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ABSTRACT In the context of simplified 
models of globular proteins, the requirements 
for the unique folding to a four-helix bundle 
have been addressed through a new Monte 
Carlo procedure. In particular, the relative im- 
portance of secondary versus tertiary interac- 
tions in determining the nature of the folded 
structure is examined. Various cases spanning 
the extremes where tertiary interactions com- 
pletely dominate to that where tertiary interac- 
tions are negligible have been explored. Not 
surprisingly, the folding to unique four-helix 
bundles is found to depend on an adequate bal- 
ance of the secondary and tertiary interactions. 
Moreover, because the simplified model is com- 
posed of spheres representing a-carbons and 
side chains, the geometry of the latter being 
based on small real amino acids, the role played 
by the side chains, and the problems associated 
with packing and hard-core repulsions, are 
considered. Also, possible folding intermedi- 
ates and their relationship with the experimen- 
tally observed molten globule state are ex- 
plored. From these studies, a general set of 
rules is extracted which should aid in the fur- 
ther design of more detailed protein models ad- 
equate to more fully investigate the protein 
folding problem. Finally, the relationship be- 
tween our conclusions and experimental work 
with specifically designed sequences is briefly 
discussed. o 1993 Wiley-Liss, Inc. 
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INTRODUCTION 
In spite of increasing attention over the last sev- 

eral years, the general features of globular protein 
folding and stability remain controversial. Among 
the salient questions is the relative importance of 
local versus tertiary interactions in stabilizing the 
folded structure. Should one view protein folding as 
simply a collapse where local preferences for helix, 
extended states and turns are mainly involved in 
fine turning of the structure,’ or perhaps local pref- 
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erences, while small, play a crucial role in the early 
initiation events and in the partial elimination of 
liquid-like states on collapse?2 Furthermore, what 
features should be considered in the design of a glob- 
ular protein? How crucial is the side chain packing 
in the core versus the choice of amino acid sequences 
that favor a particular element of secondary struc- 
ture? Turning to the process of protein folding itself, 
how do proteins avoid the Levinthal paradox? What 
is the nature of the early and late intermediates in 
folding? What exactly is the molten globule state?3 
Do proteins fold via a large manifold of pathways or 
are there a relatively small n ~ m b e r ? ~  Clearly, these 
and other questions have been subjected to increas- 
ing experimental and theoretical scrutiny. Our ob- 
jective here is to examine these questions in the con- 
text of simplified theoretical models of globular 
proteins. These afford the advantage that one can 
perform a series of numerical experiments to exam- 
ine the consequences of a given series of assump- 
tions about the physics of protein folding. The aim is 
to identify a set of conditions under which model 
proteins uniquely fold to the native state, chosen 
here, because of its structural simplicity, to be a 
four-helix bundle. 

The use of computer simulations to investigate 
protein folding has recently seen considerable devel- 
opment and has resulted in a wide diversity of ap- 
pro ache^.^ Perhaps, the most powerful use of simu- 
lations of model systems is that  they permit one to 
ask questions of the “what if” variety. For example, 
while experimentally it has not proven possible to 
fold proteins devoid of side chains, it is possible to do 
so on a computer, therefore explicitly checking the 
role of side chain packing in the folding process. 
Similarly, at least for a representative range of pa- 
rameters, the extremes of the relative importance of 
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secondary versus tertiary interactions in protein 
folding can be explored. One can turn off all the 
secondary preferences and see what happens, and 
then go to the other limit and have tertiary interac- 
tions weak and secondary preferences strong. Fur- 
thermore, computer simulations allow one to design 
numerical experiments which focus on properties 
that are not accessible to traditional experimental 
techniques. At present, it is very difficult to get ex- 
perimental evidence to support or dismiss the differ- 
ent generic mechanisms proposed for the folding 
pathways of globular proteins. On the other hand, it 
is easier (at least conceptually) to design a computer 
simulation model adaptable to this kind of study. It 
is clear that the formulation of the model may in- 
fluence the results, therefore severely limiting their 
significance. Our aim is, then, to design a simple, 
computationally tractable model, which can provide 
real insights into the mechanisms of protein folding. 

For globular proteins having a medium to a rela- 
tively large number of residues, probably dynamic 
Monte Carlo (MC) algorithms constitute the most 
promising approach to the protein folding p r ~ b l e m . ~  
They allow for different levels of accuracy in the 
representation of the protein, are able to avoid ki- 
netic trapping in local energy minima, and can rep- 
resent, at least qualitatively, a real (though usually 
unknown) and long time scale, totally unreachable 
by other simulation methods such as Brownian dy- 
namics (BD) or molecular dynamics. 

In this paper, we describe an off-lattice dynamic 
MC method developed for this purpose, and have 
studied the folding pathways of idealized model 
four-helix bundles6 The model includes both a-car- 
bons and side chains, and therefore the role of side 
chain packing and its general influence on the fold- 
ing pathways can be specifically addressed. In addi- 
tion, an off-lattice realization of the MC procedure 
can shed some light on the influence that the dis- 
cretization of the configurational space (i.e., the use 
of an underlying lattice) employed in previous sim- 
u l a t i o n ~ ~  can have on the observed pathways. Pre- 
vious studies have shown that, a t  least for very sim- 
plified models without side chains, the general 
features of the folding pathways do not depend upon 
the use of the lattice, nor on the simulation tech- 
nique.' However, the use of low coordination lattices 
in which the elements of regular secondary struc- 
ture have a very limited set of allowed orientations 
can pose some problems. We shall see, however, that 
our off-lattice results are quite consistent with fold- 
ing pathways observed in high coordination lat- 
t i c e ~ , ~  where these problems are greatly reduced or 
entirely eliminated. 

The organization of the remainder of the paper is 
as follows. In the next section, we describe the 
model. This description includes some technical de- 
tails of the geometry and dynamics of the model, 
which can be readily skipped by the reader mainly 

interested in the qualitative conclusions. However, 
we call attention to the subsection on Design Re- 
quirements, dedicated to the design requirements of 
a four-helix bundle from the perspective of our 
model. Indeed, this is precisely the aim of intense 
experimental and computer research currently un- 
der way"*" in the de novo design of globular pro- 
teins. Also, in the subsection on Potential Functions, 
we present the potential function employed in the 
model, as a crude-but not unphysical-representa- 
tion of the energy surface one might expect for a 
simple globular protein. 

The third section analyzes the trajectories which 
constitute the outcome of the MC simulations. First, 
we discuss the possibility of getting a unique folded 
conformation for a given sequence (and model), as a 
function of the different assumptions about the rel- 
ative importance of various terms in the potential 
function. Then, we discuss the folding pathways ex- 
hibited by our model proteins. We focus in particular 
on the nature of the intermediate conformations ob- 
served during the folding process, and the problems 
related to the adequate packing of the interacting 
elements comprising the structure. These points 
find a direct parallelism to some proposed states de- 
rived from experimental evidence, e.g., molten glob- 
u l e ~ , ~  which could be relevant to understanding pro- 
tein folding. 

Finally, the last section presents the final compar- 
ison of the models investigated, a summary of the 
conclusions extracted from our study, and their im- 
plications for further studies about globular protein 
structure and folding. 

Geometry 
The protein model considered in this work in- 

cludes a spherical representation of both a-carbons 
and side chains (one sphere for the a-carbon and one 
single sphere for every side chain). The spheres rep- 
resenting the a-carbons have a diameter of 3 b, and 
behave as impenetrable spheres for any other a-car- 
bon. The radii of the spheres representing the side 
chain are determined by their repulsive cores and 
are described below. The distance between contigu- 
ous a-carbons in the primary sequence of the protein 
is constant, equal to 3.8 b, and constitutes the unit 
length for all the distances employed in the model. 

The virtual "bond angles" between a-carbons are 
allowed to fluctuate quite freely, but avoid the ex- 
tremes which are not found in real protein back- 
bones. Thus, these angles can have any value in the 
range from 78 to 143". 

Side chains 
The position of the spheres representing the side 

chains with respect to the a-carbon backbone is 
based on a statistical analysis of well resolved crys- 
tal structures. In this analysis, the centers of mass of 

DESCRIPTION OF THE MODEL 
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the side chains in a series of real protein structures 
were obtained, and their distances and orientations 
with respect to the backbone were classified in a 
histogram, as a function of the backbone conforma- 
tion. In this initial study employing the off-lattice 
algorithm, we have only used models with small, 
rather symmetrical side chains (valine and serine), 
which are present as a single rotamer in the library. 
Therefore, the side chain is rigidly attached to the 
backbone, its orientation being defined for residue i 
by the coordinates of the three a-carbons C m i p 1 ,  Cmi,  
and Cmi + Since one of these atoms is always miss- 
ing in the terminal residues, these are always de- 
fined with the geometry of glycines (i.e., without 
sidechains). 

Double primary sequence 
The position of the side chains with respect to the 

backbone, for a given local conformation of the lat- 
ter, is dictated by the primary sequence of amino 
acids. In addition, the model includes a second pri- 
mary sequence, in which the residues are classified, 
according to their interaction nature, as hydrophilic 
or hydrophobic. Therefore, this second sequence de- 
fines the amphipathic pattern of the protein, whose 
design is of importance in order to get the desired 
fold. 

Design Requirements 
An advantage of the double primary sequence in 

the present model is the possibility of defining se- 
quences of residues whose side chains’ geometric 
properties are uncoupled from the interaction pat- 
tern. For example, we can define a sequence com- 
posed of glycines (only the a-carbon representation) 
and still retain an  amphipathic sequence of hydro- 
phobic and hydrophilic residues. This permits the 
role of side chain packing in folding to be explored 
by examining the differences between a model with 
and without side chains. Our objectives are to find a 
pattern of hydrophobic and hydrophilic residues 
that (1) gives a unique folded structure, (2) is highly 
regular, and (3) is still representative of actual fold- 
ing topologies appearing in real proteins. Both from 
previous lattice MC sir nu la ti on^^.^ and experiments 
in protein design,10,12 the four-helix bundle seems to 
be a reasonabled candidate. 

General considerations 
Taking into account the requirement for struc- 

tural uniqueness, the turns connecting the four he- 
lical fragments should be as short as possible; this 
will tend to avoid alternative stable topologies. Also, 
one has to arrange the distribution of hydrophobic 
and hydrophilic residues to maximize the number of 
favorable (attractive) interactions in the desired 
structure. This is actually a nontrivial problem, due 
to the deviations from the perfectly regular topology 
seen in natural four helix bundles. Therefore, we 

employ simple structures based on the diamond lat- 
tice models studied previ~us ly .~  The main disadvan- 
tage of this choice is that it only allows for the pos- 
sibility of square helices, i.e., helices with four 
residues per helical turn, instead of the 3.6 in real 
a-helices. 

M&l without side chains 
In a model without side chains, the simplest way 

of forming a compact four-helix bundle on a diamond 
lattice is sketched in model A of Figure 1. This 
model has the advantage that all residues are in- 
cluded in helical fragments, and each turn between 
them is just formed by one virtual bond joining 
a-carbons, almost precluding any large deviation 
from the desired structure. Longer turns result in 
open structures requiring tertiary interactions that 
are too long ranged, yielding compact globules de- 
void of secondary structure. This structure has a 
3 + 1 pattern of hydrophobic and hydrophilic resi- 
dues (three hydrophobic and one hydrophilic resi- 
dues per helical turn). However, this structure does 
not leave any room for side-chain packing, since the 
distance between a-carbons of different helices in 
the hydrophobic core is the same as the distance 
between neighbor a-carbons in the primary se- 
quence. 

Model with side chains 
In order to introduce side chains, the structure 

must be opened up. Two possibilities, also built on a 
diamond lattice, are depicted in Figure 1, models B 
and C. Both models have one residue and two vir- 
tual bonds per turn, which gives them a larger flex- 
ibility than model A. Therefore, the choice of the 
amphipathic pattern now has to be done very care- 
fully. Because the distance between a-carbons is 
quite large, it  is better to account for the interac- 
tions between the side chain positions directly 
rather than between the a-carbons. Otherwise their 
interactions would again have to be very long 
ranged, yielding very compact globules, with little 
secondary structure. 

The schematic representation of the models is 
shown in Figure 2. Glycines have been positioned in 
the turns. Hydrophobic residues are represented by 
side chains having the geometry of valine with re- 
spect to the backbone, while hydrophilic residues 
have the serine geometry. Again, we note that the 
choice of these residues is based exclusively on geo- 
metric criteria (small size and single orientation 
with respect to the backbone), and consequently it is 
not a contradiction, in the context of this model, to 
have chosen valine, a P-forming residue, as a con- 
stituent of the helical fragments. 

The most important points to be noticed in Figure 
2 are the orientations of the side chains and their 
interdigitation in the protein interior. Since both 
a-carbons and side chains have a spherical represen- 
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Fig. 1. acarbon traces of different model four-helix bundles, in top and side views. The top view allows for 
a good guess of the amphipathic pattern (see text), while in the side view, the disposition of the helices and 
turns is better appreciated. 

tation, space is much more densely filled than might 
appear from these simple line drawings. 

Amphipathic pattern for t?w s ide  chains 
In model B, one side-chain in each helical turn is 

clearly oriented toward the protein interior, and 
therefore is defined as hydrophobic. Also, the side 
chain diametrically opposed to this one in every he- 
lix is pointing toward the exterior, and is defined as 
hydrophilic. For the other two side chains per helical 
turn, both possibilities exist, but neither is ade- 
quate. If they are hydrophobic, giving a 3 + 1 pattern 
of residues, then the resulting structure has very 
broad hydrophobic faces. This produces a manifold of 
globular stable compact structures, which in the 
best case are distorted bundles. The most frequent of 

these is the Z-topology of the bundle, instead of the 
desired U-topology (see scheme Fig. 3a). On the 
other hand, when we opted for the 1 + 3 pattern 
(only one hydrophobic side chain per helical turn), 
the hydrophobic faces are too narrow, and the sys- 
tem has a very difficult time finding the correct 
structure. With tertiary interactions soft enough to 
avoid quenching the system, the intermediate struc- 
tures that appear along the folding pathway (dis- 
cussed below) are not stable enough for the protein 
to fold. If, however, the magnitude of the interac- 
tions is increased (or the temperature decreased), 
the structure becomes prematurely frozen in alter- 
native solutions. These are mainly triangular three- 
helix bundles, which lock most of the hydrophobic 
faces for three helices (see Fig. 3b), and expose only 
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model B 

U bundle 

gg 
2 bundle 

a 

model C 

4heh inmdle 3-helix bundle 

b 

Fig. 3. (a) Schematic representation of two alternative possi- 
bilities for a four-helix bundle. (b) For the 1 +3  pattern in model B 
(with the hydrophobic residues represented with thick side 
chains), three helices can fully stabilize a bundle, making it im- 
possible for the fourth strand to assemble onto it. 

Fig. 2. Full representation of the models employed, including 
a-carbon and sidechain positions. Model B: pattern 1 +3. Model 
C: pattern 2+2 (see text for explanation). 

hydrophilic residues to the exterior. Thus, it be- 
comes virtually impossible for the fourth strand to 
assemble the last helix in the desired position, a t  
least in a reasonable amount of computer time. 

The most successful model corresponds to model C 
in Figures 1 and 2. This arrangement of the helices 
imposes a 2 + 2 amphipathic pattern, with two con- 
tiguous hydrophobic residues and two contiguous 
hydrophilic residues per helical turn. The possibility 
of alternative structures such as Z-bundles or locked 
three-helix bundles still exists, but these can be 
eliminated or overcome by adequate definition and 
tuning of the potential parameters. 

Amphipathic pattern and 
tertiary interactions 

The relationship between the structure of the 
models and their tertiary interactions is depicted in 
Figure 4. Hydrophobic residues have been repre- 
sented in bold type, while dashed arrows represent 
the expected native contacts (between a-carbons in 
model A and between side chains in model C). These 
contacts correspond to the distances encountered in 
the rigid lattice representation of idealized struc- 

tures, as depicted in Figures 1 or 2. However, in our 
off-lattice simulations, the folded structures are 
much more mobile than Figure 4 suggests, and 
therefore some of the contacts indicated by the ar- 
rows can be absent from a given instantaneous con- 
formation in the folded state, while other contacts 
arise. As an example of the mobility within the 
folded state, Figure 5 shows representative folded 
conformations resulting from our calculations, and 
their corresponding contact maps. In the contact 
maps, the left upper triangle corresponds to the rigid 
ideal lattice representation. In the lower right tri- 
angle, we show the map for one of the conformations 
in the folded structures resulting from the folding 
trajectories. The perfect square arrangement of he- 
lices I, 11, 111, and IV is lost, resulting in contacts 
between helices I and 111, on some occasions, and 
contacts between helices 11 and IV in others. The 
backbone representation of model A clearly reflects 
this shifting. Also observe the angle between neigh- 
boring helices in model C, which does not appear in 
model A; this also appears in real proteins, and is a 
direct consequence of the packing of side-chains. 

Relation to experimental seqllences 
Interestingly, the distribution of hydrophobic and 

hydrophilic residues defined in model C is rather 
similar to that used by DeGrado and co-workers in 
their incremental design of proteins with the four- 
helix bundle topology. '' The real helices, composed 
mainly of leucine, glutamic acid, and lysine, show 
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Fig. 4. Schematic representation of the four-helix bundle for the models under consideration. Residues 
defined as hydrophobic have a boldface number, while residues considered as hydrophilic are in italics. Helix 
I has been repeated at the right side of the figures, without any bonded connection, to show the tertiary 
interactions existing between this helix and helix IV when the bundle is assembled. 

clearly two faces, distributed with approximately 
50% hydrophobic residues, which form the buried 
core of the folded structure, and another 50% 
charged residues, exposed to the solvent. It is clear 
that our model is far simpler than these real, yet 
highly idealized, model proteins. The interactions 
between charged residues are only schematically 
considered in our scale for the tertiary interactions, 
and the question of the helix dipole is completely 
ignored. Nevertheless, some features of the model, 
such as the choice of a compatible sequence, the 
packing problems, the definition of turns between 
helices, and others, retain a close resemblance to 
those encountered in experiment. 

Potential Function 
The potential function employed in the descrip- 

tion of the model energetics is composed of several 
terms 

ETotalYEb.a. + E ~ r s  + Ehelix + Elon= (l) 

whose definition is as follows. 

Bond angles 
Eb.a. is the contribution to the potential of the vir- 

tual bond angle 0 defined by three contiguous a- 

carbons, and is given by a harmonic potential for 
every backbone bond angle as 

In this equation, Kb,a. is the force constant, with a 
rather small value in our simulations (about 10kBT 
units, k ,  being the Boltzmann constant and T the 
absolute temperature; we shall use their product as 
the reduced unit for the energy terms). 9, is the 
equilibrium angle, taken arbitrarily as the angle 
corresponding to a tetrahedral lattice (109.5"). Ac- 
tually, this value is close to the average virtual bond 
angles found in a-helices in real proteins. This con- 
tribution to the potential, however, has an almost 
negligible effect on the dynamics of the folding pro- 
cess. 

Torswnal angle8 
E,, is the contribution to the potential arising 

from the values of the torsional angles defined by 
the a-carbon trace. There is no straightforward way 
of formulating a continuous function which repro- 
duces the different torsional states appearing in real 
proteins. Therefore, we have greatly simplified this 
contribution to the potential assuming that the tor- 
sional states are close to those defined in the rota- 
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Fig. 5. Contact maps for the models. Upper left triangle: contacts in the ideal rigid lattice representation. 
Lower right triangle: contacts in a single conformation taken from the folded state in an off-lattice MC 
trajectory. Instantaneous backbone conformations resulting from the off-lattice MC trajectories are shown 
under the corresponding contact maps. 

tional isomeric state model13 for chain molecules, 
i.e., we only consider the three states trans, 
gauche+, and gauche-. An a-helix is defined as a 
series of consecutive gauche- states, while a 
p-strand would be represented by a series of trans 
states, and a turn by combination of the three pos- 
sibilities. These torsional states represent the center 
of a broad region for the torsional values, and not a 
single value. In fact, the torsional angles can have 
any value in the range from -180" to + 180". As 
previously,8 this potential is defined 50 that it allows 
one to energetically favor or disfavor any of the 
three rotational state regions. This is accomplished 
by fitting a six order polynomial to a three-minima 
function, the details of which are found elsewhere.' 

In the helical regions, this torsional term is irrel- 
evant, since it equally weights the three torsional 
states, with very small barriers between them. The 
torsional potential is consistent with the turns join- 

ing the putative helices in the final folded structure, 
and therefore there is a small bias built in the model 
towards the desired folded conformation. It does not 
prohibit non turn-like conformations in the putative 
turn-forming regions of the sequence. Rather, it just 
makes the population of some of the torsional states 
larger than the others, but the number of transitions 
between them is still large. Indeed, nonnative tor- 
sional states even occur in the folded conformation. 

Helical wheel 
Ehelix mimics the hydrogen bond interactions that 

internally stabilize helical conformations. It has the 
functional form of a LennardJones 8-6 potential 
acting between a-carbons i and i + 4, separated by a 
distance r, when they are both in the same putative 
helical fragment existing in the final structure 
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Here, eh is the depth of the potential well. Its value 
can control the amount of helical secondary struc- 
ture in the model. Oh, on the other hand, is the dis- 
tance at which the potential changes sign. For our 
simplified models, whose fold is based on diamond 
lattice structures with square helices, (Th equals 7.6 

(2, in the reduced units we are using for the dis- 
tances). This value creates slightly more expanded 
helices than those present in real proteins. Finally, 
C is a constant equal to 9.48 in this equation as well 
as in Eqs. (4) and (5) presented below. In order to 
avoid the formation of bulges in the middle of the 
helices, the potential is only effective when the two 
virtual torsional angles bracketed by residues i and 
i + 4  are in the helical torsional region (the mini- 
mum corresponding to the gauche- conformation). 
This contribution is only operative in the purely he- 
lical regions, but it is suppressed in the turn regions. 

Tertiary interactions 
Finally, Elong includes the tertiary interactions 

between the centers of any pair of side chains corre- 
sponding to residues separated by at least three res- 
idues along the chain backbone. For glycines, for 
which the side chain does not exist, the center of the 
interaction is positioned at  the a-carbon. Pairs of 
hydrophobic (pho) side chains interact favorably 
through an 8-6 LennardJones potential 

(pho-pho) (4) 

while hydrophilic (phi) side-chains repel hydropho- 
bic side chains through the repulsive part (the term 
corresponding to the exponent 8 in the same poten- 
tial) 

Elong = C el C(ullr)' - (ul/r)"l 

Elong = C ei (u,/r)' (pho-phi). (5 )  

In both cases, a cut-off distance for the potential is 
defined, so that the potential is not effective if the 
distance r between the centers of interaction is 
larger than 2 reduced units. Pairs of hydrophilic res- 
idues are neutral, retaining only the excluded vol- 
ume condition through a square well potential. 

One problem with using the LennardJones at- 
tractive-repulsive potentials is that the minimum is 
very close to the repulsive core. This produces diffi- 
culties in side chain packing, especially in the last 
stages of the folding pathways, which are described 
in the next section. To avoid the locking of kinetic 
pathways, the potential is truncated at  a minimum 
distance rmin, such that if the distance between in- 
teracting centers is lesa than this value, the poten- 
tial remains the same. After some testing, we have 
chosen rmin = 0.90 ul. 

In model A, the distance between hydrophobic 
a-carbons in contact in the native four-helix bundle 
equals the distance between neighbor a-carbons. To 
have the interaction minimum at this point with an 
8-6 LennardJones potential, we must use a value of 

u1 = 0.87 reduced units. In model C, the situation is 
not so clear, since there are several distances be- 
tween side chains which can be considered as corre- 
sponding to contacts in the native structure. Any- 
way, we retain the same value, u1 = 0.87, which can 
be still considered as a reasonable interaction dis- 
tance between side-chains. The values of el are re- 
lated to the possibility of folding the model to the 
designed topology. They will be discussed in detail 
in following sections. 

Model dynamics 

Once the potential energy function of the system 
has been defined, one needs to efficiently sample 
this energy hypersurface. As previously mentioned, 
we have chosen a dynamic Monte Carlo algorithm, 
and in order to keep a certain parallelism between 
MC moves and a physical time scale, we have used 
only local moves, which can take place over similar, 
real time scales. 

The most prevalent type of moves are the spike 
moves (Fig. 6A), in which the a-carbon position of a 
single residue and the side chains of the adjacent 
residues are also modified. For the terminii, a move 
to any point in the spherical surface centered at  the 
neighbor a-carbon and with radius equal to the vir- 
tual bond length is attempted (Fig. 6B). 

These two types of moves are sufficient to give 
rather realistic dynamics for expanded conforma- 
tions. However, they do not allow for small ampli- 
tude cooperative motions of several residues, which 
are necessary to translate or rotate preformed 
elements of secondary structure. Hence, a model in- 
cluding only spike and end moves could not repro- 
duce folding pathways which exhibit a diffusion-col- 
lision assembly mechanism.14 To solve this problem, 
we use a new shifting move that can affect large 
portions of the chain, but still retains the local char- 
acter of the displacement. To perform this shifting 
move (Fig. 6C),  an inner residue i is randomly cho- 
sen, and a terminal-type move is initially made. 
Then, the units from i + 1 to N ,  with N the total 
number of residues of the chain, are connected to the 
new position of i, retaining identical bond vectors as 
existed prior to the move. This shifts a portion of the 
chain (the backbone and the corresponding side 
chains) to a parallel position. This displacement has 
an amplitude less than the virtual bond length be- 
tween neighbor a-carbons, and thus, it can be still 
catalogued as a local move. Nevertheless, since this 
move affects a number of units considerably larger 
than the spike or terminal moves (single unit 
moves), the frequency of attempt is scaled so that 
only one is attempted every N single unit moves. 

This set of moves results in very realistic dynam- 
ics, which is similar to BD simulations performed for 
comparable systems.' Thus, one can expect that the 
folding pathways will be the result only of the phys- 
ics introduced into the model through the interac- 
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A. Spike moves 

B. End moves 

0 

C. Shifting moves 

Fig. 6. The move set included in the MC scheme. The dashed 
virtual bonds and the shaded units are those which have been 
affected by the move. 

tion scheme and will be fully independent of other 
model considerations. 

Any individual move is subject to an acceptance 
test based on the asymmetric Metropolis criterion. 
Also, the individual moves are grouped into MC cy- 
cles, each one composed by N trials of single unit 
moves and one trial of the shifting move. The tra- 
jectories are usually composed of 2.4 x lo6 MC cy- 
cles, with the coordinates of the residues recorded 
for further analysis every 600 MC cycles. 

Secondary interactions 

Fig. 7. Qualitative outcome of the MC trajectories, depending 
on the balance between secondary and tertiary interactions. 

RESULTS 
Determination of the Folding Conditions: 
Exploring Parameter Space 
Confinnational p h e  diagmm 

Our aim is to explore a broad set of conditions, and 
try to determine the behavior of the model in vari- 
ous regimes. Figure 7 presents a schematic sum- 
mary of the conformations obtained by modifying 
the relative strengths of the secondary and tertiary 
preferences over rather extended ranges. This is 
only a qualitative diagram, which shows the aver- 
age result of the MC trajectories. Where one is in the 
conformational phase diagram depends on the bal- 
ance between the magnitude of the different kinds of 
interactions, in particular the tertiary interactions 
and the helical wheel interactions (the latter classi- 
fied as secondary structure or local interactions). 
When both interactions are very weak, the chain 
just behaves as an expanded random coil. If tertiary 
interactions are too strong, then the chain collapses 
into a dense globule, as a polymer would in the coil- 
globule transition, retaining less than 20% of the 
native secondary structure. As in previous work by 
Gregoret and Cohen16 and recent on-lattice calcula- 
tions including side-chains,2 the increase in second- 
ary structure resulting simply from compaction is 
minor. Indeed, if there are no intrinsic helical pro- 
pensities, a random globule results. On the other 
hand, if the secondary interactions are the only ones 
of importance, then the secondary structure freezes, 
with the associated problems of the packing of rigid 
helical bodies. It is difficult to interdigitate and ad- 
just side chains if the backbone is frozen and local 
backbone readjustments accompanying helix sliding 
are prohibited. Finally, if both secondary and ter- 
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tiary interactions are simultaneously increased, 
then the secondary structure develops quickly, but 
the chain collapses to a globular state with a large 
helical content, whose exact shape usually depends 
on the initial conformation at  the beginning of the 
trajectory. In other words, it is kinetically trapped. 
Only when the local and tertiary interactions are 
balanced does folding occur to compact states that 
retain characteristics of proteins. 

Effect of the side chains 
The limitations in the folding conditions are even 

more striking for model C than for model A. In gen- 
eral, we observe that it is much simpler to fold model 
A than model C, i.e., the presence of side chains and 
the restrictions imposed by adequate packing make 
it more difficult to achieve the final conformation. 
This seems to be mirrored in real experiments. In 
our simulations, the reason for this seems to be 
purely kinetic. While a model with only a-carbons 
can follow different folding pathways, including in 
principle the collapse to a relatively compact globu- 
lar shape which slowly rearranges to reach the 
folded state, the pathways for the model which in- 
cludes side chains are much narrower. It is rela- 
tively easy for the system to become frozen in com- 
pact structures if the parameters controlling the 
contributions to the potential are not properly bal- 
anced. 

Balance of the contributions to the potential 
To find a set of conditions capable of folding to the 

same native conformation, independent of the start- 
ing unfolded conformation, tuning of the potential 
parameters has been accomplished. Several points 
are important in this tuning: the torsional potential 
enforcing the native conformation of the turn re- 
gions, the strength of the potential term acting in 
helices, which mimics helical hydrogen bonding, 
and finally, the magnitude and interaction range of 
the tertiary interactions. Since the zero of the poten- 
tials is in a certain sense arbitrary, one has to bal- 
ance them so that no single contribution becomes 
frozen at a temperature when the other contribu- 
tions are “too hot.” Otherwise, in extreme cases, this 
can produce frozen helices or frozen random glob- 
ules. Also, since the number of hydrophobic contacts 
in the native structure of model A is larger than in 
model C, we should expect the former to fold at a 
larger temperature than the latter, as in fact hap- 
pens. If T, is the temperature a t  which the folding of 
model C takes place, we have been able to fold model 
A, with similar weights for the potential terms, a t  a 
temperature TA = 1.4Tc. Interestingly, and consis- 
tent with earlier  calculation^,^ this ratio and that 
between the 21 ideal native contacts for model A 
and the 15 ideal native contacts for model C have 
exactly the same value. Of course, even with fluc- 
tuations of about 10% in the temperature, the algo- 

rithm will be able to find the folded conformation, 
although the pathways can be partially modified. 
Temperatures below the optimum value begin to 
quench the system. If the temperature is not too low, 
the ergodicity of the algorithm prevails, and the 
chain usually attains the folded conformation. If the 
temperature is too high, the stability of all the in- 
termediate structures is reduced. The folded confor- 
mation can still be reached, but its lifetime is 
shorter than at the optimal temperatures, and most 
of the conformations spanned by the chain corre- 
spond to the unfolded coil. This is merely a reflec- 
tion of the equilibrium nature of the folding process. 

Turn propensities 
The native torsional state for the virtual bonds in 

the native turn regions is biased by means of E,, 
with respect to the other two torsional states, which 
are made isoenergetic. In model A, just a small en- 
ergy difference favoring the native torsional state 
(of the order of 0.75kBT per bond) is enough to fold 
the correct four-helix bundle. The free energy differ- 
ence is, of course, much smaller. With this value, we 
find trajectories in which a Z-bundle transiently ap- 
pears, but it always dissolves to yield the U-topology 
(see Fig. 3). In model C, due to the larger flexibility 
of the longer turns, this contribution has to be in- 
creased. Since the folded structure for this model C 
is more open than in model A, this also makes it 
easier to find adequate side-chain packing in the 
Z-bundle topology, with only minor distortions in 
the secondary structure of individual helices. To 
avoid this incorrect topology, a difference of energy 
of 1.5kBT has been found necessary between the na- 
tive and the two non-native torsional states. Still, 
the population of native turns in the unfolded state 
is less than 10%. 

Secondary interactions 
The helical wheel contribution to the potential, 

E,,,, is controlled by the value of E~ in Eq. (3). We 
have found the best values to be Eh/kBT=1.45 for 
model A and Eh/kBT = 2.0 for model c. These are just 
the central values in an interval of good sets of Eh. 

Variations in Eh of about 10% are almost irrelevant 
for our purposes. Variations up to 15% can still fold 
the protein, though the pathways begin to be af- 
fected. With values out of this range, the folding is 
practically impossible with our computational re- 
sources. 

The value of Eh/kBT employed in our model pro- 
duces a relatively high helical population for the 
chains, but this does not mean that we have com- 
pletely preformed helices which survive unaffected 
during the whole simulation. Instead, we have a 
very dynamic picture in which, while maintaining 
an average helical content of around 50%, the indi- 
vidual helical turns are continuously forming and 
dissolving. This 50% helix value is rather high and 
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TABLE I. Summary of Parameters of the Model Potential* 

ElIkBT E1IkBT 
Model Ar,,lkBTt uh* Eh/kBT u: (pho-pho) (pho-phi) 
A 0.75 (10) 2.0 1.45 (15) 0.87 1.75 (35) 1.00 (30) 
C 1.50 (10) 2.0 2.00 (15) 0.87 2.00 (15) 1.15 (30) 
*The energetic parameters dkJ' correspond to the optimum values, which are centered in a range about 
which the trajectories yield correctly folded conformations. The average amplitudes of these ranges 
(expressed as a percentage of the average value) are shown in parentheses. See text for details. 
'Energy difference between the native torsional minimum and the other two rotational states, in the 
putative turn regions ( A ~ , . J k , T =  0 in the putative helical regions). 
*In units of the distance between neighbor a-carbons. 

was found to be necessary, a t  constant temperature, 
for finding a well characterized folded conformation 
in our trajectories. Of course, we recognize that this 
helix content is unrealistically high. Partially, it 
covers defects in the simplified representation of our 
model, both at the level of secondary and tertiary 
interactions, which can be overcome by further im- 
provements in the model; partially, it reflects limi- 
tations in computer time. However, even with this 
large average helical population, a mechanism of 
assembly based on the diffusion of preformed ele- 
ments of secondary structure is not observed. Con- 
sequently, one can assume that the probability of 
finding it when a more reduced helical content- 
closer to  physical reality-is obtained, is not large. 

Tertiary interactions 
Finally, and probably also most importantly, we 

have to determine the proper set of parameters con- 
trolling the tertiary or long range interactions, 
Elong. For ~1lkBT [Eq. (4)1, values around 2.0 for the 
interactions between hydrophobic groups constitute 
a good compromise inside a relatively wide range of 
values. This is true especially for model A, in which 
values even as low as 1.5 for the interaction between 
hydrophobes can yield the folded structure, though 
its stability is greatly reduced. In model C, one can 
drop El/kBT by only about 15%. Under these condi- 
tions, the model takes a lot of time to fold. The val- 
ues of e,Ik,T can also be increased, but especially for 
model C, there is not a wide margin to do so (only 
about &lo%), since the collapse of the structure 
produces kinetically trapped non-native states (see 
upper right corner of Fig. 7). 

The interaction between hydrophobic and hydro- 
philic residues [Eq. (5)], is much more flexible. In 
general, values of El/kBT representing between 40 
and 70% of the corresponding EIIkBT for interactions 
between hydrophobes yield the correct folded struc- 
ture. Lower values tend to favor an increase in the 
population of Z-bundles (and other misfolded com- 
pact conformations), while very large repulsive in- 
teractions have an effect rather similar to the hard 
core repulsions, locking kinetic channels that seem 
to be important along the folding pathways. 

Summary of the potential parameters 
The optimum values for the parameters control- 

ling the potential contributions are collected in Ta- 
ble I. Only for a set of conditions where secondary 
and tertiary interactions properly balance, is the de- 
sired four-helix bundle the outcome of the trajectory. 
At first, this might be a cause of concern. However, 
not every polymer is a protein, and not every amino 
acid sequence folds to give globular, protein-like, 
dense states. Indeed, such considerations probably 
are very important in the experimental design of 
model proteins. 

Folding Pathways 
Monitoring the trqjectories 

Let us begin by considering the folding pathways 
corresponding to model A. To follow the pathway 
requires some faithful way to represent the events 
that occur. No single variable is capable of giving a 
complete description of the dynamics. Therefore, we 
follow some significant properties, whose combined 
evaluation allows us to quite accurately reconstruct 
the ongoing process. In Figure 8, for an isothermal 
trajectory, we present the variation with time (or 
number of MC cycles) of (1) the square radius of 
gyration of the chain, R,', (2) the energy describing 
the helical interactions, Ehelix (solid line), and the 
tertiary interactions, Elong (dotted line), and (3) the 
evolution of the native contacts. Figure 8c tries to 
represent a three-dimensional picture, in which the 
distance between the a-carbons corresponding to the 
residues indicated in the vertical axis has been mea- 
sured along the trajectory. One point in this plot 
means that the corresponding a-carbons are a t  a dis- 
tance less than 2 reduced units. For every contact, 
the height of the point in the cloud gives an idea of 
the distance, which is smaller when the level of the 
point is lower. This scale goes from about 0.8 to 2.0 
reduced units, its width being represented by the 
black horizontal bar at the top of the plot. More than 
the values of the distances themselves, we are inter- 
ested in studying the presence or absence of the con- 
tacts and their stability, given by the width of the 
cloud of points for every contact. A disperse cloud 
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Fig. 8. Folding and unfolding trajectory of model A. (a) Radius 

of gyration, R , in reduced units. (b) Energetic contributions for the 
helical term, EM,,, (solid line), and of the tertiary interactions, fbne 

(dotted line) along the trajectoly, also in reduced units. (c) Evo- 
lution of the native contacts between cxcarbons (see text for the 
interpretation of the figure). Asterisks in the vertical axis indicate 
the contacts closest to the turns between helices. Some snap- 

shots of instantaneous conformations along the trajectory are in- 
cluded. They correspond, successively, to a 3-helix bundle, a cen- 
tral hairpin, the folded 4-helix bundle, a distorted 3-helix bundle, a 
terminal hairpin, and a double hairpin. The arrows indicate the 
approximate Occurrence of these conformations along the trajec- 
tory. 

will indicate a very mobile structure, while a narrow 
cloud is indicative of high stability structures. On 
top of this last part of the figure, some snapshots of 
the chain, corresponding to instantaneous conforma- 

tions along the trajectory, are sketched, in order to 
further clarify the relationship between the confor- 
mation and the different properties being moni- 
tored. 
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Model without side chains 
We now proceed to the discussion of Figure 8, 

which corresponds to a typical folding and unfolding 
trajectory of the four-helix bundle represented by 
model A. The trajectory begins from a random con- 
formation, not very extended in this particular case, 
and rapidly develops a substantial amount of sec- 
ondary structure. The increase in the secondary 
structure translates to a rapid decrease (since it is a 
negative magnitude) of Ehelix (solid line), as re- 
flected in Figure 8b. Actually, the process is so fast 
that the figure hardly reflects the very steep de- 
crease, but the initial configuration has a value of 
EheliX/k,T approximately equal to only -3. 

This process is closely followed by some collapse. 
This collapse does not translate into a random 
search, but it represents the formation of several 
distinctive elements of supersecondary structure. 
The formation of these elements is one of the char- 
acteristic features observed in the trajectories (we 
have computed 30 of them for model A), and there- 
fore they could be considered to be intermediates in 
the folding process. This term, however, has to be 
used with a certain amount of caution, since con- 
cepts like this, molten globule3 and others currently 
being used when describing the folding pathways, 
are often employed with different, sometimes non 
equivalent, meanings. Moreover, since the models 
lack side chains or have a single rotamer represen- 
tation of the sidechains, the interplay of side chain 
and backbone fixation characteristic of the molten 
globule to native state transition cannot be ad- 
dressed. Thus, we are studying the kinematics of 
topology assembly in this series of simulations. 

Folding intermediates for model A 
Our folding intermediates are defined as struc- 

tures which are easily recognizable during the tra- 
jectory, which frequently appear prior to  the fully 
folded structure, and that show a certain stability 
(though, of course, less than the folded conformation 
itself). Nevertheless, they do not uniquely define a 
set of consecutive steps which fully determines the 
folding pathway, since they are observed in different 
orders for different trajectories. However, the num- 
ber of folding trajectories computed is large enough 
for certain statistical preferences to  be apparent, as 
discussed immediately below. 

The intermediates (whose structures are depicted 
among the conformations sketched in Figs. 8 and 10) 
appear in the form of terminal hairpins (helices I 
and I1 or helices I11 and IV, with the corresponding 
turn); the central hairpin (helices I1 and 111, plus two 
dangling noninteracting tails), the long hairpin, in 
which helices I and IV appear as a continuation of 
helices I1 and 111, respectively, the double hairpin, 
with both terminal hairpins formed, but in a linear 
or almost linear disposition, and the three-helix 

bundle (plus a dangling tail, which can equally be 
helix I or helix IV). Usually, the transformations 
between these intermediates are very fast for model 
A. The formation of the intermediates from unfolded 
states takes place quite rapidly, beginning in gen- 
eral from one of the turns that join the helices in the 
folded structure. They frequently dissolve to give 
random extended conformations, without retaining 
any native secondary or tertiary structure. From 
this point of view, they can hardly be considered as 
true thermodynamic intermediates in the reaction 
coordinate on going from the unfolded to the folded 
state, since their population is very small in com- 
parison with both extremes of the reaction coordi- 
nate. 

All these structures, together with many struc- 
tureless random conformations, appear and disap- 
pear in the first 50,000 to 800,000 MC cycles. It is 
interesting to observe how the different quantities 
respond to their presence. Obviously, the dimen- 
sions of the chain, as represented by the radius of 
gyration, continuously change, h m  the small val- 
ues corresponding to the three-helix bundle (or even 
collapsed states without a clear shape) to the larger 
values of the long hairpin or more extended unfolded 
conformations. The tertiary contacts follow a similar 
behavior, but their enumeration allows a more de- 
tailed study of the process. For example, the termi- 
nal hairpins are characterized by the contacts be- 
tween helices I and TI or helices I11 and IV alone. If 
both types of contacts simultaneously appear, with- 
out contacts in the zone corresponding to helices 11 
and I11 or IV and I, this signifies a double hairpin 
situation. Contacts in the region of helices I1 and I11 
alone indicate the central hairpin. If they are accom- 
panied by contacts between helices I and IV, there is 
a long hairpin. Of course, contacts in two contiguous 
areas (1-11 and 11-111 or 11-111 and 111-IV) indicate 
the presence of a three-helix bundle. During this 
first third of the trajectory, there is a three-helix 
bundle (with helix I excluded) a t  the beginning, fol- 
lowed by a double hairpin, an almost folded struc- 
ture (though without I-IV contacts), a three helix 
bundle again, excluding in this case helix IV, and 
finally a central hairpin alone. 

Formation of the folded conformation for 
model A 

The central hairpin constitutes the seed that 
yields the folded structure in most of the trajecto- 
ries. The folded structure is closely preceded by the 
formation of the central hairpin (frequently, with 
the three-helix bundle as a subsequent intermedi- 
ate), though the reverse situation does not always 
happen. Many central hairpins dissolve or evolve 
towards structures different from the folded one. In 
this particular trajectory, we find a central hairpin 
at 700,000 MC cycles. We see also one contact ap- 
pearing between helices I and I1 (the one closest to 
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the turn joining them) and several sporadic contacts 
between helices I11 and IV. And then, very rapidly, 
a t  800,000 cycles, the full set of contacts, clearly 
reflecting the formation of the folded conformation, 
appears. 

How has this last process happened? The tails 
emerging from the central hairpin quickly come into 
position, assembling the fourth helix in the bundle. 
Although the assembly is almost simultaneous for 
both tails, helix IV comes into position slightly be- 
fore helix I, producing for a moment the three-helix 
bundle, though it cannot be considered as a folding 
intermediate a t  this point of the trajectory. It is im- 
portant to notice that, though the strands which will 
eventually form helices I and IV have the usual rel- 
atively high helical content, they are not by any 
means frozen helices that diffuse into the correct 
positions. This is evident from the evolution of the 
energy in Figure 8b. The formation of the folded 
structure is accompanied by an important reduction 
of El,, since the number of hydrophobic contacts 
tremendously increases. A less pronounced reduc- 
tion in Ehelix occurs, due to the formation of the he- 
lical turns missing in helices I and N when they are 
not in the folded structure. Therefore, we can ob- 
serve the diffusion of parts of the protein model to- 
wards the elements of already assembled folded 
structure, but they correspond to extended elements 
of structure and not to preformed, frozen helices. 

Once formed, the four-helix bundle remains stable 
for almost 600,000 MC cycles. There are still a lot of 
movements taking place in this structure. Most 
characteristic are the relative small shifts of some 
helices with respect to others, which slightly modify 
the hydrophobic core of the folded structure. These 
add temporal contacts between the central hydro- 
phobic residues of helices I and 111, or helices I1 and 
IV (i.e., across the diagonals of the bundle; see Fig. 
1, model A). In addition, there are a myriad of local 
movements, most involving small distortions of the 
folded structure. The most frequent are the very fast 
chain tail movements. We also find movements close 
to the turns between helices, and even deformations 
inside the helical turns. All these movements are 
clearly reflected in the energetic terms, which 
strongly fluctuate even in the folded conformation of 
our model, though the chain keeps its topology and 
its compact conformation, as reflected by the very 
small oscillations of the radius of gyration. 

Fluctuations in the folded conformation of 
model A 

Since the folded structure is rather mobile, one 
could ask whether there is any difference between 
the oscillations that take place in the folding inter- 
mediates and those appearing in the folded confor- 
mation. This is important, since some authors have 
proposed the existence of a molten globule state, 
prior to the formation of the final folded structure, in 

which the secondary structure is essentially formed, 
but the tertiary contacts are still quite r e d ~ c e d . ~  A 
similar conclusion could be extracted from our re- 
sults. We have seen that our intermediates have 
rather stable secondary structure in the portions of 
the chain they comprise. Also, we can see, by com- 
paring the width of the point clouds representing 
native contacts before and after the final folding 
step, that the vibrations existing in the folded struc- 
ture, even being considerable, exhibit a more re- 
duced amplitude than those existing in the different 
intermediates. To further clarify this, we present in 
Figure 9 the root mean square (rms) deviation be- 
tween the coordinates of the a-carbons along the tra- 
jectory and an ideal set of coordinates for the folded 
conformation (the rms is never equal to zero due to 
thermal fluctuations). To distinguish between fluc- 
tuations in rms due to unfolded parts of the model 
and those due to local rearrangements, we also 
present the rms for two large fragments of the pro- 
tein: the first without including the residues in the 
designed helix IV, and the second without including 
the residues corresponding to helix I in the folded 
structure. Even in the region where the first three- 
helix bundle (with helices 1-11-111) is formed, the 
oscillations in rms corresponding to the intermedi- 
ates are larger than those corresponding to the 
folded structure. This difference is small since our 
model without side chains, in its simplified realiza- 
tion, still retains excessive mobility in the folded 
state. Based on this small difference and the differ- 
ent mean lives of the folded structure and the fold- 
ing intermediates, we can conclude that the forma- 
tion of the final folded structure brings an increased 
stabilization to the protein molecule absent in the 
folding intermediates. The latter can also be quite 
compact with a lot of secondary structure, appearing 
prior to the final conformation. 

Model with side chains: intermediates in 
model c 

Let us now consider the folding pathways of model 
C, in which an approximate representation of the 
side chains has been included. In Figure 10, we 
present the results of a constant temperature trajec- 
tory, with the evolution of the radius of gyration, 
Elong (dotted line) and Ehelix (solid line), and the ev- 
olution of the native contacts, now defined between 
the side chains of the different hydrophobic residues. 
There are several features in common with model A. 
Namely, there is a very fast formation of secondary 
structure in the putative helical regions, as indi- 
cated by the fast decrease in Ehelix, and the collapse 
of the chain into a partially compact structure, with 
a small value for the radius of gyration Rg and an 
increase in the tertiary interactions, with the reduc- 
tion of Elon= However, we do not find the multiplic- 
ity of short-lived intermediates which characterized 
the first part of the trajectory in model A. We clearly 
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Fig. 9. Root mean square deviation corresponding to the coordinates of the a-carbons of model A along 

a MC trajectory. (a) Full chain. (b) Residues corresponding to the first three helices (residues 1 to 36). (c) 
Residues corresponding to the last three helices (residues 12 to 48). 

see contacts in the regions of helices I-II and 11-111, 
and therefore we are in the presence of a three-helix 
bundle. It is actually formed from the central hair- 
pin, although the assembly of the N-terminal strand 
to form the third helix takes place almost simulta- 
neously. A detailed study is presented in Figure 11, 
where we have magnified the first 5% of the trajec- 
tory. The lower part of this figure is identical to 
those in Figures 8 and 10. The upper part shows the 

evolution of all the torsional angles in the protein 
backbone, with the different regions of native sec- 
ondary structure (helices and turns) separated by 
the horizontal solid lines. A dot in this plot indicates 
that a torsional angle is in the range corresponding 
to the native state. This plot clearly demonstrates 
the temporal variation of the helical content. The 
evolution of the strand corresponding to the C-ter- 
minus (helix IV in the native conformation) does not 
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Fig. 10. Folding and unfolding trajectory of model C. (a) Ra- 

dius of gyration, R,, in reduced units. (b) Energetic contributions 
for the helical term, f,,,,x (solid line), and of the tertiary interac- 
tions, fby (dotted line) along the trajectory, also in reduced units. 
(c) Evolution of the native contacts between side chains. Asterisks 
in the vertical axis indicate the contacts closest to the turns be- 
tween helices. Some snapshots of instantaneous conformations 

along the trajectory are included. They correspond, successively, 
to the initial random conformation, a 3-helix bundle (staggered 
view), a double hairpin, a 3-helix bundle (top view), the folded 
4-helix bundle, and a 3-helix bundle (lateral view). The arrows 
indicate the approximate occurrence of these conformations 
along the trajectory. 

take part in the three-helix bundle which is formed 
in this portion of the trajectory. Therefore, it shows 
very fast transitions between the helical and the 
nonnative torsional states. Thus, the population of 
native torsional angles is rather large, but one can- 
not a t  all say that the helix is preformed. 

The same things happen with the other three he- 
lical portions of the chain, prior to the formation of 
the three-helix bundle. The turns between helices 
are the first to acquire a native conformation, 
though they are not frozen. The very small number 
of contacts before 40,000 MC cycles clearly indicates 
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Fig. 11. Initial steps in the folding trajectory of model C. (a) Evolution of the torsional states. One dot in the 
plot indicates the presence of the torsional angle in the native torsional state. Solid lines separate helical 
regions from turn regions, according to the folded structure. (b) Evolution of the native contacts between side 
chains. Snapshots on top of this part of the figure correspond to instantaneous conformations at the time 
indicated by the arrows. 

that the structure is still very expanded. However, 
strands I, 11, and I11 are beginning to approach one 
another. When they begin to interact, the attraction 
between hydrophobic residues and the repulsion be- 
tween hydrophilic and hydrophobic ones simulta- 
neously creates adequate side-chain packing and 
correct secondary structure. Observe how the tor- 
sional angles of helix 11, together with fragments of 
helices I and 111, exhibit substantially reduced fluc- 
tuations when the native tertiary contacts appear. 
Therefore, the formation of the native secondary and 
tertiary structures is a very cooperative process, 
which takes place almost simultaneously in the con- 

ditions represented by our model, and rather possi- 
bly in small globular proteins as well. 

The three-helix bundle is rather mobile, as indi- 
cated by the width of the contact clouds in Figure 11, 
but even with local distortions, it is able to survive 
almost the first third of the trajectory. In essentially 
all the trajectories computed with this model (about 
60 of them), the three helix bundle appears and ex- 
hibits a certain intrinsic stability, independent of 
the fact that it can directly yield the folded structure 
or dissolve. The terminal helix which first dissolves 
(Fig. 111, while a distorted central hairpin (repre- 
sented by the sparse contacts in the region of helices 
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11-111) survives slightly longer. Nevertheless, all the 
tertiary interactions disappear a number of MC cy- 
cles later, and the chain acquires a very extended 
structure, with a large radius of gyration. It is not 
only the energy contribution Elong which decreases 
or increases when the protein model goes from a 
folding intermediate to an extended conformation or 
vice versa. Also the value of Ehelix decreases (has a 
more negative value) when the intermediate ap- 
pears and increases when it dissolves. The energy 
does not go to zero, reflecting the high average he- 
lical content, but the observed fluctuations clearly 
indicate that no frozen elements of secondary struc- 
ture are diffusing to form or dissolve the tertiary 
contacts. 

Formation of the four-helix bundle: 
fluctuations in model C 

From 825,000 to 1.2 million MC cycles, no recog- 
nizable structure appears, with the exception of a 
double hairpin (both terminal hairpins), which, be- 
ing unstable, has a rather short lifetime. At about 
1.3 million MC cycles, we find again a three-helix 
bundle, this time including helix IV, with the strand 
corresponding to helix I staying out of the bundle. 
This situation does not last too long, and very soon 
this strand assembles into the desired four helix 
bundle. 

This structure also exhibits oscillations, mainly 
due to the tails of the terminal helices, and the turns 
that join the helices, which are very flexible in this 
model (they are not stabilized by the helical contri- 
bution of the potential, nor do they take part in ter- 
tiary attractive interactions). But a new important 
distortion appears with respect to model A, and it is 
the angle formed between the terminal helices I and 
IV and the helices 11 and I11 that constitute the cen- 
tral hairpin (see Fig. 5, model C). This angle approx- 
imately oscillates between 10 and 40" (an accurate 
measurement is very difficult, since the helical 
structure is not frozen even in the folded state). It is 
mainly due to the packing of the side chains, as oc- 
curs in real proteins with helical contacts.16 It is 
quite encouraging to observe how a very simplified 
model as ours can even reproduce these details of the 
physical system. 

In this case, as well as in the trajectory for model 
A, the oscillations in the native contacts are less 
pronounced when the whole folded structure forms. 
On the other hand, if we examine the rms between 
the Cartesian coordinates of the backbone a-carbons 
in the trajectory snapshots and in an ideal reference 
conformation for the folded state of model C (Fig. 
12), it is difficult to distinguish between the three- 
and the four-helix bundles. Therefore, for model C, 
it is not possible to clearly address the main differ- 
ence between the local structure in the folding in- 
termediates and in the final conformation. It seems 
that the backbone topology (and therefore the sec- 

ondary structure) is formed, but the packing of the 
side-chains does not achieve its perfect matching un- 
til the full structure folds. Nevertheless, we are us- 
ing short side chains which are rigidly attached to 
the backbone, a fact which couples the two situa- 
tions, partially blurring the scheme presented 
above. 

Comments on the three-helix bundle 
The high population found in this trajectory for 

the three-helix bundle requires some additional 
comment, since it poses some fundamental differ- 
ences with the traditionally accepted thermody- 
namic theory for the folding of small, single-domain, 
globular  protein^.^ This theory assumes a two-state 
transition, in which the completely folded conforma- 
tion and the unfolded state (the latter represented 
by a multiplicity of conformations) are the only 
states with a significant population. In model A, we 
can also observe some intermediates, but we have 
already seen how fast the transitions are among 
them, and the short time which they live, considered 
on an individual basis or in aggregate. In model C, 
on the other hand, the three-helix bundle, a t  least in 
this particular trajectory, shows a mean lifetime al- 
most comparable to the folded state. The situation is 
not so striking when this analysis is extended to all 
the folding trajectories computed for model C. As an 
average, the three-helix bundle appears during 21% 
of the trajectory length, while the folded and the 
unfolded states have values of 43 and 36%, respec- 
tively. The population of other intermediates is neg- 
ligible, since they usually appear as instantaneous 
conformations in the unfolded state. Probably, the 
reason for this large population of the intermediate 
structure is purely kinetic, and does not modify the 
thermodynamics of the generic folding process. It is 
clear from the trajectories that, during the life of the 
three-helix bundle, the fourth strand tries to assem- 
ble into the correct conformation, but problems re- 
lated with side chain packing, the balance between 
attractive and repulsive tertiary interactions, the 
flexibility of the turns between helices, and perhaps 
the average high helical content as well, consider- 
ably reduce the chances for this last assembly pro- 
cess to occur. From this point of view, the three-helix 
bundle might be considered as a kinetically frus- 
trated state. 

SUMMARY AND CONCLUSIONS 
In this paper, we have studied the folding path- 

ways of protein models representing four-helix bun- 
dles, both with and without side chains. First, the 
question of designing a primary structure, even at a 
very simplified level, was undertaken. It is clear 
that, depending on the resolution of the model one is 
dealing with, the sequence must possess a number of 
specific features to ensure folding to a unique, na- 
tive like state. This includes the proper balance be- 
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Fig. 12. Root mean square deviation corresponding to the coordinates of the a-carbons of model C along 

a MC trajectory. (a) Full chain. (b) Residues corresponding to the first three helices (residues 1 to 40). (c) 
Residues corresponding to the last three helices (residues 14 to 53). 

tween the different contributions of the local and 
tertiary interactions defined for the model. The 
proper packing of the side chains, at least in a sim- 
plified spherical representation, also obliges one to 
carefully choose the range of attractive and repul- 
sive interactions. The former have to be long ranged 
enough to provide a realistic folding pathway that is 
accessible in a reasonable amount of time. However, 
they must also have a rapidly decreasing magnitude 

to avoid large potentials far from the interaction 
center, which only leads to a lack of general speci- 
ficity, and hence to dense collapsed states without 
secondary structure. The repulsive interactions are 
partially responsible for the correct geometry by 
controlling the packing of the side chains. Since 
these are probably too fat in the spherical represen- 
tation, this part of the interactions has to be reduced 
to avoid locking along plausible folding pathways, 
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and to allow for the folding to occur in a reasonable 
amount of computer time. 

As mentioned above, the proper balance between 
secondary and tertiary interactions is also essential. 
We have observed that a relatively high population 
of secondary structure is necessary in order to find 
unique folded conformations. While experiments on 
real proteins are also beginning to show this, the 
helix content appearing in our trajectories is clearly 
far too high. There is a reason for this. We need to 
artificially enforce the native torsional state of the 
turns between helices because otherwise they are 
free to change their conformation without any inter- 
actions other than those related to the chain connec- 
tivity. A better representation of the model in which 
these turns are stabilized by internal hydrogen 
bonds or favorable interactions of the side chains 
would not require this arbitrary component of the 
potential. Indeed, in some very recent on-lattice 
work, these arbitrary components can be entirely 
eliminated, and yet the topological aspects of folding 
pathways seen here are retained.17 Furthermore, 
there are some experiments which indicate that a 
moderate intrinsic turn population (5-10%) in heli- 
cal proteins may be physi~al.’~*’~ For helical re- 
gions, a more accurate description of the hydrogen 
bonds would also probably result in less helix con- 
tent, and more specific tertiary interactions would 
still allow for a proper packing of the side chains to 
give a unique folded state. However, even in our 
model, the relatively large and artificially high he- 
lical content in the unfolded state constitutes a very 
dynamic situation. It is only the formation of the 
folded conformation that fully determines both sec- 
ondary and tertiary structures, in a very cooperative 
process. The adequate packing of the side chains in 
the last steps of the folding pathways seems to re- 
quire a certain mobility, which cannot be found in 
preformed elements of frozen secondary structure. 

The formation of the folded conformation in our 
model does not happen through a random search, 
especially for the model with side chains, nor it is a 
simple process of collapse and further rearrange- 
ment to grow the secondary structure. A series of 
intermediates, some of which appear in each and 
every successful folding trajectory, can be clearly 
identified. For a model without side chains, there 
are several possible sequences of intermediates that 
yield the folded structure, the more frequent being 
the central hairpin and/or the three-helix bundle. In 
a model with side chains, on the other hand, the 
three-helix bundle always appears immediately be- 
fore the final folded conformation is achieved. We 
have observed some trajectories in which a central 
hairpin or a long hairpin try to assemble both ter- 
minal helices simultaneously. This mechanism, 
which actually happens (though it is not the most 
frequent) for model A, seems to be precluded when 
side chains are considered, precisely due to the dif- 

ficulties in properly packing a large number of side 
chains at the same time. While this effect might be 
partially due to the rigid representation of our side- 
chains with respect to the backbone, it is important 
to mention that similar folding mechanisms have 
been observed with different realizations of the 
model and the MC scheme itself.7*9*’7 Therefore, a 
certain model independence can be assumed for the 
general features of our folding pathways, which will 
then be a natural consequence of the physics of the 
model. 

The above conclusions can be considered as a set of 
basic recipes for the design of more sophisticated 
protein models. Indeed, they are currently being em- 
ployed in the folding of simplified proteins such as 
the DeGrado four-helix bundles” where the only in- 
formation contained is the amino acid sequence. l7 

The qualitative features described here are retained 
in this more general case. Beyond this, the set of 
ingredients required to fold these models constitutes 
a set of very generic observations which may be per- 
fectly valid for the design of real sequences, at least 
for small globular proteins. Our model is, of course, 
only a very simplified representation of a real pro- 
tein, but it has been formulated in the spirit of try- 
ing to avoid complicated details, not to create a dif- 
ferent (and irrelevant) kind of reality. Further 
developments of this model are presently under way, 
and there are substantial indications that these ex- 
pectations are confirmed. 
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