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Flexible algorithm for direct multiple alignment
of protein structures and sequences

Adam Godzik and Jeffrey Skolnick

Abstract

The recently described equivalence between the alignment of
two proteins and a conformation of a lattice chain on a two-
dimensional square lattice is extended to multiple align-
ments. The search for the optimal multiple alignment
between several proteins, which is equivalent to finding the
eiieigy minimum in the conformational space of a multi-
dimensional lattice chain, is studied by the Monte Carlo
approach. This method, while not deterministic, and for two-
dimensional problems slower than dynamic programming,
can accept arbitrary scoring functions, including non-local
ones, and its speed decreases slowly with increasing number
of dimensions. For the local scoring functions, the MC
algorithm can also reproduce known exact solutions for the
direct multiple alignments. As illustrated by examples, both
for structure- and sequence-based alignments, direct multi-
dimensional alignments are able to capture weak similarities
between divergent families much better than ones built from
pairwise alignments by a hierarchical approach.

Introduction

Protein sequence and structure alignments

Studies of similarities between protein sequences form
a well-established scientific field (Waterman, 1984;
Doolittle, 1990; Gribskov and Devereux 1991), with
numerous applications in biology (Pearson and Miller,
1992). In a typical application, one is interested in
establishing and finding the similarity between two
protein sequences. The result is often expressed in terms
of an alignment such as presented below as equation (1):
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There is a fast and deterministic algorithm to solve this
problem (Needleman and Wunsch, 1970) based on

dynamic programming. In this method, the best possible
solution is found by iteratively extending the family of best
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solutions, starting from the trivial alignment of two amino
acids. The computational cost of the procedure is of the
order of n? (the square of the sequence length). Because of
its speed and deterministic nature, almost all existing
sequence comparison programs use this approach. This
procedure works if the scoring function is local, or in other
worgs, the gain or penalty for equivalencing amino acids
at positions i and j does not depend on the alignment at
other positions.

In many cases we have to use other, non-local scoring
functions, for which dynamic programming does not
work. For instance, if the score for the particular pair
depends on another region of the alignment, then a locally
optimal alignment might not be optimal after some other
choice is made elsewhere. The alignment between two
proteins, based on structural similarity, gives an example
of a non-local scoring function. The most frequently used
measure of structural similarity is the root mean square of
distances between equivalent atoms in two structures after
optimal superposition (RMSD) (Kabsch, 1978). The
similarity measure is usually used to compare positions
of the backbone Ca atoms. The scoring function for the
pair [i, j], which now is the distance between Ca of amino
acid i in protein A and Ca of amino acid j in protein B
after the optimal rotation and translation of one of the
structures, depends on all equivalenced pairs in the
alignment. With even small variations in the alignment,
the optimal rotation might be different, resulting in
different distances between every pair [i,j]. Therefore, at
least in its standard form, the dynamic programming
method cannot be used. Attempts have been made to use
two-level dynamic programming to solve this type of
problem (Taylor and Orengo, 1989). For every pair [i, ],
its score is calculated by performing conditional dynamic
programming for the rest of the alignment, assuming that
the first pair is already aligned. The second level dynamic
programming uses a different similarity measure, which
empirically was found to produce reasonable results. It is
not clear if the optimal solution is in fact obtained, nor is it
apparent how to generalize this approach to other scoring
functions. In the absence of a fast and deterministic
solution, it is possible to use other minimization
approaches, such as simulated annealing, well suited to
combinatorial minimization (Press et al, 1993). For
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certain non-local scoring functions—topological equiv-
alencies in protein structures (Sali and Blundell, 1990)
and the Ca-Ca distance matrix (Holm and Sander,
1993)—specialized alignment algorithms based on simu-
lated annealing were formulated. A general alignment
program capable of utilizing arbitrary scoring functions
was formulated and used to compare proteins based on a
variety of similarity measures (Godzik et al., 1993a).

A second case when it is difficult to employ dynamic
programming occurs if more than two sequences are to be
aligned. It is possible to formulate the dynamic
programming algorithm in more than two dimensions
(Gotoh, 1986; Zuker and Somorjai, 1989; Murata, 1990;
Hirosawa et al., 1993). However, both the time and
memory requirements soon become prohibitive, since the
algorithm scales at least as n°(n = sequence length, d =
number of dimensions) both in speed and memory.
Therefore, with only a few exceptions known to the
authors (Murata et al., 1985; Lukashin er al., 1992;
Hirosawa et al., 1993), all multiple alignment programs
use some simplifications to make the problem more
tractable. These simplifications include an iterative or
hierarchical pairwise alignment, scanning only some
fragments of the possible alignment space or concentrat-
ing on strong, gapless fragments of the alignment
(Martinez, 1988; Henneke, 1989; Higgins and Sharp,
1989; Lipman et al., 1989; Vingron and Argos, 1989;
Altschul and Lipman, 1990; Barton, 1990; Candresse et
al., 1990; Schuler er al, 1991). For instance, in the
hierarchical approach, all sequences are aligned pairwise
with each other. The group of most similar sequences is
identified on this basis, and the multiple alignment is built
from the alignment within this group, by adding
sequences one after the other to the previously aligned
sequences. Each time a new sequence is added, it is
aligned to an averaged sequence, based on the multiple
alignment up to this point. However, a new sequence is
not allowed to change the already existing multiple
alignment. Most procedures depend on the other in which
sequences are selected and require the existence of a few
closely related sequences in the group. A detailed study of
a full three-way alignment of the copper-binding proteins
(Murata et al., 1985) and virus coat proteins (Subbiah
and Harrison, 1989) indicates that at least in some cases
the optimal solution cannot be reached at all by an
iterative hierarchical approach.

Of course, the most difficult case arises when both these
problems occur simultaneously, and one is challenged to
find a multiple alignment using a non-local scoring
function. To the best of the authors’ knowledge, no
attempt to address this problem has been made to date. In
this paper, a generalization of the previously presented
alignment program capable of aligning two proteins

(Godzik et al., 1993b) to the case of the direct multiple
alignment is described. The algorithm presented here
makes use of the close equivalence between the alignment
of proteins and the conformation of a lattice chain
(Gotoh, 1986; Lipman et al., 1989). Using the techniques
developed in polymer physics, a general, stochastic
algorithm for aligning several proteins with arbitrary
scoring functions is developed.

Algorithm

Equivalence between an alignment and the conformation of
a lattice chain

As the multiple alignment algorithm is a generalization of
the two-way alignment, the two-dimensional case will be
discussed first. First, the analogy between an alignment
and a lattice chain conformation is described in
considerable detail. Then we discuss the analogy between
multiple alignments and lattice chain conformations in
many dimensions. Finally, the dynamics of the three-
dimensional lattice chain used to search the conforma-
tional/alignment space are discussed.

The two-dimensional case

The alignment between two protein sequences is in fact a
set {[i,j]} of equivalencies between positions in both
sequences, where i denotes a position in the first and j in
the second sequences respectively. Equivalent positions in
both proteins, i.e. pairs [i,j] are shown immediately above
each other in equation (1). The alignment, or in other
words the set {[7,/]}, can be visualized as a set of points in
a plane, and this is a popular way of presenting
alignments in a dot-plot alignment method (Gribskov,
1991). This set has the property that there is only one
alignment point for each i and one for each j.
Furthermore for two points [i,j] and [k,/] if k > i, it
automatically follows that / > j (this is only true for
sequential alignments, i.e. those alignments where the
relative order of sequence fragments is preserved). These
properties are trivial as long as we remember that {[i,/]}
represents an alignment.

It is also possible to view the set of points {[i,j]} as a
particular conformation of a chain in a two-dimensional
space. Various alignments between two sequences could
be represented as various conformations of that chain.
The process of finding the best alignment is analogous to
searching for an optimal conformation of a lattice chain.
This equivalence was noticed many times before (Gotoh,
1986; Lipman er al., 1989) and used extensively to
visualize alignments of two proteins (Gribskov and
Devereux, 1991). The conformations and dynamics of
conformational changes for lattice chains have been
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Fig. 1. The equivalence between the alignment of two proteins and a
configuration of the two-dimensional lattice chain. X marks the point of
the alignment (see equation 1); all other points are added according to the
procedure described above.

studied extensively in polymer physics (Fixman and
Stockmayer, 1970; Skolnick and Kolinski, 1990), includ-
ing the dynamics of two-dimensional square (Go and
Taketomi, 1978; Kolinski er al., 1991) and three-dimen-
sional cubic (Kolinski et al., 1987) lattices, identical to
ones used in this paper. Thus, it might be interesting to
explore whether some techniques from polymer physics
would be useful for the study of alignments between
protein sequences.

In the simplest chain representation of an alignment,
both the number of points in the chain (the number of
aligned positions) and the vector length (the distances
between two consecutive beads, or aligned points) might
vary with the number of deletions or insertions in the
alignment and with the size of the fragments which are
being aligned. The study of such chains is relatively
difficult, as the number of the basic vectors is very large.
Therefore, a slight modification is proposed here. Points
[i,j] and [k,!] (k > i and I > j) from the original set are
joined by vectors from the set {[0, 1], [1,0]} in such a way
that the first (k — i) [1, 0] vectors lead to a point [k, /] and
then (/ — j) vectors [0, 1] lead to the point [k, /] (see Figure
1). With this choice, points from the original set (the
aligned points) could be recognized as the only ones where
a vector [1, 0] is immediately followed by a vector [0, 1]; in
other words, these are the only convex points along the
chain. It is, of course, possible to follow a different
convention for joining points from the original chain,
which would result in different criteria for recognizing

alignment points. There is one remaining problem:
sometimes alignments do not start from the beginning of
both sequences nor do they continue to the end. To ensure
that the length of the chain is constant, two dummy points
are introduced: [0,0], where the chain starts, and
[1+ 1,m+ 1] where the chain ends; n and m are the
lengths of the first and the second sequence respectively.
The additional points in the chain do not modify the
alignment, rather they are introduced solely for the
purpose of simplifying the algorithm of lattice chain
movement.

Now, every alignment between two protein sequences
can be described in two equivalent ways. One is the
traditional alignment, as shown in equation (1); the second
is a particular conformation of a lattice chain built on the
simple square lattice. There is a well-defined procedure for
switching between the two representations of the align-
ment. Some obvious properties of the alignment result in
restrictions on the chain conformation. Both ends are
fixed, and the chain is not allowed to intersect nor to
retrace its steps in any direction. In fact, it is built from a
predefined number of [1,0] and [0, 1] vectors, and both
[-1,0] and [0,—1] vectors are not allowed. Analogous
problems of self-avoiding walks (SAW) with fixed ends on
a square lattice are studied in polymer physics. As
mentioned above, there is a vast literature about various
properties of lattice chains, including efficient algorithms
for searching their conformational space.

In this analogy, the quality or score of the alignment is
equivalent to the energy of a particular chain conforma-
tion. In conformational studies of the lattice models of
polymer chains, traditionally the method of choice was
Monte Carlo (Baumgartner, 1984), which randomly
changes the conformation of the chain, and then accepts
or rejects new conformations on the basis of their energy
(Metropolis et al., 1953). In this procedure, changes in
chain conformation are introduced at random, and the
energy of a new conformation is compared with that of the
old. The probability of the acceptance of the new
conformation is proportional to exp [(Enew — Eoa)/kT),
where T is the temperature, which in this application is just
a parameter of the simulation. Note that the configura-
tions with lower energy are always accepted, and with
increasing temperature it is increasingly easier to accept
higher-energy conformations, so the system does not get
trapped in local minima. A stochastic minimization does
not guarantee that the lowest energy solution will be found
in any given finite amount of time. However, for simple
geometries, stochastic minimization methods are very
efficient.

Interestingly, the analogy between the conformation
of a polymer chain and sequence alignments was
partly explored in the reverse direction. For some classes
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of energy functions, dynamic programming has
been employed to search for the minimum of the
conformational energy of a polymer chain (Vajda and
DelLisi, 1990).

Multiple alignments

In a multiple alignment, sets of many sequences are
compared. A multiple alignment between three sequences
might look like the one below.

IRCFITPDG T SKDCP

N [
RICFNHQSSSQPQTTKTCS @)

I P
LKCNKL I PIAYKTCP

Such an alignment can be represented by a set of
equivalencies {[i},f,...,i4]}, where position i; from
protein 1 is equivalent to the position i, from protein 2
and at the same time to position i; from protein 3, etc. d is
the number of sequences (three in the example presented
in the equation 2). In the lattice chain conformation
picture of the alignment, this corresponds to a chain
conformation in d-dimensional space. As before, to
assure that the distance between consecutive beads
remains the same, points from the original set
{li1, iz, ..., iq)} are jointed by vectors from the basis set,
composed of d elementary vectors of the type [1,0,...,0],
[0,1,0,...,0],...,{0,0,...,1]. The rule used to join the
original points defines the convention used to recognize
actual alignment points from other beads in the chain.
For the three-dimensional chain, the convention where
vector [1, 0, 0] must be followed by the [0, 1,0] and then by
[0,0,1] was adopted. It is easy to generalize this
convention to d-dimensions, by requiring that all d basis
vectors should be present in d consecutive chain vectors in
a predetermined order.

Figure 1 presented the conformational equivalent of
the alignment between two proteins. (Figure 2 presents a
three-dimensional lattice chain, equivalent to a multiple
alignment of three proteins, shown in equation (2). The
N-terminal fragment of the alignment between three
toxin structures (a-cobratoxin, neurotoxin and cardio-
toxin) is used as an example. Unfortunately, it is not
possible to use this visualization technique to represent
higher-order alignments.

For the two-dimensional case, any combination of
basis vectors, other than ([0, 1], (1, 0]), was equivalent to a
deletion or insertion in the alignment and essentially all
existing alignment algorithms use the same scoring
system. Now, in more than two dimensions there are

Fig. 2. The equivalence between a three-dimensional lattice chain
conformation and a three-way protein alignment. This figure is
equivalent to the alignment presented in equation (2).

much more possibilities, such as aligning only k out of d
sequences, and having gaps in some subset of all
sequences. There are many different possible scoring
systems for multiple alignments (Altschul, 1989) and
essentially every program uses a different one, which
makes comparisons between various programs very
difficult. Here, we use one of the simpler variants
(Murata et al., 1985), where only positions where all
sequences are aligned with no gaps contribute to the final
score and every other position (with at least one gap)
contributes the same value to the gap penalty. Of course,
it would be perfectly possible to implement other scoring
systems in the MC algorithm.

The alignments are ‘downward compatible’. Simply by
removing all vectors of one type, it is possible to convert a
d-dimensional alignment into a d — 1 dimensional one.
For instance, by removing all [0, 1,0] vectors from the
three-dimensional alignment, one arrives at the two-
dimensional alignment of proteins 1 and 3 from the
original set. This feature of the algorithm is useful for
performing two-way (or in principle any k-way) align-
ments within a multiple alignment. It is also possible to
‘freeze’ any two (or any k) dimensional ‘sub-alignment’,
by restricting moves in such a way that no vectors in a
particular two-dimensional plane are exchanged. In this
way, the alignment of the chosen pair remains frozen; this

590



Direct multiple alignment

NN - -~ - recans reee=- pm———- 4 lllll revene | et [ tadadad i ’
H . [ . ] [l ] [ .
H . [ . H [ [ t ' .
H ' v ] H ] . ' ' ]
H ] ] [ H ' ] ' ' '
[} ] ] [ N ) [ ) [ R
pocea: ol —— HETT T ISP poee-- HETTEr Foam== Peccee pemeeny
' ) ] ] ] . ’ [ .
' ] . [ H . . ' ] ]
H . ] ' 4 ' ' ' » '
H . 1 [l H ' ] ' ] '
H . k] ' N ] [ [ [ '
pocce- Foemee o T, - - - - HETTL RS w |||||| HET TS Foee-- emmnne pocoen H
] M A ' . ' ' ' [}
» N H ' H ' ] ] [ [
’ N H ’ H ' ] [ [ ]
' N H ’ H ' ] v ] [
P ¢ + H H ceboceee beccen teceen H
Poe-- HEEE Looon X oo - fomeme Y v ¢ H
] ' H H H ] ] . 1 1
' ' H H H [ ] ] ' )
[ ' H ' H ] [ [ ' !
S DU FUUUU FOUUNL. M SN SOV WU U S
n- [ [ 1 N . ] . . ’
. [ [ 0 . ’ ’ . ] .
H ] . . " ] . “ " '
e X
i i ) : : ) : : !
' s » ] ] s ’ '

H ' . ' ) = ' ' H
' ' . . ] 5 ] ' H
jocen- LT deeeen freme- Jereonfeacns 3¢ttt R i ¢ onm—G - - - = - FETTTes J.

» . 1]

H H H ' ' W m ' '
H H H H H c H ' .
" . . ' h H
pommac)occns Joen-- | { I recaa: Do — H

-
1
.
.
.
1]

-

--old X

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn poeveey
X ‘ v v H H v H : :
1 ] ] ] ' [l . 3 ] ’
H ' [ ] [ [ " ' ] ]
H . ’ [ [ . . ’ ] [
H u ¢ ‘ ! ' H - Y e Y emmne H
reeae: 3 BTN AN = = = = = pomeee peose= re====r -c [
. 1 [l = . . 13 ' t "
: H H X H H H ' H :
SR P A SR TR SR WU U FE SRt
v 3] (E ) " r r gooeee :
° .
H .0 " 1 ’ [ ]
H » ] ’ ’ . ]
' » [ . ] ' '
} P .ﬂ 'f lllll “
¥
: H
’ '
. ]
P H
. [
' [}
H .
' 1
'
lllllll H
O .
; “ P
' ' H ]
.
.M [S Jemaaa K
H ] ' ' H ’ 1 '
H H H ' ' ] H [ H H
' ’ H ' H ] ’ 1
' » . H H ' M ] ' .
} i H | ! A L e — e e :
| EEE T Joaaee Jomee- leoe-- leoee- t---- | : . :
1 . . H v » » .
1 ] ' M H H v v v ]
1 [ i ' H H v » . ]
: : ! : : : : : L J :
bocone [ fieeans leemen [ S booees femeee toeee- ees :
] ¢ » H H H . ' . )
H H B H H ' H ' ' '
— H H . . H H H H .
nnnnnnnnnnn T e e A L LI L LR LT PP TES 7
SR S e R S R S
M s . L} ’ » 1
. . . . H ' ' [ ’ '
H H M . 1] ’ H ] ] !
. . H ' ] ’ ! ' ’

S F

Y

(c)
Fig. 3. Two basic local moves in the two dimensional, square lattice chain dynamics: (a) down move and (b) up move, shown here in the configurational

space. (¢) An example of a long-range move.

the properties of polymers change dramatically with

technique allows for a hierarchical build-up of the multiple
alignment. Because all these changes can be done in a

changes in space dimensions (e.g. the properties of self-

avoiding chains can be solved exactly in four-, but not

trivial way by restricting the set of moves used in

three-dimensional spaces de Gennes, 1979), the techniques

used for studying them are essentially the same.

generating new conformations of the chain, the lattice

chain version of the alignment program is indeed a very

flexible tool, capable of quickly changing from iterative

pairwise to a true multidimensional alignment.

Dynamics of a lattice chain in three dimensions

Again, the properties of multidimensional lattice chains
have been studied in polymer physics (Fixman and

Stockmayer, 1970; Skolnick and Kolinski, 1990). While

In the two dimensions, the set of elementary moves for the
MC calculations consists of exchange of the {[0,1],[1,0]}
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Fig. 4. Representative set of six bond moves for a three-dimensional
lattice chain.

pair for the {[1,0], [0, 1]} (down move) or vice versa (up
move) (Godzik, 1993). Both elementary moves are
presented in Figure 3(a,b). It is possible to implement
other long range moves (see Figure 3c), which are
combinations of several elementary moves; however,
every alignment can be reached from any other by a
series of elementary moves.

In the present application, the program automatically
generates the complete set of six bond moves from the set
of basis vectors in a procedure that is independent of the
number and type of the basis vectors. In fact, the very
same program which was used to study the quality of
lattice models of proteins in various lattices (Godzik er
al., 1993a,b) is used here. The choice of the six bond
moves is quite arbitrary, since there is only a lower limit
of the move length, which in three dimensions is equal to
three. There is no upper limit of the move length, and six
bond moves represent a good compromise between
minimization efficiency and programming effort. For
three dimensions, there are 729 (3°) six vector combina-
tions of six basis vectors. The complete library of six bond
chains is built and clustered into families, based on the
position of the end point. Chains within one family are
equivalent in the sense that it is possible to substitute one
for another, and the conformation of the chain would
change only locally. Substitution of one local chain
conformation for another constitutes a basic move in the
MC procedure; examples of such moves are presented in
Figure 4. New configurations are accepted/rejected
following the Metropolis criterion.

In a single MC step, the program at random picks up a
chain fragment to be changed, then cuts out the old and
pastes in a new fragment. The difference in the scoring
function between the old and new fragments can be

calculated directly, and all calculations are performed in
integer arithmetic, resulting in a very fast algorithm.

Implementation

The program utilizing the algorithm described above was
implemented in FORTRAN77 on a sun SPARCI10/41,
but with minor changes (in particular, the random
number generating subroutine) the program runs on a
number of other Unix platforms (Iris, IBM 6000, HP
9000). At present, the program can handle up to three
sequences, and a more general version is now under
development.

Scoring functions based on the standard Dayhoff
substitution matrix (Dayhoff, 1978), identity matrix and
McLachlan substitution frequency matrix (McLachlan,
1971) for local sequence comparison, the RMSD between
protein structures, Ca—Ca distance difference and the
contact map overlap (Godzik et al., 1993a,b) for
structural comparisons are implemented in the program.
Any other scoring function can also be incorporated as an
external subroutine. A random alignment was the usual
starting point, but the program has an option to start
either from the previously generated alignment, or to
build the initial alignment from the pairwise optimized
alignments. The latter is to be preferred as it greatly
enhances the rate of convergence of the Monte Carlo
algorithm. In practice, it is the method of choice to reduce
computational times.

In the course of the simulation, the chain conformation
is modified using the set of local, six-bond moves. For
each new chain conformation, the equivalent alignment is
constructed and its score is calculated according to the
similarity measure used in a particular run. New
conformations are accepted or rejected according to the
Metropolis scheme (Metropolis et al., 1953), based on the
energy difference between the old and the new conforma-
tion. Better conformations are always accepted, and
worse ones can be accepted with a probability depending
on the score difference between old and new conforma-
tions (AE) and AE/kT, where T is the temperature of
the system. The system was repeatedly heated and cooled,
to follow a simulated annealing protocol. Heating
increases the probability of accepting a higher energy
conformation, and thus enables the system to escape from
local energy minima. Cooling in turn speeds the approach
to a local minimum. In a typical application, it was
necessary to perform 10°-10° elementary moves in order
to achieve the convergence of the score. In all cases, the
lowest score is taken to be the alignment. This
corresponds to 25-30min of CPU time on a Sun
SPARCI10/41 workstation. This type of minimization
does not guarantee that the global extremum will be
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Table 1. Maximal scores and running times (in seconds of CPU timc on a
Sun SPARC 10.41) for the dynamic programming and MC-based
alignment programs

Family Dynamic programming Short MC  Long MC
Copper binding  85.0/0.3 84.4/180.0  85.0/500.0
Globins 135.7/0.3 135.0/190.0 135.7/500.0

Data were obtained with the Dayhoff substitution table without gap
penalties. The score is the sum of the rescaled Dayhoff matrix as used in
the GCG package (Genetic Computer Group, 1991) for all aligned pairs.

found; therefore, all alignments presented in here could
possibly be improved. To get a reasonable assurance of the
stability of the final alignment, multiple minimizations
from different starting points were always performed. In
the cases presented here, the same solution was repeatedly
found. Also, for test purposes, the same MC alignment
was used to obtain sequence-based alignments, where the
exact solution can be found using the dynamic program-
ming method (Murata, 1990). In all cases tested, the MC
procedure converged to the unique, correct and optimal
solution.

Results and discussion

At first, as a preliminary test, the algorithm was applied to
the two-dimensional case with the local, sequence-based
scoring function. This way, the results can be compared to
the known solution, obtained by the dynamic program-
ming.

Two cases were tested, the a- and B-chains of human
hemoglobin, and the two blue copper-binding proteins,
azurin and plastocyanin. In the first case, the similarity of
both proteins is strong (~ 45% identical residues); in the
second, it is much weaker (~ 23% identical residues). In
both cases, relatively short MC runs were able to recover
the alignments close to the best alignment, but much
longer runs were necessary to find the unique, best
alignment.

As seen from the data shown in Table I, the time
requirements for the MC-based alignment program are of
the order of two magnitudes larger than for the dynamic
programming-based alignment. However, the time
requirements for the MC program increase only slightly

for such non-local scoring functions as the contact map
overlap or the difference of the Ca—Ca distance maps
(Godzik et al., 1993a,b). Such cases cannot be treated by
dynamic programming.

It is more difficult to compare results for multiple
alignments, since the existing three-dimensional determi-
nistic alignment programs based on the dynamic program-
ming algorithm (Gotoh, 1986; Lipman e al., 1989; Zuker
and Somorjai, 1989; Murata, 1990; Hirosawa et al., 1993)
differ greatly in scoring systems used, the manner in which
the penalty functions are implemented and also their
availability. So here, two published alignments (Murata et
al., 1985; Subbiah and Harrison, 1989) and results of the
iterative, pairwise multiple alignment program PileUp, as
implemented in the GCG package are used for comparison
(Genetics Computer Group, 1991). Note that GCG
PileUp results do not give the upper bound to the score
of the MC algorithm. The same groups of proteins as in
original publications were used for testing: stellacyanin
was added to a blue copper group to compare it to the
exact solution published by Mutara et al., (1985),
sequences of S domains of virus coat protein from
tomato bushy stunt virus (TBSV), southern bean mosaic
virus (SBMV) and turnip crinkle virus (TCV) were used as
a second group to compare it to the results of Subbiah and
Harrison (1989).

The results in Table II illustrate two important
observations. First, the time requirements of the MC
algorithm grow only very slowly with the increase in the
dimensionality of the alignment (cf. Table I). Second, MC
alignment is able to improve upon the results of the
iterative method even in the short run, and can reproduce
the exact solution in the long rung. The alignment of
Murata et al., (1985) is reproduced exactly. Following the
original publication, a different scoring function was used
for virus coat proteins, and the structurally correct
alignment of Subbiah is reproduced with the additional
two-residue gap in the ‘arm’ region, preceding the S
domain (see Carrington et al., 1987; (Subbiah and
Harrison 1989 for detailed discussion of the alignment).
Note that using the same scoring function as in the case of
copper proteins, the iterative approach fails completely,

Table I1. Maximal scores and running times (in seconds of CPU time on a Sun SPARC 10/41) for the dynamic programming and MC-based multiple

alignment programs

Family Hierarchical approach Short MC Long MC Exact solution
GCG PileUp program

Copper binding 1249/0.3 1258/220.0 1271/700.0 1271

Virus coat® 1547/0.3 2154/210.0 2384/720.0 2360

Virus coat® 118/0.3 108/180.0 126/800.0 119

The GCG PileUP (GCG, 1991) program was used for comparison. PileUp and MC results were obtained cither with the rescaled McLachlan
substitution matrix with gap penalty equal to 12 (results denoted by") or identity matrix with gap penalty equal to 4 (denoted by®). The exact solution for
copper proteins was copied from Murata et al., (1985) and for the virus coat proteins the exact solution was copied from Subbiah and Harrison (1989).
Probable differences in gap penalties are responsible for the slightly better score obtained by the MC algorithm.
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Table III. Maximal scores for the MC-based, three-way alignment of protein structures

Family Pair alignment Three-way alignment
pair 1-2 pair 1-3 pair 2-3

Copper binding 126/130 103/111 100/106 94

Globins 128/130 125/137 115/129 102

In the first three columns, the pairwise score from the three-way alignment is compared to the best score in separate, pairwise alignment. The data in the
table were obtained with the contact map similarity measure with zero gap penalty.

while the Subbiah alignment can be ‘improved’, probably
due to some slight differences in implementation of gap
penalties.

All existing direct methods are limited so far to three
sequences (Gotoh, 1986; Zuker and Somorjai, 1989;
Murata, 1990; Hirosawa et al., 1993) and methods which
limit the space of the search to 5-10 sequence (Lipman
et al., 1989). As both memory and CPU requirements of
MC alignments increase only slowly with number of
sequences aligned, one can expect that MC alignments
would be more useful in higher dimensions. We intend to
extend our current algorithm in this direction in the future.

The times given in Tables I and II are for runs which
started from random alignments. It is possible to use an
option of the program which can start either from the
dynamic programming alignment obtained using some
local scoring function for the two-way alignment, or from
the iterative, pairwise multiple alignment for the three-
dimensional case. This approach can cut the calculation
time by at least one order of magnitude.

The real advantage of the MC alignment method
comes when dealing with a non-local scoring function,
where it is impossible to use a dynamic programming
based method. To illustrate this point, a three-way
structural alignment of two different protein groups was
performed (in the copper proteins group, azurin and
pseudoazurin were used, as structures of stellacyanin and
basic cucumber proteins are not known; globins are used
as a second group, as the structure of TCV coat protein is
not publicly available). The problem of comparison of
three-dimensional structures of proteins is a hotly
debated topic in the literature (Chothia and Lesk, 1986;
Sali et al., 1990; Hazes and Hol, 1992; Murzin et al., 1992;
Pascarella and Argos, 1992; Orengo et al., 1993), with
important implications for the sequence alignment field,
where structural alignments are treated as a ‘standard of
truth’. With large families of related structures now being
discovered, the ability to compare several structures
simultaneously becomes increasingly important. So far,
this problem has not been addressed in the literature, and
either only pairwise alignments were presented and
discussed, or in a way analogous to the early multiple
alignments, a ‘consensus’ structure is defined and all
structures are compared to it.

The structural alignment of three structures from our
two families was done using the contact map overlap
scoring function (Godzik ef al., 1993a,b). The algorithm
converged in ~ 25min of CPU time, with most of the
slowdown due to the cost of calculating of the scoring
function.

In all the cases studied, the contact map overlap was
substantial, and the number of contacts common to all
three structures changed little from the number common
to the each pair (see Table III). This result points strongly
to the conclusion that there is a set of common
interactions that define a protein topology. Proving the
existence of such sets and finding them for a number of
topologies was the primary scientific reason behind the
project that led to the development of the algorithm
presented here. Also in this case, the structural multiple
alignment is different from the one built from the pairwise
comparison of the three structures, as seen from the first
three columns of the Table III.

A standard multiple alignment in MSF format is given
as output from the program. More interestingly, for
structural comparisons, the program produces a super-
imposed contact map, which shows in detail which
contacts are present in all structures and which are
changed and superimposed three dimensional structures.
A fragment of the superimposed contact maps is
presented in Figure 5. A family of short toxin structures
(the same as in Figures 1-3) is used here as an example to
show the details of the contact maps in the scale of the
figure.

Future developments

There are a number of possible improvements which are
currently being implemented that will result in a
significant speed up of the algorithm (Kolinski and
Skolnick, 1987). A library of selected long-range moves is
being prepared. Its implementation should significantly
speed up alignments which require substantial shifts
between large sequence fragments, as for instance, when a
smaller protein is similar to a subdomain of a larger protein.

It is also possible to take into account the local
similarity between smaller fragments (such as helices and
B-strands). With little expense of computational time, the
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Fig. 5. Fragment of the superimposed contact map for three proteins from the toxin family. The same alignment was used in Figure 2.

whole structure can be scanned for the existence of such
fragments, and subsequently, such fragments would be
shifted predominantly by large-scale moves.
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