An Object Oriented Environment for
Artificial Evolution of Protein Sequences:
The Example of Rational Design of
Transmembrane Sequences

Mariusz Milik and Jeffrey Skolnick

Abstract

A system is presented for generating peptide sequences with desirable prop-
crtics, using combination of neural network and artificial evolution. The
process is illustrated by an example of a practical problem of generating
artificial transbilayer peptides. The peptides generated in the process of
artificial cvolution have the physico-chemical properties of transmembrane
peptides, and forms stable transmembranc structures in testing Monte Carlo
simulations. The artificial evolution system is designed to emulate natural
evolution; therefore it is of both practical and theoretical interest, both in
terms of rational design of protein scquences and modcling of natural evo-
lution of proteins.

1 INTRODUCTION

Most of versions of genctic algorithms (GA) arc used as cfficicnt
methods for optimizing complex functions, but in the case of the subclass
of GA called artificial evolution (AE), cmphasis is placed on the biological
realism of the model, with clear scparation between genotype and the infor-
mation encoded in the genotype. The system presented in this paper is an
example of implementation AE into the area of rational design of protein
sequences. In order to obtain the “natural” probability of amino acid muta-
tions, the protein sequences are encoded in this model as a sequence of
nucleic acids. The isolation by distance effect is simulated by placing ele-
ments of the population onto onc-dimensional grid of circular shape, with
one genotype per location. Each individual can compete and mate only
with its neighbors; parents of each offspring are chosen by random walk.
The procedure starts from the first parent location; the new organism sur-

vives if it wins in a tournament with its neighbors also chosen by random
walk.

As a test, this algorithm was used for rational design of transmem-
brane peptide sequences. In this test, the output from a pattern-recognition
neural network was uscd as a fitness function. The network was previously
trained on a set of known transmembrane protein fragments. This hybrid
neural network + GA system was able to generate new families of trans-
membrane peptides. The best-fitted sequences were tested by Monte Carlo
simulation and proved to have the structural and dynamical properties typi-
cal of transbilayer peptides.

The hybrid system is designed to be universal and may be used to
design other important peptide sequences, e.g., enzyme inhibitors or antibi-
otics. Because of its biological realism, the system may also be used for
study of the natural evolution process and artificial life problems. It is writ-
ten in C++ and is thought to be a sced of an Object Oriented library for
modeling of biological systems.

2 DESCRIPTION OF THE OBJECTS

The Neural Network library contains actually two main classes: Bp
(back-propagation) and BpTest.

The Bp class is defincd as two multilayer back-propagation net-
works that share weight matrices. The first network is used in the training
process, while the sccond one is used in an “on linc” testing process. At the
present level of development, only a three-layer (input/hidden/output) ar-
chitecturc is implemented, and weights are initialized randomly. Listing 1
(bclow) presents the essential members and methods of the Bp class.

class Bp |(
int inp:; // number of input nodes
int hid; // number of hidden nodes
int out; // number of output nodes
int pat; // number of training patterns
int test_pat; // number of testing patterns
double eta; // learning parameter
double alpha; // momentum parameter
Matrix I; // Training pattern matrix - size pat x inp
Matrix It; // Testing pattern matrix - size test_pat x inp
Matrix Wl; // Weights input->hidden size: inp x hid
Matrix H; // training signals on hidden layer
Matrix Ht; // testing signals on hidden layer
Matrix W2; // output weights matrix - size: hid x out
Matrix O; // training output matrix - size: pat x out
Matrix Ot; // testing output matrix - size: test_pat x out
Matrix T; // training target matrix (size: pat x out)
Matrix Tt; // testing target vector (size: pat x out)
Vector bl; // blases for hidden layer

Vector b2; // blases for output layer

public:

Bp()[); // default constructor
Bp(char* file_ name); // construction from file
~Bp(): // destructor

void save(char* file_name); // save network on file
void InitRandomly(double limits); // random start for weights
void Forward(); // calculation of out matrix

void BackGradient(void);// gradient back-propagation learning cycle

The BpTest class is a simplified version of the Bp class, without
lcarning methods. Objects from this class are used in the GA library as
fitness functions.

The basc of the Genetic Algorithm Library is the Ent class; objects
from this class represent individuals of the model population. These ob-
jects contains a byte string with the individual genetic information, fitness
of the Ent and its age. The Ents are the elements of the Population class,
where environment and mating rules are defined. Listing 2 (below) pre-
scnts the most important members and methods of the Ent class definition:

class Ent {
friend Ent* Cross(Ent* first, Ent* second); // crossover
friend Ent* DCross(Ent* first, Ent* second); // double crossover

private:
Byte* genome; // a string with genetic information
int ssn; // a “personal number” of the Ent
int size; // size of the genome (bytes)
int Nres; // number of residues in a coded peptide
double fitness; // actual fitness of the Ent
int age; // age of the Ent (in epochs)
public: // some more important methods
// CONSTRUCTORS:
Ent(void); // default (empty) constructor
Ent(int s); // random initiation of an Ent with a
// genome length equal “s*
Ent(int s, Byte* gen); // initiation of an Ent with a genome
/7 copied from the string “gen”
Ent(FILE* fil); // from text file stored on the disk

Ent(char cp, FILE* fil); // from binary file stored on the disk
// DESTRUCTOR

~Ent(void);
// NON MODIFYING FUNCTIONS:

void Fitness(void); // this function is defined separately

// for every model
char* OutNA(char* na_sq) const; // write the genome as a NA sequence
char* OutAA(char* aa_sq) const; //write the genome as an AA sequence
void Save(FILE* fil); // save the Ent as a text file
void Save(char cp, FILE* fil); // save the Ent as a binary file

// MODIFYING FUNCTIONS:

veid Mutate(void); // the point mutation of the Ent
void older(void); //what happen when the Ent advances in years ;-)

b

A set of generated Ents with some additional methods, creates the
class Population. Fragments of the definition of this class are presented in
the Listing 3 (below):

class Population (

private:
int name; // name of the population (important in the case
// of multi-population environments)
int size; // size of the population
Ent** habitat; // storage for Ents

int ChooseFromNeighbors(int nr, int step, int nsteps):;

// definition of the tournament method
public:

// CONSTRUCTORS
Population(): // default constructor
population(int pop_size, int gen_size);
// construction of a population of random Ents
Population(char* file name); // constr. from a text file
Population(char cp, char* fil_name); // constr from a binary file
// DESTRUCTORS
~Population(void);
// NON MODIFYING FUNCTIONS
void save(char* file_name); // save the population as a text file
void Save{char cp, char* file_name); // save the population as
// a binary file
void PrintAA(char* message); // print the genes from the population
/7 as peptide sequences
void Mating_Scheme_a(int step, int nsteps);
// one of definitions of the mating
// scheme (random walk)

3 GENETIC ALGORITHM PROCEDURE

The method of coding of protein scquences mimics the natural
nucleic acid (NA) coding scheme. Every amino acid (AA) is coded by the
corresponding sct of NA triplets from the genctic code, and every NA is
represented by two bits. The resulting scheme is presented in Table 1.

Every six bits in the model genome represent a signal in the natural
genetic code. Because the model point mutation works on the lowest level
(bit flips), the presented representation gives a nature-like probability of the
amino acid mutation. Some transitions are more probable, some less, de-
pending on the genetic code.

Every string is evaluated after translation into the equivalent pro-
tein sequence. The evaluation function (fitness function) is defined outside
of the main body of the library and should be defined separately for every
application of the method. In the presented work, the trained neural net-
work was used as a fitness function. The system, however is open and every
function with a protein sequence as an input and real number as an output
may be uscd here as an evaluation (fitness) function.

NA code AA binary code NA code AA binary code
uuo F 000000 AUU I 100000
uuc P 000001 AUC I 100001
uoa L 000010 AUA I 100010
UuG L 000011 AUG M 100011
ucCu S 000100 ACU T 100100
ucc S 000101 ACC T 100101
uca S 000110 ACA T 100110
UCcG S 000111 ACG T 100111
Uau Y 001000 AAU N 101000
UAC Y 001001 AAC N 101001
UAA X 001010 AAA K 101010
UAG X 001011 ARG K 101011
uGu C 001100 AGU S 101100
UGC o 001101 AGC S 101101
UuGa X 001110 AGA R 101110
UGG W 001111 AGG R 101111
Cuu L 010000 GUU v 110000
cuc L 010001 GUC v 110001
CuA L 010010 GUA \'% 110010
CuUG L 010011 GUG v 110011
CCu P 010100 GCU A 110100
CcCC P 010101 GCC A 110101
cca P 010110 GCA A 110110
CCG P 0610111 GCG A 110111
CAU H 011000 GAU D 111000
CAC H 011001 GAC D 111001
CAA Q 011010 GAA E 111010
CAG Q 011011 GAG E 111011
CGU R 011100 GGU G 111100
CGC R 011101 GGC G 111101
CcGAa R 011110 GGA G 111110
CGG R 011111 GGG G 111111

Tablel. The amino acid representation used in the artificial evolution algorithm. Amino ac-
ids and nucleic acids are represented by their onc-letter symbols. "X" denotes the "stop"

triplets of the genetic code, which are not interpreted in the current version of the program.

One of the more annoying problems in genetic algorithm applica-
tions is premature convergence, in which population stagnates at a subopti-
mal solution. In the model presented, this problem is addressed by using
the isolation by distance process and an age parameter. The isolation by
distance is implemented in one-dimensional form. Every Ent in the model
population inhabits one site in the circle-shaped habitat (an example may
be the shore of a lake), and a probability of mating between pairs of Ents is
a fast-declining function of their distance (calculated along the shore). Ad-
ditionally, in order to find its own site (and survivc), cach newly created Ent

must win at least once in a set of duels with neighbors. -A duel, in the pre-
sented implementation, consists of the comparison of the fitnesses of the
Ents (with some random element). Depending on the implementation, the
age parameter may be used here as an additional factor. The age parameter
may decrease or increase fitness, changing the probability of survival for
newly created individuals.
This method, used for large populations, creates a set of spatially isolated
subpopulations of Ents with different genotypes. The interfaces between
the subpopulations are the sources of variability in the population, as an
effect of the recombination process.

The recombination and mutation processes operate on the lowest
(bit) level of the model and are absolutely independent of the particular
interpretation of the genetic code. In the model, the one- and two-point re-
combination types are implemented. In the both types of recombination,
equal length substrings are exchanged (reciprocal recombination); this way
recombination does not change the length of the chromosomes (sequences).

Mutation is modeled by a random process of bit-flipping on the
chromosome, with an user-defined probability, independently on each posi-
tion along the chromosome string. In this model, mutation occurs in parallel
with recombination.

4 EXAMPLE OF APPLICATION OF THE HYBRID SYSTEM

The idea of creating protein scquences by artificial evolution process, may
be best explained by using a simple, practical example. This method was
used for evolving transmembrane peptides, starting from random sequences.
The process consists of four main stages:
1. Preparation of the data-base of known transmembranc sequences,
2. Preparation of the fitness function by training the pattern
recognition neural network on the sct of known transmembrane
sequences,
3. Artificial cvolution of initial random sequences with the neural
network as a fitness function, and
4. Testing obtained transmembrane peptides using Monte Carlo
simulation.

Stage 1: Preparation of the data-base.

The set of known, 21-residue long, transmembrane sequences was
extracted from the protein sequence data-base. We used 2100 eucaryotic
transmembrane sequences, each 21 residucs long. Arginines were added on
the both ends of the transbilayer sequences in order to simulate the hydro-
philic effect of end groups. Twenty randomly chosen sequences obtained in
this procedurc were tested by the Monte Carlo - membrane peptide simula-

0.25 T I T T T T Y T
0.20 _'.‘.‘ trammg set —
testing set
- 0.15 -~
o -
5
0.10
0.05
|) | R | . | X
0.00 +
0 200 400 600 800 1000

time (epochs)

Figure 2. Leaming curves for one of typical runs of the pattern recognition neural network.
The error is defined according to standard definitions: mean square difference between
output and target vectors. (for details see for example: Masters 1993). Difference in
behaviour of these curves is probably due to memoriztion effect.

tion program (Milik and Skolnick 1993), and all of the peptides formed
stable, transmembranc structures. These sequences represented the positive
cxamples in the training procedure. An equal number of sequences of ran-
dom amino acids were mixed with them as ncgative examples. The sct of
peptide scquences obtained in this way was then divided into five, cqual
size subsets. One of the subsets was held out as a control sct. The remaining
scts were used for the training and testing sets.

In order to be used as an input for the ncural network system, the
peptide sequences were translated into vectors of real numbers. In this trans-
lation scheme, every amino acid was represented by six of its basic physico-
chemical properties: hydrophobicity, bulkiness, refractivity, polarity, turn
propensity and beta strand propensity (Argos 1987).

Stage 2: Training procedure.

The three-layer neural network was trained using the scts of pep-
tide scquences depicted above. The goal of the training procedure was to
obtain a neural network system that could distinguish between the natural
(from data-base) and random sequences. The number of hidden-layer units
and the learming procedure parameters (learning constant, momentum) were
chosen in test runs. Once the architecture of the neural network system was

AAELXHASXESDTSHTSRRYKSH
AFNGARKXVLKFLYLVHALRLWX
ARHLRECALRLELDYYHSITISR
AILWEPIVTENLXFIQSCLFAGV
AKRELVRLSKXSAFDVNRSPXAL
AMACPERRVCFRLNYLEESAVXT
ARITSRPCFTSHPAXLXLQVGFM
ARQDRLLIPPTFSXPVSGHSRDN
ARSLFTERSTSRQRTTQAXLPPG
AXQPCNRGSVCGIQGGPSTLSTL
AYCSEEGSXRGDWP ILGGHSPAA
CDCFVKVDLKVDKRCASLLGXAV
CRAQONDTGXSLCLENHNLGDVSW
CSBSTSSSQHREQSXYEWSSSSA
DCLVSKNIGGRYGRPSKGLSIPX
DRKHPLORLLTVECWYYXTDWKI
DTNEPADLPVXCGDLIMIIATIAG
DYLNXFGVEKKVGIFXAVAGGGT
EHDGVTTHRMICKARWPGHSMRA
EPLLIQRQXHTPPTYKVTRPKFL
ESCRTFXIKSHAPLYPPSIDEGR
EVPRPTDPPAGCASXIPARESQF
FDSTDGNFCYWMYLIFHSKHPMR
FKXKXVRFREACVFDYXVNHHSS
FMPAHYSCDXARSSRTSQSDLXQ
FNAASHLRRDRAPLELIEAYLIH
FOGTFPLCSROQWYGVILSRCVSP
FSRQREELLCVTRLLHLTAVAMY
GEEFQLITLQVSAITHRCTMVQP
GEFYPPEPLTFINLLPSYSIYVT

Figure 2. A small fragment of the initial random population of amino acid sequences.
Sequences are obtained by interpretation of random sequences of '0" and 1" using the
code from Table 1. The initial population was sorted alphabetically before printing. Amino
acids are represented by their one-letter codes, X" denotes "stop" signals and were not
interpreted in the present simulation. Sequences obtain large penalties for the X" code,
therefore these mutation are "lethal".

set, the main training process was started. The process consisted of four
independent runs, starting from different, random initial weights. The learn-
ing curves from one of the typical runs are shown in Figure 1. The figure
shows the error of the neural network for training and testing sets during the
learning procedure. The error on the training set decreases monotonically
during the training procedure. The crror calculated on the testing set de-
creases in the initial stage of the process, but later it stabilizes and even
increases. This is probably an effect of memorization of the training set by
neural nctwork. The neural network with minimal error value for the con-
trol set was uscd as a fitness function in the artificial evolution procedure.

HACLSCYGPIGVNLRIVSCLVGR
HAIIIRYFGLVIILLTPRLSGAK
BAIQEBATYVIARLRIGSILGMK
HAIQEHVIYVCAAQRIVSILGMK
HATQERVIYVLAALRIGCILGVK
BAIQEAVIYVLAALRIVSILGMK
BAIQEHVIYVLAALRIVSILGMR
EAIQERVIYVLLDLGIVSILGMK
HAIVICFIGQVSGLGRYEVVLIR
HAIVQIDASHDGTTLIVSILGMK
HAIVQMDIYVLAPLRIVSILUMN
HAIWEHVIYVLAPLSCLSILGMK
HAIWERVIYVLARLRIVSILGMK
HAIWERVIYVLTRLRIVSTLETK
BAIWEAVIYVLVRLRIVSILGMK
HALASNVIYDLAALRIVSILGMK
HALASNVIYDLAALRIVSILGMX
HALASNVIYNLAALRIVSILGLK
HARNVRF YLLRARLRIVSILGMK
HATWEEVINVILNLRIVSILEMK
HATWEEVIYVIAALRIVSILAMK
BATWEHVIYVIAALRIVSILEMK
EATWEHVIYVLAPLRIVSILGIR
EATWEHVIYVILARLRIVSILGMK
HATWQAVIYVIARLRIISILYWH
AATWQHVIYVLLDLRIVSILEMK
HATWQUVIYVLIMORLVSILEMK
HAVHEHVMYVIAALRIVSSGICQ
BAVWERVIYVZARLRIISILGMK
H3CPSFKIYVLGRLRIVSTLVGR

Figure 3. A small fragment of the final population of transmembrane amino acid se-
quences. These peptide sequences were obtained in the process of artificial evolution with
the pattern recognition neural network as a fitness function.

Stage 3: Artificial Evolution.

The process of the artificial evolution started from a population of 1500
random peptide sequences. Figure 2 shows a fragment of this population.
A set of 20 sequences was randomly chosen from the starting population
and was tested by our Monte Carlo membrane peptide simulation proce-
dure (Milik and Skolnick 1993). No sequences from this set could form a
stable transmembrane structure in the simulation process. Figure 3 shows a
fragment of population after 100 epochs of the process of artificial evolu-
tion, using the trained pattern-recognition neural network as a fitness func-
tion. The process generated a diversificd population of peptide sequences
with high fitness values. Most of the sequences are different from the se-

Sl 1712

NN

Figure 4. Example of a typical transmembrane structure formed by the peptide:
RAIVICHIGRLCAVTEYTVFIVH (fitness: 0.998) obtained in the process of artifictal
cvolution. The sequence ol the peptide is not identical with any natural peptide from
training or testing data-base. The figure shows the helical structure of the peptide in
schematic Co. representation, spanning the model, hy drophobic membrane. The borders of
the mode! membrane are represented by parallelograms. More about Monte Carlo method
uscd in this paper can be find in work: Milik and Skolnick 1993.

quences used in the process of training of the neural network system. Twenty,
randomnly chosen sequences from the final population were tested in the
Monte Carlo procedure, and all of them form transmembrane structures.
Figure 4 shows an example of the typical transmembrane structure formed
by a peptide generated in the Artificial Evolution process.

s, CONCLUSIONS

This paper presents a proposition of a method of implementation
of the artificial evolution methods into the area of modeling of membrane-
peptide and protein-peptide systems. This implementation, in cooperation
with Monte Carlo simulation, may open up the possibility for development
of new methods for the rational design of amino-acid sequences with desir-
able properties.

Additionally, the paper presents a set of object-oriented structures,
which could be used in another artificial evolution and artificial life simula-
tions. This set of programing tools is a basis for proposed object oriented
environment for implementation of the artificial evolution methods into the
area of protein and nucleic acid analysis.

Acknowledgments

The authors would like to thank Dr. David B. Fogel for his criti-
cism and valuable comments.

References

Argos P. (1987). A Sensitive Procedure to Compare Amino Acid Sequences,
J.Mol.Biol. 193: 385.

Masters T. (1993). Practical Neural Netvork Recipes in C~-: Academic
Press.

Milik M. and Skolnick J. (1993). Insertion of Peptide Chains into Lipid
Membranes: An Off-Lattice Monte Carlo Dynamics Model. Proteins, 15:10.

