance in
a pair whose second residue is a cis proline drops
to about 29 A and so a difference between both
conformations, clearly reflected in the other geo-
metrical values, is evident.

It is important to realize that the statistical study
of the crystallographic structures undertaken in this
work is only a way of looking for average values of
a series of geometrical quantities, which are subse-
quently fixed as parameters prior to any attempt at
backbone reconstruction. This fact establishes a fun-
damental difference between the present approach
and the alternative methods mentioned in the intro-
duction that employ analysis of known structures in
the reconstruction procedure itself.

BACKBONE RECONSTRUCTION

Once the position of the a- and p-carbons is known
for a given residue, one can try to locate the coor-
dinates of the corresponding carbonyl group and
amide nitrogen. For this task, one has the informa-
tion provided by the chemical bonds that join the
different atoms. Thus, the distances d ¢ and d,y, to-
gether with the angles Ty, Tgc; and Ty., can be
considered known parameters in the formulation of
the problem (see Fig. 2 for the definition of the dif-
ferent symbols used and Table II for the values of

¢
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bond lengths and bond angles we are using and that
were also obtained form the PDB analysis). In ad-
dition, the L chirality of the amino acids occurring
in real proteins constitutes additional information.
This information, however, is not enough to deter-
mine the position of the backbone atoms (C and N,
at this stage) since the distorted pyramid formed by
C,, N,;, Cg, and Cf has free rotation about the edge
defined by C¢ and Cf and satisfies all the bond
lengths and bond angles when considered on a sin-
gle-residue basis.

To solve the problem, one has again to consider
the residues adjacent to the central one. It is known
that the peptide bond can be assumed to be in a
planar conformation, with only small fluctuations
around the trans value for the torsional angle w (with
the exception, already mentioned above, of some
prolines appearing in the cis conformation, that
still keep the planar condition). In this situation,
it is evident that the positions of the backbone at-
oms N and C are coupled between adjacent residues
through the geometry of the peptide bond and with
the f-carbons because of the almost tetrahedral val-
ence of the a-carbons. This coupling propagates
down the chain so that once the a-carbon coordi-
nates are fixed a unique solution exists for the back-
bone conformation. In principle, it is possible to
formulate a system including all the restrictions of
bond lengths and bond angles, plus the planarity of
the peptide bond, through the whole chain. This
would yield a supersystem of nonlinear equations
from which the coordinates of all nitrogen and car-
bonyl carbon atoms in the backbone could be ob-
tained. However, the huge dimension of the system
generated this way and its nonlinear character make
it desirable to look for an alternative solution to the
problem.

Such a solution, in fact, exists. The occurrence of
the peptide bond in a planar conformation brings as
a consequence the existence of two angles, denoted
as ¢ and 7 in Figure 2, whose values also remain
fixed® ¢ is the angle subtended between the
C2—N; bond and the imaginary line that joins C{ with

Figure 2. Full atom representation of a protein backbone defining the
different lengths and angles employed as geometrical constraints.
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Table II. Bond lengths and angles involved in full atom residue reconstruction.

Residue d.n/A d.c/A Trac Trag Tpac & n

Gly 1.468 1.5623 111.8° 109.9° 110.2° 15.20° 20.84°
Ala 1.469 1.525 110.6° 109.9° 110.2° 15.04° 20.40°
Ser 1.469 1.524 111.1° 110.2° 110.0° 15.01° 20.50°
Cys 1.467 1.523 111.0° 110.3° 110.5° 15.12° 20.44°
Val 1.472 1.530 109.4° 110.8° 111.9° 15.05° 20.60°
Thr 1471 1.525 110.4° 110.9° 110.9° 15.13° 20.38°
Ile 1472 1.528 109.5° 111.1° 111.6° 15.06° 20.66°
Pro trans 1.468 1.522 111.8° 104.7° 111.4° 15.13° 21.16°
Pro cis 1.464 1.524 113.3° 103.2° 110.8° 59.97° 20.20°
Met 1.469 1.627 110.9° 110.9° 110.6° 1497° 20.64°
Asp 1.468 1.527 110.9° 110.7° 111.1° 14.90° 20.45°
Asn 1472 1.527 110.6° 110.1° 1114° 14.89° 20.39°
Leu 1.469 1.5627 1104° 1094° 111.2° 14.99° 20.49°
Lys 1.469 1.524 110.7° 109.9° 109.5° 14.83° 2047
Glu 1.468 1.522 111.3° 110.9° 109.2° 15.10° 20.63°
GIn 1469 1.526 110.9° 110.7° 1104° 14.89° 20.65°
Arg 1473 1.523 110.5° 110.9° 109.9° 16.19° 20.51°
His 1470 1.523 110.7° 110.9° 110.1° 16.26° 20.52°
Phe 1470 1.528 110.3° 111.1° 110.8° 14.99° 21.43°
Tyr 1.469 1.525 110.9° 110.3° 110.3° 15.01° 21.09°
Trp 1.472 1.5627 110.5° 110.8° 110.5° 15.12° 20.44°
Cyx 1.471 1.5627 110.5° 110.1° 109.7° 156.31° 20.56°

C¢_,, while 7 is the angle formed by the C¢#—C, bond
and the imaginary line that joins C¢ with C¢,,. Thus,
these two angles represent additional geometrical
requirements that every single-residue conformation
has to fulfill. Even more, they are enough to fully
determine the orientation of the pyramid with re-
spect to the a-carbon backbone and therefore allow
to position the coordinates of N; and C..

To completely clarify the different geometrical re-
strictions available, let us formulate them in a math-
ematical form. If we express the position of the
different atoms as Cartesian coordinates with re-
spect to the central a-carbon, the equations that
must be satisfied are:

® bond lengths
@ + @Y+ @Y —diy=0 ®)
@0 + WY + (29 — dic = 0. (6)

® bond angles
el + Yy + 202 — doydpcos Ty = 0 (7)
2V¥xl + Yyl + 2V2f — dnvdccos tyee = 0 (8)
xfrl + Yo + 2828 — docdpcos 1pec = 0 (9)

We should not forget that since the position of
the f-carbon was previously determined the coor-
dinates (2f, ¥, 2) have known values in this
system.

® a-carbon chirality. There are several ways to ex-
press the appropriate chirality of the a-carbon. We
have chosen one based on the expression of the
scalar triple product of the vectors that, with or-
igin in C§, point towards N;, C%, and C,. To satisfy

the L chirality, it is enough that

Tr() = rov (reg X roc)

z¥ yl =Y

xf yf 28| <. 10)
x{ y¢ 2¢

This inequality, however, can be developed further
by expressing the value of 7r(%) in terms of bonds

lengths and bond angles. By doing so, one can
arrive at the final equation

Tlr(i) = _daNdaﬂdaC (1 — cos? TNaC
— €08? Tygs — COS? Tpc
+ 2 COS Ty, COS Tygg COS Tpee)'?  (11)

® Angles n and ¢

xfxg, + Yy, + 2z,
— dwlo,,_,cosé =0 (12)

{28 + yiyia + 2828,

—d.d cosy = 0. (13)

LIL Y]

In these two equations, d,,,_, and doq,., are the
distances from the ith a-carbon to the previous
and following a-carbons, respectively. Also, the
coordinates (x%, ¥?-,,2%,) of these two a-carbons
are defined with respect to C¢, ie., 2%, = X%, —
¢, where the capital case variables correspond
to the absolute coordinates, whose origin is an
external reference frame (e.g., they are the coor-
dinates of a-carbons as provided by the Protein
Data Bank or any other experimental source).

Equations (5)-(9) and (11)-(13) are not indepen-
dent, as it is obvious when considering that, at this
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moment, we have formulated eight equations for
only a set of six unknowns (the Cartesian coordi-
nates of C and N with respect to the a-carbon). It is
evident, e.g., that the equations that refer to bond
lengths and bond angles are partially redundant with
the equation of the triple product. Therefore, it
would be possible in principle to find a subset of
independent equations that would determine a com-
pletely defined (aithough still nonlinear) system
whose analytical or numerical solution would
provide the desired coordinates. This approach,
however, brings some additional complications.
Although we are assuming that bond lengths and
bond angles have definite values for a given residue,
this is not what one finds in real experimental data.
Of course, some large deviations can be attributed
to an incorrect refinement procedure of the crystal
structures, but even when this task is undertaken
with extreme care small fluctuations around the av-
erage values of the geometrical constraints still arise
and are, as a matter of fact, necessary to fit the
structure to experiment. Nevertheless, when one
faces a given structure it is impossible to know
whether or not the observed distortions represent
physical reality. In these conditions, it seems safer
to keep as much experimental information as pos-
sible and try to find a compromise solution that
satisfies, as best as possible, all the geometrical
requirements. The problems found by Purisima and
Scheraga in their analytical method® also support
this viewpoint. That is why we have kept all the
above equations in our analytical method. Obviously,
the mathematical problem is transformed from the
solution of a set of nonlinear equations to the si-
multaneous minimization of a larger set of nonlinear
equations. Even with this in mind, there are several
equations that can be considered more “reliable”
than others. For example, the values of the angles ¢
and #n present the largest fluctuations of all the av-
erage values obtained from the crystallographic
structures. The reason is that their constancy is
based upon the assumption of planar and rigid pep-
tide bonds and ignore the fluctuations that occur in
real structures. In addition, egs. (7), (9), and (11)
include the position of the f-carbons, which can be
also slightly affected by the use of average constant
values in their determination. On the other hand, egs.
(5) and (6) include only bond lengths whose fluc-
tuations in well-refined structures are very small.
Equation (8) also includes the bond angle zy,c, whose
value is also quite well established on its own since
it is completely independent (at least from the geo-
metrical point of view) of the f-carbon position.
Thus, we have chosen to minimize the sum of the
squares of egs. (7) and (9)-(13), keeping egs. (5), (6),
and (8) as mathematical constraints. This is equiv-
alent to moving the rigid set of three atoms N—C*—
C, with the correct distances and internal angle,
around the vertex situated in the C* position, until
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the five equations included in the minimization set
are satisfied as closely as possible.

The numerical solution of the problem formulated
above has been accomplished using the DNCONG
routine in the IMSL library." This subroutine is based
on the use of a successive quadratic programming
method.”? The algorithm requires the user to supply
the gradient of the minimization function and of the
mathematical constraints with respect to the un-
knowns included in the system. This is, in fact, a
quite straightforward calculation and does not de-
serve any further comment.

By using this algorithm, we get a solution for the
relative coordinates (2", ", 2¥) and (z€, ¥, 2°) that
usually satisfies all geometrical equations reasona-
bly well. The transformation of these relative coor-
dinates to absolute values involves only adding the
C¢ coordinates. Only in a few cases, usually asso-
ciated with glycines (whose particular consideration
we shall discuss immediately below) and prolines
in the cis conformation, is the quality of the mini-
mization not so good. In subsequent sections, we
discuss possible ways of refining the resulting
coordinates.

THE PROBLEM OF GLYCINES

As we have seen, the basis of the backbone recon-
struction lies in the previous positioning of the -
carbons. Thus, when one glycine appears in the pri-
mary sequence of the protein a gap would result in
the sequence of backbone atoms. As we shall see
when talking about the residues situated at the ends
of the chain, this does not pose a real problem when
a single isolated glycine appears in the sequence.
However, two or more contiguous glycines would
represent a nonresolvable problem. To avoid this
complication, we used a small (although quite valid)
trick, consistent in defining the L hydrogen of the
glycines, and use it as the equivalent to the f-carbon
(although with the correct bond distance) in all sub-
sequent calculations. To do that, we included a mod-
ification in the program that scans the experimental
structures looking for the cosine directors of the f-
carbons. When a glycine appears, instead of skipping
it, the distorted tetrahedron centered in the a-carbon
and with two vertices in the positions of nitrogen
and carbon is constructed. After that, the vertex cor-
responding to the L configuration is chosen as the
direction of the hydrogen, whose director cosines
are then determined from the usual reference sys-
tem. Of course, the method involves a certain am-
biguity in the definition of the tetrahedral positions,
and so the full atom reconstruction of glycines is,
on average, worse than for the other amino acids.
However, the procedure works rather well in most
of the cases. The director cosines resultant from this
analysis are also included in Table 1.
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TERMINAL RESIDUES

For the two residues situated at the ends of the
primary sequence, the definition of an internal ref-
erence system that allows positioning of the f-car-
bons (or the L hydrogen for glycines) is not possible,
and this precludes the possibility of locating the
backbone atoms for these two residues via the pre-
viously described process. Even though there is no
way of solving this problem for the f-carbon or the
terminal backbone atom (the N in the first residue
and the C=0 in the last residue), it is possible to
locate the coordinates of the atoms involved in the
peptide bond once the plane in which this lies is
defined by the next (or the previous) residue, whose
backbone atoms must have been already deter-
mined.

Figure 3 shows the geometrical constraints that
must now be satisfied. We have suppressed the g
carbons since the position of one of them is un-
known in our reconstruction procedure and the
other is unnecessary. The available information in
this case consists of the distance of the desired atom
(the carbon in the N-terminus or the nitrogen in the
C-terminus) to the corresponding a-carbon, the dis-
tance and angles of the peptide bond, its planarity
(the plane being defined by the position of the a-
carbons that delineate it and the atom—N or C—
whose position is already known), and the value of
the angle £ or 7, as defined in Figures 2 and 3.

Then, the equations that need to be satisfied now
are:

® N-terminus. The unknowns are the three coor-
dinates (zf, ¥f, 2{) and it is assumed that the co-
ordinates (X%, Y%, Z) are already known. Since
the center of the reference system is taken in C§,
these last coordinates (which we have expressed
in upper case symbols, indicating its absolute
meaning) have to be recomputed with respect to
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the chosen origin.
@D+ @2+ @ -dc=0 (149
[f — (X} - XDP + [of — (¥} - YOI
+ [ - (2 - ZDP - dew = 0 (15)
aflaf — (XY — XD] + oflyf — (Y - D))
+ 2flzf - (Z - Zp)
- dCNdaC COS T,on = 0 (16)
l'a,cl ‘ (ruwz X ra,az)
xf uf ¢
=|X{-X W-v -z =0 (a7
Xs—-Xy Ye-Yr Zg - Z¢
(X3 — X9) + yf(Ys — YD)
+ 20(Z5 - 20 - Aocloe, cOs 7 = 0. (18)
® C-terminus. In this case, the three unknowns are
the coordinates (X5, Yres) Zhres), With nres being
the number of residues of the protein, and the
same considerations have to be made about the

origin of the reference system, centered now at
Chres.

(@lesf? + (U + () — div = 0 (19)
[xlem - (Xsm-l - X?mzs)]z

+ [yﬁns - (Yr?ms—l - Y:rw)lz + [zgns
= (Dhes-1 — Zowe)? — diy = 0 (20)

xgm[xgres - X'(z:res—l - X:m_|)]

+ y#m [yﬁms - (Yt?ms-l - Y:res—l)]
+ zﬁms [erYms - (ngs-l - Z:ms—l)]
= deyday €OS Ton, = 0 (21)
rcﬂrvwnm ) (raﬂmcnm—l x ranmanm-l)
= Xr?res—l — Xires ng—l = Yires Zr(fres-—l = Zires
X;'mzs—-l - X:res ngs-l - Y:m Z;xmzs—d - Z:ms

=0 (22

N-terminus

C-terminus

Figure 3. Atoms and geometrical values involved in the coordinate deter-
mination of C, and N,,.,. The broken lines sketch the peptide plane.
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xg’m(Xgm-l - X:m) + ygm(Y:ms—l - Y:ms)
+ Znes(Zives-1 = Ziares) — BocBapay,., €OS &
=0. (23)

Again, we keep more equations than unknowns.
This is especially important in these conditions since
three of the five equations in every set depend on
some previously determined coordinates and can
therefore include some error. In this case, we have
considered all the formulated equations as part of
the minimization function without any of them acting
as a mathematical constraint. The values of dcy,
Tene and T.ov included in these equations are listed
in Table III and, as usual, correspond to the average
of the values found in the PDB structures.

POSITION OF THE CARBONYL OXYGENS

Once all the consecutive atoms of the backbone have
been positioned, the coordinates of the oxygens cor-
responding to the carbonyl groups should be, in prin-
ciple, a trivial calculation. Unfortunately, this does
not hold in reality and serves to bring us to some of
the limitations in the model. These problems are
related to the “isolated” character of the reconstruc-
tion procedure, in which every residue is considered
independently (along with information provided by
the a-carbon positions of the adjacent residues). This
means that, with the exception of the end residues,
the planarity of the peptide bond is not explicitly
included into the system of equations. We have em-
phasized the term explicitly because, as stated be-
fore, equations involving the angles ¢ and # are a

Table III. Bond lengths and bond angles involved in the
reconstruction of terminal residues.

Residue dey/ A TacN TCNa

Gly 1.322 115.7° 121.2°
Ala 1.322 116.2° 121.4°
Ser 1321 115.8° 121.3°
Cys 1.322 115.9° 121.3°
Val 1.321 115.8° 121.5°
Thr 1.322 116.0° 121.2°
lle 1.320 115.6° 1214°
Pro trans 1321 115.8° 121.8°
Pro cis 1.323 116.56° 124.6°
Met 1.322 115.8° 121.4°
Asp 1.322 115.9° 121.6°
Asn 1.323 116.0° 121.5°
Leu 1319 116.1° 121.5°
Lys 1.321 115.9° 121.7°
Glu 1.322 116.0° 121.4°
Gin 1.322 116.0° 121.6°
Arg 1.322 116.0° 121.2°
His 1.322 116.0° 121.3°
Phe 1.322 115.6° 121.5°
Tyr 1.323 116.6° 121.5°
Trp 1.326 116.0° 121.5°
Cyx 1.319 115.6° 120.9°
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direct consequence of this planarity. However, both
due to the fluctuations found in the crystallographic
structures for these angles and numerical errors in
the solution of the system of equations, one finds
that the final planarity of the peptide bond is not
absolutely achieved in all cases. Many times, the fluc-
tuations of the angle w that defines the torsional
state of the peptide bond (see Fig. 2) are only a few
degrees (less than 15°, with a high percentage being
less than 10°, as happens in experimental structures).
However, a few residues in every reconstructed pro-
tein exhibit larger deviations, even up to 60—90°. The
reasons for these deviations are not clear at the mo-
ment. However, they pose a serious problem when
trying to position the oxygen atom. If the vectors
joining C#—C; and N;,,—C¢,, are not in the same
plane, the determination of the oxygen position is
subject to a certain ambiguity.

To avoid this as much as possible, we tried to
establish a series of conditions that do not only de-
pend on the previously determined atomic coordi-
nates. In Figure 4, a scheme showing the associated
geometrical restrictions is depicted. The distance
d.o, between an a-carbon and the oxygen in the same
residue was determined from the crystallographic
structures analysis, as was the angle 7o, that forms
the imaginary lines C¢—O; and C¢—C¢,;. On the
other hand, the choice of the plane in which the
oxygen atom is going to be positioned (and that con-
stitutes the only additional information required to
locate it) has to be determined from the atoms in-
volved in the peptide bond. After a few tests, we
found that it was usually slightly better to define the
plane from the position of the nitrogen N;,; than
from carbonyl carbon C; since the calculated coor-
dinates of the nitrogen yield an average deviation
from the PDB coordinates that is smaller than that
for the coordinates of the carbon atom. Obviously,
the other two points necessary for defining the plane
are the a-carbons C¢ and C%,,. In these conditions,
some cases appear in which the distance dc, or the
angles 7,0 and Toqy are distorted with respect to
their average values. However, the alternative pro-
cedure of including these additional geometrical re-
quirements and trying to find a minimum for the
whole set of equations did not in general improve
the result. The values of d¢o and 7., for the different
residues are included in Table IV.

Figure 4. Definition of the geometrical constraints em-
ployed in the oxygen reconstruction.
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Table IV. Virtual lengths and angles employed in deter-
mination of the oxygen coordinates.

Residue d.o/A T0aa

Gly 2401 47.38°
Ala 2.401 46.97°
Ser 2.396 47.15°
Cys 2.397 47.07°
Val 2401 47.21°
Thr 2.397 47.11°
Ile 2.400 42.78°
Pro trans 2.406 4745°
Pro cis 2405 46.52°
Met 2.399 47.12°
Asp 2.396 47.12°
Asn 2.395 47.20°
Leu 2.395 47.22°
Lys 2.400 46.96°
Glu 2.396 47.22°
Gln 2.398 4727°
Arg 2.396 47.12°
His 2.398 47.09°
Phe 2.399 47.89°
Tyr 2.397 4764°
Trp 2.403 4691°
Cyx 2.397 47.31°

RESULTS AND DISCUSSION

With all the geometrical relations seen so far, we
have developed a Fortran algorithm that, having as
input information only the coordinates of the a-car-
bons and the nature of the amino acids that comprise
the protein (i.e., its primary sequence) ultimately pro-
vides the coordinates of all the f-carbons (with the
exception of the glycines and the end residues) and
the corresponding positions for the carbon and ox-
ygen in the carbonyl groups and the nitrogen in the
amide groups. To check the mathematical consist-
ency of the algorithm, we tested it on some ideal
structures built in such a way that they rigorously
satisfy the geometrical constraints included in the
mathematical equations of our procedure. When the
coordinates of the a-carbons for these structures are
used as input data in our program, the resulting back-
bone atom coordinates present a negligible deviation
with respect to the ideal chain.

Much more important, however, is the ability of
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the method to handle the nonideal structures that
occur in nature. In Table V, we present the resulting
coordinate rms deviations for several real proteins
(4pti: bovine pancreatic trypsin inhibitor, BPTI; 1pcy;
plastocyanin; 2mhr: myohemerythrin; 2lym: lyso-
zyme; 3fxn: flavodoxin; 1tim: triosephosphate iso-
merase). The a-carbon coordinates were extracted
from the corresponding files in the Brookhaven Pro-
tein Data Bank (with the exception of 1tim'®) and
were chosen to span different possibilities both with
respect to the protein size and the elements of sec-
ondary structure that constitute the protein. We do
not find any dependence of the method on these
variables.

It is important to notice the low rms shown by
the f-carbons, whose positions, as we stated before,
are the first step in the reconstruction procedure.
Almost the same can be said about the nitrogen at-
oms, and with a slightly less enthusiasm for the car-
bonyl carbons (the fact that these C atoms present
an average deviation larger than nitrogens was the
reason we chose the position of the nitrogen as the
reference point when determining the coordinates
of the oxygens). Nevertheless, when going to the
oxygen coordinates the deviations are rather con-
siderable. There are several reasons for this. First,
they result from the accumulation of errors involved
in the oxygen reconstruction itself (due to the use
of statistical average values for the length d,, and
the angle 7,,,) and those existing in the position of
the nitrogen atom. Second, and more important, the
determination of the oxygen coordinates is based
upon the assumption of exact planarity of the pep-
tide bond, an assumption that, even ignoring some
cases of large deviations, is never completely ful-
filled.

To solve this problem, it would be desirable to
develop a method that is able to enforce peptide
bond planarity and that could be included as a con-
stituent part of the reconstruction procedure itself,
This could be accomplished by determining the co-
ordinates of the nitrogen and carbonyl carbon for a
given residue inside the chain and then propagating
the solution by including in the set of equations to
be minimized the condition of peptide bond plan-
arity. This idea, although quite attractive from a con-

Table V. Summary of coordinate rms deviations between analytically rebuilt structures and PDB files.

Protein No. residues® No. atoms® (o N C (0] Total
4pti 58 279 0.257 0.306 0.329 1.287 0.626
1pcy 99 480 0.343 0.333 0415 1478 0.725
2mhr 118 580 0.294 0.371 0421 1.452 0.711
2lym 129 628 0.289 0.356 0437 1.552 0.756
3fxn 138 671 0.324 0.300 0.374 1.464 0.713
1tim 249 1221 0.295 0.284 0.369 1.278 0.626

rms is expressed in A.

“Number of residues comprising the primary sequence of the protein.

*Heavy atoms whose coordinates have been determined (a-carbons are not included).
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ceptual point of view, is not feasible. As a matter of
fact, the algorithm in this case would be identical to
that presented by Purisima and Scheraga? with the
only formal difference that it is formulated in terms
of Cartesian coordinates instead of torsional angles.
The fact that all the geometrical equations are in-
cluded instead of only a minimum set probably
would make things work somewhat better, but the
method would still strongly depend upon the choice
of the residue whose reconstruction is carried out
in the first place and whose coordinates act as a
seed to propagate the whole reconstruction after-
ward.

A second possibility would be to include some
kind of refinement of the structures after the ana-
lytical reconstruction procedure described here has
been used. In this sense, we tried the following mech-
anism. We can assume that the set of C#, N, and C
for a given residue, together with its a-carbon, satisfy
the appropriate bond lengths and bond angles. If this
is so, we would be able to treat this set of atoms as
a rigid body and, by choosing a set of rotations pi-
voted about the position of the a-carbon, slightly
modify the orientation of the atoms in every residue
with respect to the previous and the following res-
idue with the object of improving the planarity of
the two corresponding peptide bonds. Of course, we
have to implement an iterative procedure since every
movement of one residue affects the two adjacent
peptide bonds. To check improvements resulting
from this scheme, we added an optimization pro-
cedure after the first reconstruction. For every res-
idue, we formulate a set of geometrical relations
similar to those employed in the reconstruction of
the terminal residues, shown in eqs. (14)-(23). The
only difference is that these equations are not for-
mulated now in terms of the Cartesian coordinates
of N and C, but include the dependence of these
quantities on the three Euler angles that describe the
rotation of the central residue with respect to its
original position,’* where the C® remains fixed in its
original coordinates taken from PDB. When the it-
erative procedure is run trying to minimize the geo-
metrical constraints of the peptide bonds, the rms
of the structure begins to be reduced, but after a few
iterations it again grows. The method does not al-
ways reach convergence, but when it does the final
set of coordinates always has a larger deviation than
the original structure. There is a reason for this.
Since the geometry of the peptide bond is the only
requirement imposed on the system during this pro-
cedure, there are multiple solutions to the problem
because the peptide planes have free rotation around
the axis that joins two contiguous a-carbons. Of
course, the angle 7y,c couples the different orien-
tations of the peptide planes, but once one of them
has been fixed arbitrarily it is possible to find a so-
lution for the others in most of the cases.? The ques-
tion whether these solutions are valid or not depends
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on the position of the f-carbons, which follow the
rotation movement, and its consistency with the a-
carbon trace. But, since this consistency is not in-
cluded in the iterative procedure, the “optimization”
continues until one minimum for the peptide bond
equations is found that is not going to correspond
in general to the correct conformation of the protein
backbone.

On the other hand, if the position of the f-carbons
are included in this method (we do this by keeping
its coordinates confined to a narrow cone around
the original location), the algorithm is not able to
produce any real improvement. It is clear that some
of the f-carbons have to be moved more than others
to find the correct conformation for the peptide
bond, but since the algorithm is not able to recognize
which initial estimations of the C? positions are very
good and which are not (we remind the reader once
more that the information provided to the algorithm
consists only in the C* coordinates) there is not any
readily apparent way of designing a purely analytical
refinement procedure.

Of course, this difficulty would be readily over-
come if any additional experimental information
were available. The exact position of a f-carbon or,
even better, of one of the atoms in the backbone,
would open up the possibility of very easily using
one of the refinement options previously mentioned,
propagating the refinement of the coordinates from
the point in which they are known to be correct.

Without this information, there is still one pro-
cedure that can be used, although the analytical
character of the method is then lost, viz., energy
minimization. To prepare the backbone, the primary
sequence is redefined so that it is only composed of
alanines (in all residues whose f-carbon position has
been determined) and glycines (corresponding to the
actual glycines of the protein and the terminal res-
idues). By doing this, one can use the default options
of some of the standard minimization packages with
the certainty that the assignment of charges and hy-
drogens is going to be correct (with the exception
of the end residues since the first N and the last
C=0 are impossible to locate). In particular, we
have used the minimization procedure included in
the SYBYL package.'s All the hydrogen atoms were
added to the backbone, as well as the partial charges

Table VI. Summary of coordinate rms deviations after
energy minimization of the rebuilt backbone.

Protein Cc? N C (6] Total
4pti 0.257 0.256 0.256 0.842 0.428
1pcy 0.350 0.337 0.349 0.843 0.464
2mhr 0.363 0.376 0.340 0913 0.495
2lym 0317 0.228 0.261 0.854 0.438
3fxn 0.343 0.266 0.303 0.965 0.495
1tim 0.294 0.213 0.245 0.759 0.393

The reference coordinates are still those corresponding
to the PDB files. rms is expressed in A
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corresponding to the resulting structure. The a-car-
bons were defined as aggregates so their positions
remain fixed during the process, and a standard en-
ergy minimization was run until convergence. Table
VI shows the deviations found in the resulting struc-
tures compared with the reference crystallographic
coordinates. Also, in Figure 5 we show a detailed
picture of the distribution of deviations along the
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primary sequence for flavodoxin (3fxn) both for the
structure resulting from the purely analytical recon-
struction (left column) and for the energy-minimized
structure (right column).

The first remarkable result is that the average de-
viation of the fi-carbon does not improve at all, but
it goes in general to larger values. This does not mean
that they remain fixed during the minimization, as
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Figure 5. Coordinate rms deviations for flavodoxin. Plots at the left column correspond to analytical reconstruction,
while the right column corresponds to the structure after energy minimization.
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can be observed from the different locations of the
dominant deviations in C# shown in Figure 5. On the
other hand, the positions of carbons and nitrogens
slightly improve, and it is for the oxygens where the
positive consequences of the refinement method re-
sult are clearly apparent. From this information, it
is evident that the main effect of energy minimization
is equivalent to the refinement of the peptide bond
planarity we tried to implement previously. It looks,
however, that while the pure geometrical constraints
were not able to find the correct solution for the
system, the introduction of the global energy as the
main criterion is able to yield a good structure. Of
course, it is not exactly equal to the native one. The
existence of multiple local minima in which the min-
imization iterations can be trapped, and more im-
portantly the suppression of the side chains, may
considerably modify the energy surface and, at least
in some regions, make the system evolve toward a
close but different (nonnative) conformation. Also,
the choice of the force field has its influence. The
structures included in the PDB are not usually the
simple result of the crystallographic experiment but
are themselves refined through the use of different
methods that optimize the resulting geometry, en-
ergy, and similarity between the estimated and ex-
perimental structure factors. This means that
different refinement procedures can yield slightly
different sets of coordinates. To check this fact, we
ran the energy minimization procedure for the PDB
backbone of flavodoxin exactly in the same condi-
tions used for the analytically rebuilt structures (i.e.,
changing the primary sequence and even suppress-
ing the terminal atoms that are not located in the
rebuilt chains). When the minimization reaches con-
vergence, the total rms deviation for the coordinates,
with respect to the original PDB file is 0.21A, half
the deviation of the rebuilt structure after the same
minimization. Thus, when one is moving on a dis-
tance scale of a few tenths of an A every detail is
important, but the narrow distinction between the
quality of the different structures is difficult to es-
tablish accurately since this region is far beyond the
capabilities of the available experimental data them-
selves.

CONCLUSIONS

In this article, we presented a method that allows
for the analytical reconstruction of a protein back-
bone with the only information being the primary
sequence and a reasonable set of a-carbon coordi-
nates. The method is able to give structures whose
coordinates deviate on average about 0.7A from the
actual PDB coordinates. This deviation includes the
positions of f-carbons, carbonyl groups, and amide
nitrogens. If oxygen coordinates are excluded from
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these calculations, then the rms drops to half this
value. The advantage of this method with respect to
those based on PDB scanning or the propagation of
a construction/optimization scheme is that the re-
quired time is much shorter (the algorithm takes only
a few seconds on a Convex C-240 in comparison with
several hours of computer time employed by some
of the fragment-fitting methods) and in some occa-
sions it provides results at the same level of accu-
racy. Even the inclusion of the energy minimization
keeps the total computational time at a quite rea-
sonable level (on the order of half an hour for the
largest protein considered here). Specifically, our an-
alytical results for flavodoxin are comparable to
those provided by Correa’s method?® after the back-
bone reconstruction (which, in his case, already in-
cludes a number of energy minimizations). Also, the
results for the real structure of BPTI (4pti) are con-
siderably better than those provided by Purisima and
Scheraga® although the large rms found by them is
not due to the position of the atoms we are consid-
ering here but results from the discrepancy between
the ideal C~ trace and the real one.

Unfortunately, there is no way of extending this
analytical method to the side chains. The inclusion
of the torsional angles y quickly increases the num-
ber of degrees of freedom, and effects such as the
packing of the side chains or more specific inter-
actions that are not uniquely related to the a-carbon
trace preclude any possibility of using geometrical
criteria alone for trying to find even an approximate
set of coordinates for the side-chain atoms. It is true
that, for some amino acids, the spectrum of orien-
tations with respect to the backbone is not contin-
uous.'s Instead, some kind of “rotamer library” can
be found, where a limited set of possible confor-
mations can be defined by a series of director co-
sines, as done here for the f-carbons. Even when
this set is small enough (reduced to three of four
possibilities), there is not information enough to
know which rotamer corresponds to a given residue
in every situation. Thus, the only way to proceed
would be to make an initial guess and run expensive
optimizations as in the other reconstruction methods
previously proposed.

This fact, however, does not diminish the impor-
tance of our algorithm. The results for the backbone
alone have proven to be comparable, and sometimes
even better, than those obtained from other methods.
In addition, the flexibility in the solution of the geo-
metrical constraints, together with the independence
of the procedure with respect to real structures,
makes it an ideal tool for use in theoretical repre-
sentations of a protein projected onto a lattice or
any other kind of simplified model, and therefore it
can significantly contribute to the improvement of
these models once the simplified representation has
been exploited to its maximum extent.
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