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An artificial neural network system is used for pattern
recognition in protein side-chain-side-chain contact maps.
A back-propagation network was trained on a set of
patterns which are popular in side-chain contact maps of
protein structures. Several neural network architectures
and different training parameters were tested to decide on
the best combination for the neural network. The resulting
network can distinguish between original (from protein
structures) and randomized patterns with an accuracy of
84.5% and a Matthews’ coefficient of 0.72 for the testing
set. Applications of this system for protein structure evalu-
ation and refinement are also proposed. Examples include
structures obtained after the application of molecular
dynamics to crystal structures, structures obtained from
X-ray crystallography at various stages of refinement,
structures obtained from a de novo folding algorithm and
deliberately misfolded structures.
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Introduction

The development of criteria for the evaluation of the quality
of side-chain packing in a proposed protein structure constitutes
an important aspect of the protein modeling problem. This is
particularly important for reduced models of protein structure
where less well-defined, statistically based interaction para-
meters must be used (Jernigan, 1992). For example, lattice
protein folding programs are able to generate many (often
non-native) compact structures with valid side-chain packing
densities and low energy (Kolinski et al., 1993; Skolnick ef al.,
1993). Similarly, there are many methods for generating full
atom models of proteins by homology modeling (Hilbert et al.,
1993), segment matching (Levitt, 1992) and other techniques
(see Maggiora et al., 1991, for a review). A major problem is
how to distinguish between ‘better’ (protein-like) and ‘worse’
(randomly packed) structures. Unfortunately, in both reduced
and full atom models, existing potentials make it difficult to
correlate the quality of a structure (measured for example by
r.m.s. deviation from the native structure) with its energy
(Holm and Sander, 1992; Maiorov and Crippen, 1992; Yun-yu
et al., 1993). The importance of the patterns of residue-residue
contacts for helical structures was shown by Chothia er al.
(1981). They analyzed 50 helix—helix packings and found that
in these structures contact patterns are formed by rows of

residues usually separated in sequence by three or four residues.
Presnell and Cohen (1989) analyzed four helical bundles from
the point of view of a supersecondary structure. Using this
analysis, they formulated semi-empirical rules for packing in
this type of protein structure. Furthermore, Chiche et al. (1990)
focused on solvation free energy as a parameter for the
evaluation of protein structure. The solvation free energy,
calculated according to Eisenberg and McLachlan (1986), is
linearly related to the size of a protein. If the calculated
solvation free energy for the given protein structure is smaller
than predicted, this is a good sign that the structure is misfolded.
Unfortunately, this method of protein structure determination
may have problems with evaluating well-packed random struc-
tures (Chiche et al., 1990). Finally, the importance of internal
packing interactions for protein structure stability was exam-
ined in the work of Lim and Sauer (1991). Their analysis of
the stability of structures with mutations in the hydrophobic
core showed that the problem of protein structure determination
may be approached from the point of view of compatibility
of patterns of interactions with the local structure and protein
sequence.

There are many studies which focus on the characteristic
regularities in structures (Vriend and Sander, 1991; Godzik
et al., 1993; Holm and Sander, 1993). Some fragments of
protein structures appear to be more ‘protein-like’ than others.
It is probable that our mind has the ability to generalize the
information about all the protein structures we have seen and
to use it to create an idea of what a globular protein should
look like. By examining a given protein model, we can say
how close a particular fragment is to an image of an ideal
protein structure. Here we propose an artificial neural network
(ANN) to make this intuitive vision of a ‘typical protein’ more
objective. We have used this network to evaluate the quality
of protein structures. The generalization of individual data and
pattern classification are areas where ANN systems have
proved to be very efficient (Hinton and Anderson, 1981;
Rumelhart et al., 1986; Eberhart and Dobbins, 1990).

A good review of the application of neural networks to
patterns in chemical problems can be found in Burns and
Whitesides (1993). Turning to the subject of protein structure
prediction, ANNs were used successfully by Holley and
Karplus (1989), Qian and Sejnowski (1989) and Kneller
et al. (1990) for secondary structure prediction from sequence
information. McGregor et al. (1989) used an ANN method for
the categorization of B-turn types in protein structures. Bohr
et al. (1988) used an ANN for the prediction of elements of
tertiary structures of proteins from sequence information, but
in both cases these results confirmed the common belief that
local information about the protein sequence is insufficient for
the prediction of protein structure.

Our aim was to present information about protein structures
to an ANN in a suitable form so that the ANN could
learn the difference between protein-like and random-packed
structures. This approach is novel in that we focus on the
structure of a protein rather than its sequence. We have also
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used the information about interactions between residues far
in sequence. Therefore, our method may be complementary to
those methods which use local sequence information.

A simple way of translating information about protein
structure into a form suitable for an ANN system is to use a
side-chain—side-chain contact map representation (Godzik
et al., 1993; Holm and Sander, 1993). In the literature there
are many definitions of protein contact maps; here we have used
one side-chain—side-chain heavy atom contact representation of
protein structures. When the distance between any pair of
heavy atoms taken from residues in different side chains is
less than some threshold value, the side chains are defined as
being in contact. This representation suppresses much of the
detailed information about protein structure, but at the same
time it concentrates on the packing and ordering of side chains.
In our work this value was set to 5 A (Godzik and Sander,
1989). We have found that the actual value of this cut-off
threshold is not very important provided that it is in the range
5.0 = 05 A.

In earlier work Godzik ef al. (1993) extracted characteristic
patterns from protein contact maps. They showed that some
interacting regions in different proteins give very similar side-
chain-side-chain contact patterns. Following up on this idea,
we are in the process of preparing a full library of interaction
patterns (A.Godzik, M.Milik, A.Kolinski and J.Skolnick,
manuscript in preparation). In our present work we have used
a fragment of this library as the basis for training and testing
sets for the pattern recognition system.

For simplicity, we have ignored the identity of the amino
acids in contact. Thus, by way of an example, a Leu-Leu
contact is treated in the same way as a Lys-Leu contact. Here,
we concentrate on the problem of whether a given contact is
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compatible with its local environment, as defined by the
local contact pattern. We do not take into consideration the
complicated interactions which are responsible for forming
this pattern and protein structure. Thus, this is clearly just the
first step in a more complicated procedure that assigns sequence
specificity to such patterns.

Materials and methods
Preparation of training and testing sets

For back-propagation networks, the preparation of input sets
is as important for a successful learning procedure as is the
architecture of the network. Our goal was to prepare balanced
sets of positive and negative patterns. Positive patterns should
be representative of structures which are in the Brookhaven
Protein Data Bank (PDB; Bernstein et al., 1977). The negative
examples should not include just random examples because
we want our neural network to be able to distinguish between
correct and ‘partially correct’ structures.

Initially a set of contact maps for 240 globular protein
structures in the PDB (Bernstein et al., 1977) was prepared.
These structures were chosen from a list of representative
protein structures published by Hobohm and Sander (1994).
A sliding window of seven X seven residues was then used to
scan every map from this set. The size of the window was set
by a preliminary analysis of the side-chain contact maps of
well-refined protein structures from the PDB. A seven X seven
residue window appears to be the smallest size which includes
most of the popular patterns that reflect the side-chain packing
of various structural elements. When the number of contacts
between residues in the window exceeded four, the contents
of the window were stored as a pattern. Patterns are represented
by strings of binary numbers.

The procedure to go from the protein structure to the set of
sevenXseven patterns is presented schematically in Figure 1.
The distances between all side-chain atoms were calculated
for the example protein structure (Figure 1A). If the distance
between any atom from side chain ‘1’ and any atom from side
chain “a’ is less than some threshold value (in our case 5 A),
residues ‘17 and ‘a’ are in contact. Information about contacts
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Fig. 1. Schematic illustration of the procedure for going from a protein structure to a set of binary patterns. See text for details.
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is presented in condensed form in the contact map (Figure
1B). [On the horizontal and vertical axes are the numbers of
residues in the protein sequences; a black square denotes
contact. By way of an example, the point with coordinates
(40, 78) denotes that residue 40 is in contact with residue 78
according to our definition.] These contact maps were then
scanned using the seven X seven window and the information
about the pattern was stored in the form of a binary vector
(Figure 1C).

As shown in Figure 1C, the string was obtained by scanning
the window starting from the upper left-hand corner; a ‘I’
denotes a contact and a ‘0’ indicates that no contact occurs.
In our present work we have focused on long-range contacts,
defined when the residues are more than five residues apart
down sequence. Thus, each seven X seven contact map is
converted into a 49-bit string.

This procedure provided an initial file containing 31 851
‘dense’ patterns. These patterns were then lexicographically
sorted and the frequency of occurrence in the database of every
pattern was calculated. To focus our attention on statistically
important (non-random) patterns, we employed those patterns
which occurred more than twice in the database. There were
1476 such patterns (available by ftp).

As an illustration, Figure 2A—C presents examples of three
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popular patterns in our database. Additional information about
fragments of proteins where these patterns could be found is
also provided, and includes the name of the protein, the
numbers of the central residue, the sequences of both fragments
in contact and the secondary structures of these fragments
according to the Kabsch and Sander (1983) definition.

Typically, each pattern is related to the specific type of
secondary structure in contact. Figure 2A represents a typical
B-B pattern, Figure 2B an o—o pattern and Figure 2C an
o~p pattern. A more detailed analysis of the pattern library
and the relationship between patterns and secondary structure
will be published in subsequent work.

The set of filtered patterns (with at least more than two
representatives in our database) was then used to build target
and training sets for the neural network program. Since a feed-
forward back-propagation architecture of neural network was
used, both positive and negative examples are required for
training. To prepare examples of negative patterns two methods
were used. Random patterns with the same density distribution
of contacts as in the set of positive patterns were generated.
In the second method of scrambling side-chain protein contact
patterns, the algorithm tries to move every point in the pattern
to its neighboring position. If this new randomly chosen
position is empty, then the move is accepted. If five or more
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Fig. 2. Examplt?s of pop_ular contact patterns in our subset of PDB protein structures, with information where this pattern could be found in PDB protein
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C. d.

Fig. 3. Example of preparation of negative examples for the learning
procedure. (a) A starting ‘native’ pattern. (b) An example of a random
pattern. (¢) An example of the ‘scrambled’ pattern. (d) Pattern resulting
from (c), containing shifted (grey) and native (black) contacts.

N
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Fig. 4. Schematic view of the ANN architecture used in this study. For the
sake of clarity, only a subset of input and hidden units and weights is
presented. The number of hidden units varies from seven to 30.

output unit

hidden units

OO

Input Layer (7x7+1 units)

of the points in the pattern are moved, then the new pattern
is accepted as an example of a disrupted pattern; otherwise, a
random pattern was generated in its place.

Figure 3 shows how negative contact patterns were created
during the dataset preparation procedure. For the example
pattern from the database (Figure 3a), the random negative
pattern was obtained by placing contacts in random positions
in the seven X seven window. The procedure of preparing a
scrambled pattern starts by shifting contacts in the positive
pattern in random directions (shown as arrows in Figure 3c).
The resulting negative pattern (Figure 3d) contains both shifted
(gray) and ‘native’ (black) contacts. This procedure was used
to teach the neural net to discriminate against close to native
contact patterns in partially dissolved structures.
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hidden nodes, calculated for the training set during the learning procedure.

Neural network architecture

A feed-forward neural network with error back-propagation
was used in this work. This system has been described
extensively in the literature (Rumelhart et al., 1986; Eberhart
and Dobbins, 1990; McClelland and Rumelhart, 1990). There-
fore, we present here only those features which are character-
istic of our network. Figure 4 shows a schematic view of the
architecture. The network contains 50 input nodes, seven to
30 hidden layer nodes and one output node. Our network gives
a binary answer (i.e. yes or no) to the question: ‘Is the given
pattern popular in the structure database or not?’ Every hidden
layer node and the output node had an additional weight for
a bias parameter.

Learning procedure

The neural network was initiated with random weights in the
range —0.3 to 0.3. This weight range is widely used for the
initiation of back-propagation networks. However, according
to the literature, the learning process and final performance of
the network do not depend on the initial set of weights
(Eberhart and Dobbins, 1990; Masters, 1993). Every epoch of
the learning algorithm started with the presentation of an input
pattern from the training set. The patterns were presented as
vectors of 49 binary values (Figure 1) to 49 input units of our
network (Figure 4). Every input unit was connected to every
hidden unit with weight w;.

The activations in the hidden layer were calculated in the
next step. First, the net input (net;) was calculated for every
unit as the sum of activations of the input units multiplied
by the corresponding connection weights, plus a bias term
associated with the i-th unit:

net; = Lw; + bias; N

where the sum is calculated over all input units and w;; denotes
the connection weight between the j-th and i-th units. The net
input was then used in the calculation of the activation of the
unit according to a sigmoidal activation function:

0; = /(1 + e™eti) (2)

where o; is the actual activation of the i-th unit related to net
input from Equation 1.

The activations of the hidden layer nodes were then used
as input signals for the output node. The output node activation
was calculated using the same procedure as that applied to the
hidden layer nodes. The activations of the output nodes for



the entire set of training patterns were used for calculating the
error function according to the equation:

E=Z3,E, =3, — 0,)° ©)

where the index p ranges over the set of input patterns, and
E, denotes the individual error for the p-th pattern. The
parameter f, denotes the target value of the output node for
the p-th pattern. The target values were assigned as 0.99 for
positive examples and 0.01 for false examples. The goal of
the learning procedure is to minimize the value of the error
calculated for the training set. A variant of the gradient descent
method was used for this purpose. After the presentation of
the full set of input patterns, the error function was computed
and each weight was moved down the error gradient towards
the minimum. The momentum rule was used to speed up the
minimization procedure and to give the system the possibility of
escaping from small local minima. According to the momentum
rule, information about the change of weights in the n — 1-th
step is used in the calculation of the next value of the weights.
The change of weight w;; was then determined according to
the formula:

Awiln) = —N(IE/dwy) + aAwy(n — 1) @)

(see Rumelhart et al., 1986) where m is the learning rate
parameter, o is the momentum and Aw;{(n — 1) is the change
of the weight in the previous step. Using the new hidden/
output weights and the back-propagation rule, we can calculate
Awj; for the input and hidden layer matrices. This procedure
is repeated several hundred or several thousand times until the
system reaches a stable point.

Performance measure

The first problem which must be solved to find the optimal
performance of an ANN system is the question of interpretation
of the output from the network. In our case, this output is a
real number in the range (0.0, 1.0). This number has to be
translated into a binary (yes/no) answer. The simplest way of
solving this problem is to use a decision threshold. When the
output exceeds the decision threshold value the answer is
interpreted as ‘yes’; otherwise, it is interpreted as ‘no’.

The error back-propagation algorithm is based on the minim-
ization of average sum-squared error, E (Equation 3). The
error parameter E is taken as an efficiency meter and is
measured and plotted during the training procedure.

The simplest and most commonly used measure of perform-
ance is the percent of correct predictions. This parameter
depends strongly on the characteristics of the training set.
When it is the only method of evaluating performance, it may
lead to misleading conclusions (see, for example, Eberhart and
Dobbins, 1990; Masters, 1993). For example, one can guess
that the answer is always protein-like. This would be correct
for exactly the percentage of the protein-like patterns in the
training set. However, this has no predictive value and thus
other measures of success that address how well the system
performs are required.

One popular method of measuring the efficiency of a
prediction scheme was proposed by Mathews (1975). This
method defines the Mathews’ correlation coefficient:

Cy = (pn — uo)N[(n + w)(n + o)p + Wp + 0)] (5

where p is number of true positive predictions (a protein-like
pattern from the training set was classified by the network as
being protein-like), n is the number of true negative predictions
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nodes, calculated for three stages of the learning procedure.

(a non-protein-like pattern was classified as non-protein-like),
u is the number of underpredicted cases (a protein-like pattern
was classified as non-protein-like) and o is the number of
overpredicted cases (a non-protein-like pattern was classified
as being non-protein-like).

A very good tool for measuring the accuracy of an automated
diagnostic or prediction system is the receiver operating
characteristic (ROC) curve. The ROC curve is widely used
for measuring the performance of electronic communications
systems (Eberhart and Dobbins, 1990; Masters, 1993). The
results obtained with this method do not depend on the
probability distribution of the training/test set patterns or
decision bias. To define the ROC curves we have to classify
the possible answers of the system.

The ROC curve is defined in terms of two ratios of
parameters. The first ratio, p/(p + u),’is called the true positive
ratio; the second ratio, #/(n + 0), is called the true negative
ratio. The ROC curve is a plot of the true positive ratio as a
function of the true negative ratio, calculated for different
values of the threshold parameter, y. Using the ROC curve
one can measure visually how the ANN performance depends
on Y. The ROC curve for a totally random network is a major
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Table 1. Neural network prediction efficiencies for cross-validation sets

Dataset Matthews’ coefficient Percentage of good
answers

] 0.7376 86.80

2 0.7387 86.93

3 0.7224 86.04

4 0.7108 85.49

5 0.7379 86.66

diagonal; ROC curves for better trained networks always lie
above the major diagonal. The quality of performance of the
network is demonstrated by the degree to which the ROC
curve pushes upwards and to the left, and can be measured
by the area under the curve (Eberhart and Dobbins, 1990;
Masters, 1993).

Results

First, we have to decide on the optimal architecture of the
ANN. While the numbers of input and output nodes are strictly
defined by the problem at hand (49 input nodes, one output
node), the number of hidden nodes is arbitrary; there is no
universal formula to determine this number. Thus, we proceed
by varying the number of hidden nodes. Training runs for five
different architectures having seven, 11, 15, 20 and 30 nodes
were undertaken.

The average error for the training sets during the training
process is shown in Figure 5. As can be observed, the average
error calculated for the training set decreases with learning
time and with increasing number of hidden layer nodes.
However, the average error for the training set cannot be
a criterion for choosing the ANN architecture. For more
complicated ANNs (with a larger number of nodes in the
hidden layer), memorization can occur. Larger ANN systems
can literally encode the information contained in the training
set instead of developing the ability to generalize it. Therefore,
the average error calculated for a testing set gives much better
information about the performance of an ANN. The testing
set should be prepared using the analogous procedure as the
training set, but it should be disjoint with the training set.

Figure 6 shows that the average error for the testing set
drops rapidly during the initial stage of the learning process,
analogous to the training set case, but after some time the value
of this parameter grows, most probably due to memorization of
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used in this work.

the training set. At around the minimum of the error as a
function of the number of epochs (learning cycles), the ANN
has extracted most of the important features from the training
set but the memorization effect is minimized. Examining the
values of the minimal average errors of the testing set as a
function of the different numbers of hidden nodes, the best
performance is obtained using an ANN with 15 hidden nodes.
For a less complicated ANN, it may be too difficult to find
some features which distinguish the positive from the negative
patterns. When the ANN is too large, memorization becomes
too strong relative to the generalization process.

Analysis of the ROC curves obtained for the ANN with 15
hidden nodes (Figure 7) confirms that the performance of the
network for the training set is optimal after 3500 learning
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Fig. 11. Stereoview of the distorted structure of Ipcy (black) superimposed
on the native structure (grey). The example shows that the overail
hydrophobic density and backbone traces are very similar in both structures.

100

L ] I:l
- . -.'.E . . L 1) .
. T -
80 o~ " .-' "m e o« -
T
l~ -
6 LI | [
|.|l
lll
ot . . . ."Bg '.Dﬁ;
1"..-
FLEN e
20 ", -
| Bau
kfa
% 20 40 60 80 100

Fig. 12. Evaluation of the disturbed structure of Ipcy.pdb with a rm.s.
deviation on Ca equal to 0.6 A. See the legend to Figure 9 for additional
details.

epochs. The area under this ROC curve, which is a measure
of the network performance (Eberhart and Dobbins, 1990),
achieves the maximal value.

Figure 8 shows how the value of the Matthews’ coefficient
changes as a function of the decision threshold value (defined
above) in the three stages of the learning procedure. Qualitat-
ively, longer learning times lead to flat curves; thus, for well-
trained networks the efficiency depends only slightly on the
threshold value, and every threshold value from 0.3 to 0.7
works equally as well. For these values of the threshold
parameter the ANN gives ~87% correct predictions for the
testing set and a Matthews’ coefficient of 0.74.
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Fig. 13. Evaluation of the perturbed structure of 1pcy.pdb whose Co r.m.s.
deviation from native equals 1.2 A. See the legend to Figure 9 for details.

In the above procedure, the average error calculated for the
testing set of patterns was used as a criterion for searching for
the optimal set of parameters for our ANN system. Therefore,
there is the possibility that the ANN obtained in this way will
be partially biased by the testing set. To eliminate this we
used a second testing set. This second set was built in an
identical manner to the ‘training’ and ‘testing’ sets. We
employed a set of 33 structures of globular proteins chosen
from the PDB and built it only after completing the training
procedures. Our prior decisions about the architecture of the
ANN and the parameter set did not depend on the results
obtained for this set. Thus, the set was used only to evaluate
the predictive ability of the ANN. The results of the second
testing were very similar to those for the original testing set.
The ANN gives 84.5% correct predictions, with a Matthews’
coefficient of 0.717.

The final test of our learning procedure consisted of cross-
validation runs to show that our results do not depend on the
choice of learning and testing sets. The cross-validation sets
contain 10% of patterns chosen from the original testing set
and 90% of patterns chosen from the original training set. The
first cross-validation set was prepared by taking every 10th
pattern (starting from the first one) from the testing set and
the rest of the patterns from the training set. The second cross-
validation set was prepared by an analogous procedure; this
time the testing set was taken from every pattern j such that
mod(j,10) = 2. In this way we prepared five different sets of
patterns with different testing patterns.

The learning procedure was repeated for the cross-validation
sets and the results are presented in Table 1. The results show
that for the size of database used in the work presented, the
results do not depend on the testing set preparation method.

Program for pattern recognition in protein contact maps

A program for the recognition of popular patterns in protein
contact maps was prepared based on the results of the learning
procedures described above. The program, written in C and
C++, contains two main parts. For each structure a side-
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Fig. 14. Histogram of values of the pattern evaluation parameter (defined in
the text) for helical proteins (&), B-proteins () and mixed proteins (other).
For this test we used a subset of 202 protein structures from the PDB.
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Fig. 15. Evaluation of the structure obtained by adding the backbone and
side-chain atoms to the reduced representation structure of the GCN4
leucine zipper dimer obtained from a Monte Carlo procedure. The lower
quadrant is empty because no contacts were evaluated as protein-like. The
r.m.s. deviation between this structure and the native one is equal to 4.52 A
for all heavy atoms.

chain contact map was prepared. Only information about long-
range contacts (more than five residues distant along the
sequence) was used. In this way we concentrated on those
contacts which form the supersecondary structure of the
protein. Then, the contact map was scanned using a
seven X seven residue window, and patterns with more than
four contacts in this window were presented to the ANN
system described above.

When the pattern is one of the popular (protein-like) patterns,
the output value of the output node should be high; when it
is not popular in the database, then the output should have a
low value. The ANN works as an evaluation function and for
every pattern gives a value from O to 1. This value is assigned
to the central contact of the pattern; it represents how well the
central contact fits into its environment, or how good local
side-chain packing is around the central contact.
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Fig. 16. Evaluation of the structure obtained by molecular dynamics
minimization of the structure from Figure 15. The r.m.s. deviation between
this structure and the native one equals 4.18 A for all heavy atoms and
2.61 A for the Cass.
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Fig. 17. Evaluation of the structure obtained by molecular dynamics
minimization of the structure from Figure 16. The r.m.s. deviation between
this structure and the native one equals 2.75 A for all heavy atoms and
0.68 A for the Cas.

Table I1. PEPs and r.m.s. deviation values calculated for different models of
GCN4 dimer structure

Model of GCN4 All atoms rm.s. Coa r.m.s. PEP

Version 0 4.52 3.05 0.000
Version 1 4.18 2.61 0.240
Version 2 2.75 0.68 0.380

The models were obtained by Vieth et al. (1994) using a combined Motel
Carlo and molecular dynamics procedure.

.



Neural network for side-chain packing evaluation

Table III. Values of the PEP for the original PDB and deliberately misfolded structures of proteins

Name of misfolded Based on: PEP for misfolded PEP for native Difference® Percent®
structure structure structure

1bp2on2paz.brk 2paz.pdb 0.425 0.688 0.263 36.23
Icbhon1ppt.brk 1ppt.pdb 0.181 0.197 0.016 8.12
1fdxon5rxn.brk Srxn.pdb 0.291 0.305 0.014 459
1hipon2b5c.pdb 3b5c.pdb 0.183 0.259 0.076 29.34
1thlon2ilb.brk 2ilb.pdb 0.415 0.706 0.291 41.22
1p2ponim3.brk 3m3.pdb 0.358 0.446 0.088 19.73
Ipptonlcbh.brk Icbh.pdb 0.037 0.041 0.004 9.76
IreionSpad.brk Spad.pdb 0.254 0.400 0.146 36.50
Irhdon2cyp.brk 2cyp.pdb 0.313 0.506 0.193 38.14
Im3on1p2p.brk 1p2p.pdb 0.287 0.341 0.054 15.84
Isn3on2ci2.brk 2ci2.pdb 0.186 0.276 0.090 32.61
1sn3on2cro.brk 2cro.pdb 0.077 0.256 0.179 69.92
2b5conlhip.brk Thip.pdb 0.146 0.252 0.106 42.06
2cdvon2ssi.brk 2ssi.pdb 0.238 0.221 -0.017 -7.69
2ci2onlsn3.brk Isn3.pdb 0.202 0.258 0.056 21.70
2ci2on2cro.brk 2cro.pdb 0.160 0.256 0.096 37.50
2croonlsn3.brk Isn3.pdb 0.212 0.258 0.046 17.83
2croon2ci2.brk 2ci2.pdb 0.278 0.276 -0.002 -0.72
2cyponlrhd.brk Irhd.pdb 0.307 0.305 -0.002 -0.66
2ilbonl1lhl.brk 11h1.pdb 0.229 0.358 0.129 36.03
2pazonlbp2.brk 1bp2.pdb 0.201 0.345 0.144 41.74
2ssion2cdv.brk 2cdv.pdb 0.082 0.181 0.099 54.70
2tmnon2ts1.brk 2tsl.pdb 0.165 0344 0.179 52.03
2tslon2tmn.brk 2tmn.pdb 0.364 0514 0.150 29.18
Srxnonlfdx.brk 1fdx.pdb 0.249 0.262 0.013 4.96
Spadonlrei.brk Irei.pdb 0.396 0.602 0.206 3422

aThe difference between the PEP value for the native and misfolded structures. Difference = PEP(native) — PEP(misfolded).
YThe relative values of change of the PEP parameter between the native and misfolded structures. Percent = difference/PEP(native).

Application to native and near native structures

Figure 9 shows the result of using our program to evaluate
the native structure of plastocyanin (1pcy.pdb). This structure
was not included in the training set. The results of evaluating
protein contact maps will be presented here as asymmetric
contact maps. The input contact map is presented above the
diagonal, and the results of the evaluation lie below the
diagonal. Contacts of patterns predicted to be positive (protein-
like, i.e. with an ANN output >0.5) are represented as solid
black squares; those contacts which are in the patterns predicted
to be negative (non-protein-like, i.e. with an ANN output
<0.5) are represented by open squares. For a clearer picture,
only the central contacts of the patterns are represented. Most
of the patterns in the PDB structure of 1pcy are classified as
being strongly protein-like. Only a few contacts in the output
are strongly negative (white squares), and a few contacts
are unclassified because they belong to patterns which are
too sparse.

The pattern evaluation program can also provide additional
information about the entire protein structure as a single
number. This is the summed answer from the ANN for all
patterns divided by the number of residues in the protein; we
define this quantity as being the pattern evaluation parameter
(PEP). We decided to normalize the summed output from the
ANN by the number of residues rather than by the number of
contacts so as to penalize additionally structures with low
packing densities. Typical structures of globular proteins from
the PDB have the number of contacts proportional to the
number of residues. Figure 10 plots the number of contacts as
a function of the number of residues for the set of proteins
used in our study. The linear correlation coefficient is equal
to 0.98, which is in good agreement with the above statement.

In the case of partially misfolded structures, the number of
contacts drops (with no change in the number of residues) and

the PEP will be lower than in the case of a regularly packed
structure. In the case of the Ipcy structure, the PEP has the
value of 0.398. This is a low value for B-protein structures in
the PDB (see the analysis below).

In the next step we have prepared distorted versions of the
1pcy structure. The positions of backbone atoms of the original
structure were randomly changed by a small vector, and then
the side-chain atoms were added to these distorted backbones
using the procedure found in the SYBYL modeling package
(version 6.0; Tripos Associates Inc., St Louis, MO). Overlaps
and distorted bond lengths and angles were removed by the
standard minimization procedure in SYBYL. In this way we
have obtained two structures close to the starting lpcy.pdb
structure (as measured by r.m.s. distance), but with randomized
contact patterns. The first structure we prepared had a 0.6 A
r.m.s. deviation from native for the Co. backbone atoms, and
2.0 A r.m.s. deviation on all atoms.

Figure 11 shows a stereoview of the distorted 1pcy structure
(black) superimposed on the native 1pcy structure (grey). As
one can see, the overall size of the hydrophobic core and
backbone trace is preserved in the distorted structure, but
the side-chain packing looks different. This observation is
confirmed by contact maps of the distorted structure, presented
in Figure 12. Compared with the native molecule, this contact
map is less organized.

Analysis by our program gives the value 0.273 for the
pattern evaluation parameter. Many of the contacts are omitted
by the program, but two patterns are shown as being very
protein-like. A second distorted structure has an r.m.s. deviation
on the Cas equal to 1.2 A and a full atom r.m.s. deviation of
2.98 A. The pattern evaluation parameter is significantly
smaller (0.223), and whole fragments of protein are classified
as being non-protein-like (Figure 13). Both structures discussed
above were prepared only to illustrate that our method can

233



M.Milik, A.Kolinski and J.Skolnick

A [a, . ..
Rt . Seooa .
140 . L
. A ST - :",
1 5
1. .. " Y
120 s ~
. . Lt r
R R, % -
LI
100 N . N
. .
N . .o .
80 . one 1.
.. . e
0. %, -t
. Y
40 - ". #u
seon, ‘e
ol IS S .
o !
-& H
0
0 20 40 60 80 100 120 140

B [ —
.a&._ . N P
140 . .
. : - iy
. = °
e . . A
120 . ." _.. o 5.:; e
. e e ° e, - <
H
100 YO o e 5&
. LY . - [ ]
.o . 1 .
80 H . ':'5\:;

R tH
20 . o
. ‘:n. 3 i's,‘
0 0 20 40 60 80 100 120 140

Fig. 18, (A) Evaluation of the quality of a deliberately misfolded structure of 2i1b.pdb [1lhlon2ilb.brk from Holm and Sander (1992)). The representation is
similar to that described in the legend to Figure 8. (B) Evaluation of the quality of the structure of 2ilb.pdb from the PDB. The representation is described in

the legend to Figure 9.
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Fig. 19. (A) Evaluation of the deliberately misfolded structure of 2ssi.pdb [2cdvon2ssi.brk from Holm and Sander (1992)). The representation is described in
the legend to Figure 9. (B) Evaluation of the quality of the original structure of 2ssi.pdb.

distinguish between native proteins and structures with random-
ized side chains.

An interesting question is: How does the pattern evaluation
parameter depend on the secondary structure class of the
protein? To answer this, we have selected from our subset of
PDB protein structures those proteins with prevailing o, B and
mixed o/P structures. ‘Helical’ proteins are those which are
at least 40% helical and contain not >10% P structure. ‘B’-
proteins are those which contain at least 40% [ structure and
are <10% helical. Mixed o/f-proteins constitute the remainder.
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For these three sets of proteins we calculated the pattern
evaluation parameter. The results are presented as a histogram
in Figure 14.

It is evident from this plot that the PEP depends strongly
on the type of secondary structure. ‘B’-type proteins are, on
average, better recognized than ‘e’ types, with mixed motif
proteins intermediate in magnitude. One of the reasons for this
effect may be the fact that the contact patterns for B structures
are very similar to each other, and it was easier for our ANN
to find the characteristic features of these patterns.

’~



Application to protein structures at different stages of
crystallographic refinement

Four structures of the variable domain of anti-progesterone
antibody DB3 (Arevalo et al., 1993), at different stages of
refinement from crystallographic data, were obtained from
Dr Ian Wilson’s laboratory. These structures were used to test
the use of our algorithm for evaluating the quality of protein
structures (more precisely, their side-chain packing) at various
stages of refinement. The first (starting) structure is a model
of the variable domain structure of DB3 built by Drs Arthur
Lesk and Cyrus Chothia (MRC Laboratory, Cambridge, UK)
according to the methods of Chothia et al. (1989). The second
structure was obtained by superimposing the domains from
the first model onto the structure of McPC603 (Satow et al.,
1986). In the third structure, the original coordinates of
McPC603 domains were rotated to agree with the experi-
mental data using a correlation coefficient in Patterson space
(J.Arevalo, personal communication). The fourth structure is
the fragment containing the variable domain from the final
version of the DB3 structure (deposited as ldba.pdb in the
PDB), whose refinement is described in Arevalo et al. (1993).
The PEP values calculated by our algorithm for these structures
are 0.562 for the first structure, 0.607 for the second, 0.638
for the third and 0.602 for the fourth. All the PEP values are
close to the average values for ‘B’-proteins (Figure 14). The
value of PEP increases during the first stage of the refinement
process, and the difference between the first (model) structure
and the third minimized structure is ~12%. This example
shows that our method can be useful during the first stage of
protein structure refinement in the preparation of the initial
model. The difference in PEP between the second (non-
minimized) and the last two structures is ~5%. This shows us
that the differences occurring during the later stages of refine-
ment of protein structures are at the level of sensitivity of our
method. Our method is based on the recognition of character-
istic interaction patterns between secondary structure frag-
ments. Protein-like patterns (as assessed by the algorithm)
occur before the last minimization stage and change only
slightly thereafter. Additionally, our method uses a very simpli-
fied representation of protein structure: a simple binary contact/
no contact alternative without any side-chain energetic terms.
Further development of the model and the inclusion of addi-
tional information about local structure should improve the
performance of the method for ‘almost’ well-refined structures.

Application to predicted tertiary structures

In another test we have used structures of the GCN4 leucine
zipper dimer, generated by Vieth et al. (1994), using a combined
Monte Carlo and molecular dynamics procedure. In this
procedure, the initial conformations of the proposed structure
were generated using a fast Monte Carlo-reduced representa-
tion program. These structures were then carefully minimized
using the CHARMM molecular dynamics package (Brooks
et al., 1983).

Figure 15 shows a contact map for the structure which was
obtained by a full atom rebuilding procedure on the basis of
a lattice reduced representation structure. The contact map
looks random, and no protein-like pattern was found by the
program. The value of the pattern analysis parameter is equal
to 0.0, and the r.m.s. deviation between this structure and the
native conformation 2zta.pdb, measured for the Cas, is equal
to 3.05 A. This structure was then used as a starting point
for the minimization procedure described in greater detail

Neural network for side-chain packing evaluation

elsewhere (Vieth et al., 1994). Figure 16 presents the map
from a structure obtained after the first stage of molecular
dynamics refinement. Figure 17 presents the map from the
structure at the end of the molecular dynamics minimization
procedure.

The r.m.s. deviations from the PDB values and pattern
evaluation parameters for these structures are presented in
Table II. For these examples, the pattern analysis parameters
in Table II correlate with the r.m.s. deviations from native.

Application to deliberately misfolded structures

Holm and Sander (1992) have published a set of deliberately
misfolded proteins generated by swapping sequences and
structures between proteins with an equal number of residues.
The resulting positions of the side chains were then optimized
using a fast Monte Carlo algorithm, and the structures were
minimized using the GROMOS program (van Gunsteren and
Berendsen, 1987).

We used these misfolded structures as an additional test for
our ANN method. The misfolded and original PDB structures
were evaluated using our algorithm. The results are presented
in Table III. In 23 out of 26 cases the average output of our
ANN is greater for the native than for the misfolded structure.
In 19 cases, this difference is >10%, which means that these
structures could be easily distinguished using our method. This
is a good test of the sensitivity of our method because no
explicit information about sequence is used in the evaluation
of structure quality. Using only information about patterns
of interaction between supersecondary fragments in these
structures, our algorithm can distinguish between two very
similar structures with protein-like packing and almost indistin-
guishable potential energies (Holm and Sander, 1992).

As an illustration, in Figure 18A and B we present an
example of contact maps where the difference in the pattern
evaluation parameter between the misfolded and native struc-
tures is maximal (0.291). The contact maps for both structures
look very similar (see upper left quadrants), and there is no
obvious difference between the misfolded structure and the
structure taken from PDB. It is much easier to classify the
structures using the PEP output generated by our algorithm
(lower right quadrants). As before, the filled squares represent
‘protein-like’ patterns and the open squares are the patterns
classified by our network as being atypical of proteins. Only
the central contacts of the scanned patterns are shown. For the
original protein structure, all characteristic B—3 interaction
patterns are recognized by the ANN as being very popular.
There are only a few examples of atypical patterns, and they
are located outside the main B structure. In the case of the
misfolded structure, the B—P patterns are less characteristic
and are often spoiled by the inclusion of non-typical sub-
patterns. The difference between the evaluation parameters
shows distinct variations in the two contact maps. Thus, even
for very similar structures (based on an r.m.s. definition)
with very similar potential energies, the structures can be
distinguished by our method. :

This picture is similar for most of the structures from
the Holm and Sander (1992) set. However, for five cases
(Ifdxon5xn, lpptonlcbh, 2croon2ci2, 2cyponlrhd and
Srxnonlfdx) the variation is too small to allow us to differenti-
ate between the two structures based on the PEP of the contact
maps. In the case of 2cdvon2ssi, our evaluation is better for
the misfolded than for the parent PDB structure.

As can be seen in Figure 19A and B, the numbers of
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positive and negative predictions are very similar for both
2cdvon2ssi.brk and 2ssi.pdb structures, but some regions seem
to be better ordered in the misfolded than in the native
structure. To explain this effect, we examined more closely
the PDB file of the original structure of 2ssi.pdb. In their
remarks (Bernstein et al., 1977; Hirono et al., 1979), the
authors wrote that in the region ALA62 to MET70 the positions
of the side-chain atoms are approximate and are given only
for reference. When these residues were excluded from consid-
eration, the prediction becomes slightly (a difference of 0.005)
better for the native 2ssi.pdb structure. It is possible in this
case that the side chains in this loop were better minimized
for the misfolded than for the native structure.

Discussion

The examples presented above show that the ANN system for
evaluating patterns in protein contact maps can provide some
objective information about the local packing of supersecond-
ary structure fragments in model structures. Using the present
algorithm, the process of evaluation of a single protein side-
chain contact map is extremely fast and is very easy to
vectorize or parallelize. This information may be very useful
when one needs to evaluate a large number of possible variants
of the protein structure generated, for example, by a Monte
Carlo reduced representation program (Skolnick e? al., 1993).
The algorithm is completely automatic and may be used as an
internal procedure in programs used for the prediction of
protein structure. The pattern evaluation ANN system has been
used, for example, for the restriction of the conformational
space to states where the local side-chain packing is similar
to a typical pattern in the PDB protein structural database.
Additionally, this procedure may detect regions where super-
secondary structure packing is very non-protein-like. The
present algorithm may be understood as a next step in the
implementation of artificial intelligence methods in the protein
folding problem. The authors are working on extending this
method to make it more general and sensitive by adding
information about protein sequences to the pattern information.
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