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A new high-coordination lattice model of polypeptide chains has been designed and tested. The model employs
a single united atom representation of amino acid residues. These atoms are centered on protein side groups.
Characteristic short-range distance correlations have been built into the model, thereby providing a rather
accurate description of proteinlike conformational stiffness. Sequence-specific interaction schemes have been
derived from sequence similarity and sequence-structure compatibility criteria. The conformations of the
model chain observed in isothermal Monte Carlo simulations reproduce protein secondary structure with
high fidelity. Implications for structural studies of protein systems are briefly discussed.

1. Introduction

Proteins are relatively complex molecular objects.! Computer
studies of large-scale conformational transitions in proteins
(including the protein folding process) on an atomic level of
resolution are not practical;2 therefore, reduced models of protein
chains are necessary.3~¢ In such models, groups of atoms are
replaced by united atoms to decrease the number of explicitly
treated degrees of freedom.%’ United atoms can replace entire
residues, segments of the main chain and amino acid side
groups, or smaller groups of atoms. A lattice-based®59-14315-21
or continuous?2~287.29.30 representation of conformational space
of a polypeptide could be assumed.

There is always some tradeoff between simplicity (and
computational efficiency) and the geometric fidelity of a reduced
model.3! Models that employ a low-coordination lattice rep-
resentation and a single united atom per residue are the simplest
and could be studied in great detail.325.933-43 On the other hand,
more complex models can account for specific aspects of
polypeptide chain geometry and, consequently, for some
important properties that are characteristic of proteins.10-143
Here, we propose a model that has the virtues of both
approaches. Single united atoms placed at the centers of mass
of protein side chains provide a simplicity similar to the so-
called “simple exact” models of proteins. At the same time,
the excluded volume and local geometry of these virtual chains
are designed to reproduce local protein geometry and some
details of protein packing with an accuracy comparable to
earlier, intermediate resolution protein models.

The rigid structure of the peptide bond, the fixed chirality of
Ca, and the restrictions of the main chain rotational degrees of
freedom (resulting from the excluded volume effect of the side
groups and some other local interactions) lead to a relatively
high conformational stiffness of polypeptides and their specific
geometry.! Generally, there are a few types of local chain
geometries that correspond to the local minima of the above-
mentioned set of interactions. Most typical are helices and
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almost fully expanded conformations that build B-sheets and
expanded loops in globular proteins. The majority of the other
rotational-isomeric states of a polypeptide are extremely un-
likely.4S Due to the absence of fine atomic details, these
“generic” characteristics of the polypeptide chains have to be
built into any nontrivial reduced model. Of course, the
tendencies toward formation of a particular chain geometry are
determined by the specific amino acid sequence. Having
properly designed generic biases toward proteinlike chain
geometry, it is possible to construct a sequence-specific potential
that triggers formation of helices, turns, or expanded fragments.
For several reasons, these rather weak *“‘secondary-structure
propensities” cannot be factorized into single amino acid
properties. The most important reason is that the local geometry
of protein chains results from a complex interplay of the short-,
medium-, and long-range tertiary interactions,*¢ probably with
nonfactorizable multibody components as well.

Some of the conformational and energetic attributes of
polypeptide chains are explored in this work by means of the
Monte Carlo method. We compare the average equilibrium
properties of three types of chains. The simplest is a designed
lattice model chain whose behavior is controlled only by the
excluded volume interactions. This model system provides a
reference system for a chain with the generic “proteinlike” biases
and for model chains that simulate specific sequences of amino
acids. The last system requires a definition of the potentials
that reproduce specific secondary-structure propensities encoded
in sequences of amino acids. These potentials are derived from
a statistical analysis of the geometry of locally homologous
fragments of known protein structures. This kind of “knowledge-
based” approach has been successfully used in many
applications,*’-52 the most extreme being the homology model-
ing of protein tertiary structure.53-3¢ Here, we employ only the
homology (usually low) of small fragments of protein sequences,
thereby allowing for the construction of a potential for sequences
having no globally homologous counterparts in the structural
database.

The purpose of this work is to analyze the role of the generic
proteinlike regularities seen in protein chains, the role of
sequence-specific short-range correlations of the side chain
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positions, and this interplay. We will demonstrate that the
proposed model provides a very efficient tool for modeling
protein secondary structure. In future work, the model would
be generalized by incorporating an appropriate set of tertiary
interactions.

2. Model and Methods

2.1. Lattice Chain of the Centers of Mass of Side Chains.
Consider a given conformation of a polypeptide chain. For each
side group, it is easy to define its center of mass for a given
rotational isomeric state of the side chain. For simplicity, let
us assume the same mass for all heavy atoms. The error of
this approximation is small, well-below the overall geometric
accuracy of the model. For Gly residues, the center of mass is
arbitrarily placed on the backbone Co atoms. Having such a
defined set of reduced residues (or chain beads), the geometry
of the model lattice chain composed of & amino acids (residues)
could be defined as a string of vectors {v;}, connecting
successive residues (i.e., vector v; denotes displacement between
the ith and (i+1)st side chains of the model polypeptide) with
i=01,..,N—1 Two dummy residues arc added for a
convenient definition of the “conformation” of the N- and
C-terminal residues. Thus, the chain consists of N + 2 united
atoms (“‘beads”) restricted to the underlying simple cubic lattice.
(As will become evident later, the following assumption allows
for a straightforward definition of the chain’s excluded volume.)
The distance between two successive units (beads) of such a
chain depends on the identity of the corresponding residues and
on the actual rotameric state of their side chains. The shortest
possible distance would be observed for a pair of consecutive
Gly residues, and the longest distance would be almost 3 times
greater for a pair of residues with long side chains in an
extremely expanded conformation. To cover this rather wide
distribution, a proper set of distances between the beads of the
model lattice chains should be allowed. It has been arbitrarily
assumed that a set of virtual bonds {v;} could be defined as
{v;} = {aq;} where a is a constant equal to the lattice spacing
of the underlying simple cubic lattice and the vectors g; belong
to the following set of lattice vectors:

with

klm=0,1,2,3,4,or5 and 11=|ql*=30
The above implies that the number of the lattice basis vectors
is equal to 592. Assuming the lattice-spacing parameter a =
1.45 A, the resulting distance between an arbitrary pair of side
chains can change from 4.81 to 7.94 A. This nicely covers the
main portion of the distance distribution seen in real proteins
that have an average valuc of about 6.6 A and a standard
deviation of about 1.3 A; however, the wings of the distribution
have been arbitrarily cut off. The resulting positional error of
about 1 A (for a small fraction of extreme cases) is still below
the assumed inherent resolution of the model defined by the
lattice spacing, a. On the other hand, restricting the range of
virtual bond fluctuations allows for a simpler (and computa-
tionally more effective) handling of excluded volume and the
definition of various interactions. For technical reasons, suc-
cessive pairs of identical vectors are a priori excluded. Such
sequences are also unlikely in real proteins.

The excluded volume of the chain units could be defined in
the form of a cluster of 19 points of the underlying cubic lattice
that are closest to a given chain bead. The cluster includes the
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Figure 1. Lattice representation of polypeptide chains. The solid line
connects the side chain centers of mass (at their actual rotational
isomeric states). The solid dots indicate three points of excluded volume
along the direction perpendicular to the drawing plane (one below the
plane, one in the plane, and one above the plane). The open circles
represent single excluded volume points in the drawing plane. Thus,
for each side group, the excluded volume cluster consists of 19 points
on the underlying simple cubic lattice. The spacing of the lattice is
equal 1o 1.45 A. For the sake of simplicity, a planar fragment of the
model chain has been shown.

central point, 6 simple cubic lattice points, and 12 face-centered
cubic lattice points. If each pair of two clusters is not allowed
to overlap, the resulting hard core is characterized by a distance
of closest approach equal to 3 lattice units (4.35 A). This is a
reasonable, but somewhat underestimated, representation of the
excluded volume of real polypeptide chains. Let us note that
it is easy to introduce a soft core excluded volume envelope
having different radii for different amino acid types. Here,
however, we employ only the simplest, hard core representation
of chain excluded volume. The geometrical properties of the
model chain are illustrated in Figure 1.

For a given chain bead, the number of points at which a
second bead could be found at the distance of closest approach
is 24. At slightly longer distances, the number of possible bead
positions grows rapidly. Consequently, any effects of the lattice
anisotropy are practically nonexistent in such a defined model.
The lattice representation provides a very convenient way for
modeling excluded volume and detecting nearest neighbors and
the stochastic simulation of the chain dynamics. Monte Carlo
simulations are 1—2 orders of magnitude faster (as measured
by computer time per characteristic longest relaxation time) than
those for a high-coordination lattice model based on Ca plus
side chain representation. We will show that, at the same time,
there is no loss of accuracy.

2.2. Model of Stochastic Dynamics. The simplicity of the
polypeptide representation described in the previous section
enables the design of a very straightforward description of chain
dynamics. A single cycle of the algorithm consists of several
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Figure 2. Explanation of the local geometry and annotations used in
definitions of the generic part of the short-range potential.

simple operations. First, a random number generator selects
the chain bead. For the selected chain fragment, a random
conformational transition is attempted and accepted provided
that the new conformation does not violate the excluded volume
or assumed boundaries of allowed chain geometry. Transitions
in models with energy parameters are further subject to a
Metropolis criterion.>® The set of local moves consists of one-
and two-bead motions, and rigid-bodylike, small translations
of somewhat longer fragments of the chains (of randomly
selected lengths of up to 20 residues). The last type of move
is attempted less frequently. One-bead motions are generated
by the random translation of the bead direction up to a distance
of 3'2 lattice units. Consequently, the number of new pos-
sibilities for this type of move is equal to 26. Other moves are
similarly constructed. A conventional time unit corresponds
to fn attempts at the various conformational transitions, where
n is the chain length and f is a constant (about 2) associated
with the number of types of conformational transitions built
into the algorithm.

Due to the large “coordination number” of the model chain,
the proposed Monte Carlo dynamics are free of various
ergodicity problems typical of low-coordination lattice chains.
The present model could be considered to be a relatively fine
discretization of the continuous space Rouse model of polymer
dynamics,3 which is known to be ergodic.

2.3. Modeling Generic ‘“Proteinlike” Conformational
Stiffness. Since proteins are relatively rigid copolymers, the
number of accessible states of the model chain defined in the
previous section is considerably larger than that in a real
polypeptide chain (when projected onto a lattice). For example,
an unrestricted chain has a close-to-Gaussian distribution of the
distance between the ith and (i+4)th beads. The same distribu-
tion for proteins is bimodal, reflecting the existence of helices
and expanded states. These elements of secondary structure
tend to propagate over several residues. Modeling proteinlike
stiffness could be essentially reduced to designing a switch
between the two dominant types of secondary structure.
Moreover, polypeptide chains have chiral preferences. The vast
majority of helices are right-handed, while expanded conforma-
tions have a slight tendency to adopt a left-handed supertwist.
The proposed set of energetic biases described below is
consistent with helical and expanded structures, and also with
some types of commonly occurring turns in globular proteins.

Let us consider a small fragment of the model chains
consisting of beads numbered from 1 to 7 and connecting vectors
numbered from 1 to 6 (see Figure 2 for set reference). Then,
let us define a set of additional vectors according to the formula
given below:

s;=(q;—; ® q; — q;-; — 9)/(|q;,|*lq;) 2

Kolinski et al.

Per design, the vectors s; are exactly parallel to a canonical helix
(when the chain vectors are of the same length) axis, and
consequently, they are parallel to each other for the residues
within a helix, except for those residues that terminate a helix.
For regular expanded states, every second vector is parallel. Of
course, in a real case, the chain vectors q; (depending on a
sequence of amino acids) could assume various lengths as
defined in eq 1. Consequently, for the appropriate pairs of s;,
typically small deviations from exactly parallel orientations
would be observed even for helical or B-type conformations.
The s; vectors are normalized such that their length is the longest
for the values of the planar angles typical of helical and S-type
states and have a magnitude roughly equal to unity (in the lattice
units). Such defined vectors s; provide a very convenient way
to address intermediate range angular correlations in protein
chains.

The short-range, proteinlike correlations could be defined
using the original chain vectors q;. More regular elements of
secondary structure could be initiated as follows via certain
biases superimposed onto the mutual orientation (conveniently
measured by the appropriate dot products) of the model chain
vectors:

Ey =—¢, for q,'q3 <=5 (3a)

and when the local conformation is “helical-compact”;
Ey,=—¢, for q,q, <-—5 @3b)
and when the local conformation is “helical-compact”;
Eg=—¢, for q,"q3> 5 (3c)
and when the local conformation is “‘expanded”;
Eg,=—¢, for q,,q,>5 (3d)

and when the local conformation is “expanded” where “helical-
compact” means that rf's < 32 and q;°q4 > 0, and “expanded”
means that 60 < rjs < 125 (in lattice units). The above
provides a bias toward either helical or expanded conformations
of the model chain. The cutoff parameters —5 and 5 are
arbitrary (however, they are geometrically quite permissive)
bounds for specific regular conformations of the model polypep-
tide.

Now, we can use previously defined vectors s; to build a
propagation mechanism for proteinlike conformational stiffness.
The following potential provides an additional local bias toward
“regular’ secondary structure, propagates the structure, and
increases the chain persistence length:

E,,=—¢, for s,s,> 025 4
= 0 otherwise

Of course, the same holds for beads 4 and 6 (compare Figure
2). Additionally,

Ey6= ¢

for s,'sg > 0.25 )]
= 0 otherwise

Again, the value of the cutoff parameter (0.25) is chosen in
such a way that the conditions given in egs 2 and 4 are satisfied
for all expanded (8-type) and helical conformations of the model
chain, regardless of the above-discussed fluctuations of the
length of the chain vectors q;.
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The next contribution (eq 6) to the generic potential propa-
gates stretches of regular secondary structure and also acts to
increase the chain’s persistence length for unstructured frag-
ments. In this case, the model system pays a penalty for large
changes in the locally averaged direction of chain propagation.
At moderate temperatures, it compensates to some extent for
entropic effects that favor very irregular random-coiled con-
formations.

(in lattice units)

E,=¢€,|r,s— 1, 5|40 for 15 < |ry — 1, 5> < 40 (6)

es f0r40 < |r2'6 - l‘ulz

where r;; is the vector from the ith to jth chain bead.

Finally, a small bias, Eg, is introduced toward the right-handed
conformation of compact states. This facilitates the formation
of right-handed helices in the absence of the sequence-specific
potential. When the sequence-specific part of the potential is
employed (which, of course, contains chiral components (see
the next sections)), this contribution has been omitted (i.e., Er
= 0).

Ex=—¢, for 1} ,,,<32 and (q_,®q)qy >0

)

The total energy of the chain is the sum of all contributions,
and the scale factors for particular terms have been adjusted to
reproduce the secondary structure of globular proteins with good
fidelity (when the sequence-dependent potential is added):

Eyn= Y (0.25E, + 0.25E, ¢ + Ey, + Ey + Eg, + Eg, +
0.5E, + Ep) (8)

where ¥, means the summation along the chain. Note that the
strength of the contribution of all generic components to the
model interaction scheme is controlled by the single energy
parameter €; = 1 (in dimensionless kT units). Details of the
above-defined model of proteinlike conformational stiffness are,
to a large extent, arbitrary. Hypothetically, one can employ
quite a different set of angular and distance correlations that
would lead to a similar effect, provided that a set of general
regularities of protein conformations is detected and properly
implemented in the form of energetic biases. The advantages
of the present design are simplicity and small sensitivity to the
fluctuations of the length of the chain vectors. The last is an
important feature of this model, allowing reasonable madeling
of the dense packing of protein structures.

To maintain a reasonable proteinlike density (all the long-
range interactions have been neglected, except the hard core
repulsion of the side chains), the chains have been confined by
a spherical density model based on the relatively well-preserved
distributions of amino acids between particular shells, as defined
by the expected radius of gyration of a protein. This weak,
sequence-independent potential provides a bias against elements
of generated secondary structure that are too long. Details can
be found elsewhere.5?

2.4. Sequence-Specific Short-Range Potentials. The po-
tentials employed in this work are based on the regularities seen
in protein fragments of known structure that exhibit certain
levels of sequence similarity to the corresponding fragments of
the test sequence. It should be noted that globally homologous
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proteins (more than 25% sequence identity) are always excluded
from the structural database used in the derivation of the
potentials. Also, known structural homologues have been
eliminated in these test simulations. The procedure consists of
several steps. First, for the test sequence, a multiple-sequence
alignment search®® is performed to find close homologues in
the sequence database. When found, these enhance the statistics.
In the entire procedure of potential derivation, the homologous
sequences were treated as the test sequence. If close homo-
logues are not found, only the test sequence is used. Then, the
test sequence (and close homologues) is divided into fragments
by sliding a 19-residue window along the sequence. The
obtained n — 18 fragments are then compared to all possible
continuous fragments from the structural database. The frag-
ments of the highest sequence similarity are then used for the
derivation of the statistical potential. The top 100 best-scoring
fragments were taken for further consideration. The BLO-
SUMB0 sequence similarity criterion was used with a trapezoid
weight function for the alignment. For the central 9 residues
of a 19-residue fragment, the value of the weight for the
alignment was assumed to be equal to 1.0; for the flanking
residues, the weight decreased linearly to a value of 0.1 for the
Ist and 19th residues. The geometric characteristics were
collected for various intrachain distances r;;4, with k = 1, 2,
3, 4, 6, and 8 for the central residues of the test window. The
k = 3 and k = 6 contributions were assumed to be “chiral”
(i.e., the distances were stored as negative numbers for left-
handed conformations and as positive numbers otherwise). For
the k = 6 case, the chirality was defined using three consecutive
two-bond vectors (Veclors Tji+2, Ti+2,i+4, and Titsi+6, TESpEC-
tively).

The potential was obtained by comparison of the observed
distributions (in a form of histogram) of particular distances
for homologous fragments (i.e., the top 100 fragments) with
the corresponding distribution for the entire structural database.

V(X irem) = — NP, i )/ P (r2i+k.m)) €)

where P(i,r;i+rm) is the weighted (by the sequence similarity
matrix for the 100 top-scoring fragments) probability of
observation of the ith bin of the r;;yin distribution; P(r?_,..m,')
stands for the database averaged distribution; i denotes the
position along a given chain; m denotes the bin number of the
distribution. There are 9, 7, 7, 10, 10, and 4 bins for r;+1,
Tii+2 Tii+3, Tiji+4, Yii+e, and ri+s, respectively. The potential
for a given residue in a polypeptide chain depends on a 19-
residue sequence window; consequently, the potential could be
qualitatively different for the same central amino acid in two
different sequences.

The local chain geometry could also be approximately
translated into the DSSP® (three-letter code) secondary-structure
assignment. For this purpose, three-dimensional histogram
statistics of the structural database have been calculated first.
For each possible set of bin numbers of the r; ;4 values for k =
3, k = 4, and k = 6, the most probable secondary structure has
been assigned (helix, extended, or coil). Analyzing the structural
database for each combination of the three bins’ numbers, one
can count the number of DSSP assignments to the various
structural classes. Combining these statistics (the highest
population type of secondary structure is always assigned), the
three-letter secondary-structure assignment for a representative
set of proteins could be obtained with 85% accuracy (we remind
the reader that this is structural translation accuracy, not
predictive accuracy). The accuracy is somewhat lower than that
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of a similar procedure based on the Co trace of protein
backbone. Assignment errors result from the various different
size side groups and the rather irregular shape of the medel
chain. As a result, in some cases, very similar local chain
geometry could correspond to different secondary-structure
motifs, depending on the sequence of amino acids. Conse-
quently, the secondary structure read from simulations is a lower
bound for the actual geometric fidelity of the protein representa-
tion.

For the purpose of conventional visualization, we designed
a simple method for the approximate reconstruction of the Ca
trace given the positions of the side chain centers of mass of
the original chain. Let

r,=R;+ Ar, (10)

where R; is the position of the ith side group and r; is the
position of the ith Ca::

Ar;=(q; — q;-)/b (11)
with normalization factor b calculated from
b=6+b,_,+b,—d, (12)
where
b;= 1 for q? > 15 (and O otherwise)
d; = (r% ;4; — S0)/10 for r._, ;,., > 50 (and O otherwise)

The “correction” factors b;—1, b;, and d; account for the various
distances between side groups; the accuracy of the above Ca.
coordinate estimation is better than 1 A. Of course, a more
exact procedure could be designed for the main chain recon-
struction from the coordinates of the centers of mass of the side
groups. We opt here for computational simplicity. This seems
to be appropriate due to the aforementioned limits of resolution
of the present model. Figure 3 shows a short fragment of the
side group-based chain and the reconstructed Ca trace using
eqs 11 and 12.

Protein structures from 301 proteins in Fischer's databaseS!
and the HSSP%2 sequence database were employed in this work.
Always, for a given test case, all similar sequences and similar
folds were removed from the structural database during the
evaluation of the sequence-specific potentials.

3. Results

3.1. Conformational Properties of a Generic Sequence
Chain. First, let us compare the distributions of the local
distances seen in protein structures with those obtained from
the Monte Carlo dynamics trajectories of the model chains that
lack any sequence information (i.e., generic chains). Such
distributions are given in Figures 4—8. The plots are arranged
in three panels. In all figures, the topmost panel shows the
distribution extracted from the structural database, the second
panel shows the distribution for the athermal simulated chain
(N = 99) with no short-range interactions (except for a small
effect due to excluded volume), and the bottommost panel
displays the corresponding distribution for the chain containing
only the generic (sequence-independent) part of the short-range
potential. It is clear that, for all short-range distances, there is
a qualitative difference between the distribution seen for real
proteins and for the athermal model chain. For example, the
distribution of the distances between the ith and (i+4)th side

Kolinski et al.

Figure 3. Short fragment of the model chain (excised from a snapshot
of an isothermal Monte Carlo trajectory for protein G; see text for detail)
constructed from united atoms located at the side chain centers of mass
(in gray) and the approximate reconstruction of the Ca trace (black).
The original chain could be fitted to known protein structure with an
average accuracy of 0.8 A cRMSD (coordinate root-mean-square
deviation). Due to the favorable compensation of errors, the accuracy
of the reconstructed Ca. trace is slightly better.
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Figure 4. Distributions of the r;;+» distance in real protein structures
(upper panel), for an athermal chain with excluded volume (middle
panel), and in the chain with the generic, sequence-independent
potentials (bottom panel). The higher tick marks on the horizontal axes
indicate the division into bins employed in derivation of the sequence-
specific potential.

chains in proteins is bimodal, reflecting the tendency to form
helices (the first peak) or expanded conformations (the second
peak), while the distribution for an athermal chain is unimodal,
and close to a Gaussian distribution.

As confirmed by these figures, the generic potential mimics
some of the short-range correlations seen in proteins. Indeed,
the local geometry of these chains is closer to the “average”
geometry of proteins. It reproduces the main features of
proteinlike geometry. This is evident from an inspection of the



An Efficient Monte Carlo Model of Protein Chains

ANAN

::WI’M. .nﬁﬂ-i-l—m'\'nl-

0.10 | E

050 e

“210  -150 -5.0 -30 afo 2.0 150 21.0
r :.i+3 A&

Figure 5. Distributions of the rf;,, distance in real protein structures
(upper panel), for an athermal chain with excluded volume (middle
panel), and in the chain with the generic, sequence-independent
potentials (bottom panel). The negative (positive) values correspond
to the left-handed (right-handed) conformations. The larger tick marks
on the horizontal axes indicate the division into bins employed in the
derivation of the sequence-specific potential.
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Figure 6. Distributions of the r;;+4 distance in real protein structures
(upper panel), for an athermal chain with excluded volume (middle
panel), and in the chain with the generic, sequence-independent
potentials (bottom panel). The larger tick marks on the horizontal axes
indicate the division into bins employed in the derivation of the
sequence specific potential.

histograms in the bottom panels of Figures 4—8 and after
comparison with the distribution extracted from native proteins.
For all internal distances, the distributions for the chains with
the generic potentials are very similar to the distributions of
real proteins, but they differ qualitatively from the unrestricted
athermal chain distributions. For instance, after application of
the above-described simple structural regularizers (all Monte
Carlo simulations performed at 7= 1), the model chain exhibits
characteristic peaks for “chiral” distances r},; and r¥q.
These peaks correspond to helical conformations. Also, the
bimodal distribution of the r;;+4 distance is reproduced. It is
very interesting to note that the distributions of those distances
that were not explicitly regularized by generic potentials such
as r;;4+2 and r;;4+5 become “proteinlike”. This provides additional
confirmation that the designed generic potentials rather nicely
reproduce the average features of polypeptide chains. This
potential also substantially reduces the contribution of very
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Figure 8. Distributions of the r;+s distance in real protein structures
(upper panel), for an athermal chain with excluded volume (middle
panel), and in the chain with the generic, sequence-independent
potentials (bottom panel). The larger tick marks on the horizontal axes
indicate the division into bins employed in the derivation of the
sequence-specific potential.

unlikely polypeptide conformations. When combined with
sequence-specific potential, these generic terms should facilitate
the formation of quite a regular “proteinlike” geometry of the
model chains.

3.2. Simulation of Protein Secondary Structure. Monte
Carlo simulations were done for a small but representative set
of single-domain proteins. These proteins, abbreviated by their
PDBS? code, are listed in Table 1. All simulations were
performed under isothermal conditions. Each run was very long
compared to the longest relaxation time for all model systems.
For each sequence, the simulations were done with two types
of short-range interactions: with the generic part of the potential
and without. In the former case, the relative weighting of the
two contributions was set to 0.5:1.5 (generic:sequence-specific).
This scaling is arbitrary. A lower weight factor for the generic
potential leads to a system whose properties are intermediate
between those of a system lacking the generic potential and

_—
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TABLE 1: Test Proteins Selected l';)r Monte Carlo
Simulations

secondary-
PDB structure
code N type name

1ghl 56 a+p
letf 68 a+p

immunoglobin binding protein B1 domain
50s ribosomal protein (C-terminal domain)

lpcy 99 fB apo-plastocyanin

2rx 108 o/ thioredoxin

4fab 111 B immunoglobin FAB fragment

3fxn 138 /B flavodoxin (oxidized form)

Imba 146 « myoglobin

lim 247 awf triose phosphate isomerase
50.0 T T r T

400

30.0

20.0

helix content (%)

10.0

0.0 A . : : t
0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

T

Figure 9. Average instantancous helix content of the model chain of
myoglobin as a function of temperature. See text for additional details.

one with this particular weight ratio. A stronger scaling of the
generic term leads to a system in which the secondary structure
is “overregularized” and ultimately to a system whose behavior
becomes essentially sequence-independent.

To establish a reasonable temperature at which the simulation
of secondary structure could be close to optimal, we first
performed a series of isothermal simulations for the myoglobin
model at various temperatures. We started from a very high
temperature (7 = 4.0) and then reduced the temperature to a
value where the system mobility becomes very low; this is
somewhere below T = 1. In Figure 9, the resulting average
(instantaneous) helix content is plotted as a function of
dimensionless temperature. At high temperatures, the chain
essentially samples random coil conformations whose helix
content is very low, about 5%. At lower temperatures, the helix
content increases gradually to about 45%. This is still below
the overall helix content of the native myoglobin, which is about
75%. Our simulations were performed over the range of
temperatures where the chain is very mobile and the secondary
structure is subject to significant fluctuations. Under such
conditions, the instantaneous content of secondary structure is
lower due to the nonnegligible entropic contribution that favors
random coil type conformations. However, when an average
from the trajectory is used with an appropriate threshold for
assigning the fraction of particular observations, a higher helix
content is obtained over a rather broad range of moderately low
temperatures. Probably, by careful annealing to a very low
temperature, one may obtain a more exact instantaneous
representation of native secondary structure. Indeed, at T =
0.9, the helix content of the model myoglobin chain increases,
but the dynamics are significantly slowed. Similar results were
obtained for other sequences. We selected T = 1 for further
Monte Carlo simulations of all test proteins. This choice, while
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TABLE 2: Averaged Accuracy of Secondary Structure with
Respect to the Native State Using a DSSP Assignment
(Three-State: Helix, Extended and Coil Assignment)

percent of correctly identified secondary structure
(H, E, and coil)

model with generic and model with derived

sequence-specific sequence-specific  from the

protein terms potential only potential®
1gbl 75.0 (89.3)" 75.0 60.7
letf 70.6 (70.9) 63.2 69.1
1pcy 68.7 (79.8) 65.7 67.7
4fab 76.6 (79.3) 79.3 7175
2trx 69.4 (85.2) 67.6 62.0
3fxn 78.3 (86.3) 79.0 65.9
1mba 73.3(70.3) 68.5 70.6
1tim 68.4 (72.1) 67.9 65.2
weighted 72.2(77.8) 69.6 67.3

average

@ Weighted statistics of the 100 top-scoring structural fragments (after
climination of homologous sequences) (i.e., assignment based on local
sequence alignment and secondary structure “translation” from the side
chain correlations). The most favorable energetic bins of rfi,,, i,
and r#, ; distances were employed in the translation. * The case when
the homologous sequences have not been excised from Fischer’s
structural database.

somewhat arbitrary, is motivated by the aforementioned tradeoff
between fast sampling (large-chain mobility) and the amount
(and regularity) of cmerging structure. When averaged, ac-
cording to the procedure described below, the fidelity of the
resulting secondary structure is not sensitive to small changes
in the sampling temperature.

Since the model studied here lacks sequence-specific tertiary
interactions (except for some medium-range interactions im-
plicitly encoded in the short-range potential), the tertiary
structure of the model chains is not well-defined. Thus, while
possible in principle, it would not be very informative to
compare the global chain geometry with the geometry of native
proteins. Instead, we translate the observed local geometry into
the three-letter code: helix (H), extended state (E), and
everything else or “coil” (—) state. As mentioned above, for a
given set of r¥,4, Tji+4, and 1.4 distances, the statistics of the
structural database give three numbers, fi1, fg, and feou, corre-
sponding to the observed fraction of a particular structural class.
Thus, the assignment for the entire trajectory (typically 200
snapshots taken at equal time intervals) could be done as
follows:

8= Zfss with ss =H, E, or “coil” (13)

where the summation is along the trajectory, and the secondary
structure is assigned as “‘ss” when

8., = max(1.1g;, 0.758%, 8eon) (14)

The weight factors correct for the diffuse character of the
observed secondary structure.

Table 2 gives the appropriate statistics obtained at a selected
temperature, T = 1.0, for the two models of interactions
discussed above. For all test sequences, except for 1gbl, a
multiple-sequence alignment was implemented. As mentioncd
above, highly homologous sequences, when found in the
sequence database, were treated as the test sequence, thereby
increasing somewhat the strength of the statistics (a larger
number of 19-residue-sequence fragments have to be compared
to the structural templates via the threading procedure). Of
course, those sequences whose structures exist in the structural
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native

Figure 10. Native structure of 1gb1 and three representative snapshots
from the isothermal (77 = 1) simulation of the model protein.
MOLMOL® drawings are based on Ca traces reconstructed from the
side group coordinates. The helical ribbons and arrows correspond to
the fragments assigned by the algorithm as helical and extended,
respectively.

database employed in this work have been omitted. The
instantaneous (for a single snapshot) assignment of secondary
structure is often worse than the average numbers given in Table
2. However, the system is not frozen, and it is reasonable that
the average propensities reproduced by this model of polypeptide
dynamics are more relevant for future modeling of the protein
folding process and the knowledge-based scheme of short-range
interactions.

Some representative snapshots for the relatively short chain
of 1gbl are given in Figure 10. The native structure is given
for comparison. The elements of secondary structure (helices
and expanded fragments) are marked according to DSSP
assignment for the native structure and according to the
assignment procedure described above for the conformations
obtained from the Monte Carlo dynamics. For convenience,
we plot the estimated Ca trace instead of the original, side
group-based chain.

Analysis of the data given in Table 2 leads to several
interesting observations. First, the secondary-structure propensi-
ties of the model potential reproduce native secondary structure
with good fidelity. The average accuracy for the three-letter
code assignment equals 72.2%. This is on the same level as
the most accurate methods of secondary-structure prediction.*—3!
But, of course, due to computational limitations, we consider a
much smaller testing set here. The test predictions were
obtained using potentials that were derived after removing all
similar (25% threshold) sequences from the structural database.
When the potential is built without this restriction (which could
be the case for a “blind” prediction), the average accuracy is
considerably improved and increases to 77.8% (sec Table 2).
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In this case, the homologous sequences (and consequently
similar structures) give rise to the fidelity of the potential, but
do not control the resulting model. Otherwise, the secondary-
structure accuracy would be much higher. Indeed, for different
purposes, the short-range potential could be derived from only
a structural library containing homologous sequences (when
available). Then, the resulting secondary structure is almost
exactly similar to classical homology modeling. These experi-
ments show that the model (even in its preliminary form, without
any tertiary interactions) could be used as a tool for secondary-
structure prediction.

The fidelity of secondary structure seen in the model chain
during Monte Carlo simulations is higher than the accuracy of
the secondary structure recovered just from local sequence
alignment via appropriate analysis of the resulting potential of
mean force. The last column of Table 2 gives the result obtained
from the statistical analysis. (We used the same procedure for
secondary-structure translation as in the Monte Carlo simula-
tions, except that all three secondary-structure states are equally
weighted; see eq 14 (i.e., g = max(gn, gk, 8coil) Of the geometry
of the top-scoring fragments from Fischer’s database.) Com-
parison with the other data from Table 2 clearly shows that the
fidelity of the obtained secondary structure increases noticcably
due to chain connectivity, excluded volume, and confinement
of the chain into a loosely defined sphere. This is because the
presence of a geometrical context provides for more self-
consistent predictions. The information content about chain
geomelry is actually much richer than that provided by the three-
letter code. For example, one may identify with the high-fidelity
positions of the protein surface turns where the chain changes
the direction of propagation.’”% This extension, however, lies
beyond the scope of the paper.

Second, one may note that the generic contribution to the
model potential (despite being completely sequence-indepen-
dent) somewhat increases the average accuracy of the prediction.
The difference is small for the prediction obtained from the
weighted average over the Monte Carlo trajectory described
above. We note that the prediction is much more exact due to
the contribution of generic terms. These propagate secondary
structure and regularize the chain geometry by interpolating
between various “strongly predicted” fragments in a more
“proteinlike” fashion. When generic terms are included, the
average length of a secondary-structure element increases by
7.3%, and the number of longer, regular secondary-structure
elements (longer than 8-residue helices and 5-residue expanded
fragments) increases by 37.5% and becomes closer to that seen
in real proteins. However, it should be pointed out that the
purpose of this work was not to build yet another scheme for
secondary-structure prediction. Analysis of the secondary-
structure fidelity on a limited (but representative) set of proteins
was done to evaluate the possibility of building a reasonable
interaction scheme into a very simple lattice model in the form
of generic proteinlike biases and a local sequence similarity
based statistical potential for short-range interactions. Perhaps
this could be used as a useful tool for medium-resolution
computer studies of realistic protein models.

4. Discussion

In reduced modeling of protein structure and dynamics, one
always has to take into consideration a tradeoff between
computational simplicity and geometric fidelity. Simple lattice
models could be studied in great detail; however, such an
approach may distort some important aspects of protein physics.
On the other hand, more detailed, especially continuous space,
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models could be more difficult to control. One needs much
more extensive simulations to estimate the resulting properties
of these complex model systems. The protein model proposed
in this work has some virtues of both approaches (i.e., it uses
quite a simple lattice representation (single-interacting unit per
residue)) and has relatively good geometric fidelity. Yet, the
large number of lattice vectors representing hypothetical bonds
between the centers of mass of the protein side chains makes
the dynamic properties of such a model close to continuous
space representations. Thus, the potential problems of lattice
anisotropy could be safely dismissed. Such a fluctuating bond
lattice chain itself is, perhaps, a good general model of a long
flexible polymer. To build a reasonable protein model, it is
necessary to introduce strong, proteinlike conformational biases.

The data presented in this work show that it is feasible to
design a side chain model of a protein chain that, despite its
extreme simplicity, is capable of reproducing polypeptide chain
geometry with rather high fidelity. This was made possible by
the careful design of model geometry and the inclusion of
generic structure regularizing potentials. In the past, we have
shown that an equivalent regularization of reduced protein
models was necessary for somewhat more complex models
comprised of two united atoms per residue (Cat + side group).!?
In that case, as here, we also attempted to build into the model
the characteristic stiffness of protein chains and a generic
tendency toward formation of helices and expanded conforma-
tions. Due to the more regular geometry of the Co reduced
backbone for the Ca-based models, this task was relatively easy.
In this work, it has been shown that the same results are possible
in a much simpler side chain-based representation. We also
seem to have achieved a better average accuracy of secondary-
structure representation in the present model of potential and
representation.

Quantitative comparison with our previous work employing
reduced lattice models'?57 is rather difficult because here, for
the first time, we applied a potential based on the straightforward
usage of sequence-structure compatibility. In different contexts,
such an approach is by no means new. Salamov and Solovyev®
employed query sequence alignments with sequences whose
structures are known as a method of secondary-structure
prediction. The achieved accuracy (in the three-letter secondary-
structure code) was about 71% and increased to 73.5% when
the multiple-sequence alignment was employed, similar to the
first step of the approach employed in this work. Common for
all such approaches are the probable distributions of the local
distance geometry that could be built for any sequence of
interest. The idea of using these geometric characteristics for
derivation of various local potentials of mean force is also not
new and has been employed in many works,10:11:26.6667.68 A
classical implementation has been proposed by Sippl.5”¢¢ The
use of distance restraints is also typical for more advanced
methods of homology modeling.%® It should be noted that very
good secondary-structure fidelity has been obtained without
including any tertiary interactions. Consequently, application
of this model for tertiary-structure predictions could be very
promising due to the expected reduced competition between
secondary-structure propensities and tertiary interactions. Mar-
ginally, let us note that trajectories obtained from simulations
described in this work provide quite a bit of supersecondary-
structural information. For example, even a casual inspection
of the snapshots of the 1gbl chains given in Figure 10
(forgetting for the moment the native conformation) strongly
suggests that the protein consists of a helix and four-stranded
B-sheets, as is indeed the case. In this respect, the application
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presented here resembles the approach used in the LINUS
method.” For longer proteins, the picture is not as clean as
for the 1gb1 case; however, most (but usually not all) secondary-
structure elements and surface turns could be correctly assigned.

For all test sequences presented here, we excluded all similar
proteins (25% sequence identity cut off) from the structural
database employed in the derivation of the potential. Usually,
when a database contains some homologous sequences, the
accuracy of the potential and, consequently, the fidelity of the
model secondary structure qualitatively increases. In many
cases, it becomes close to that in the native structure. Many
newly determined protein sequences already have weak homo-
logues in the database of known structures. In such cases, the
model would be very accurate. This observation may open up
new possibilities for distant homology modeling and the de novo
prediction of protein structures. These applications are now
being investigated.

The use of homology-based “potentials” extracted from the
native structures is justified only when structural information
about folded, or close to folded, conformations is desired.
Folding pathways for the proposed model of interactions perhaps
would be strongly distorted due to the very large content of
native secondary structure. Thus, one should be extremely
careful in employing this and related models in studies of protein
dynamics.

5. Conclusion

A new, very simple and efficient model of protein chains
and polypeptide short-range interactions has been proposed. The
model employs a single side chain-based united atom repre-
sentation of amino acid residues located at the centers of protein
side chains. The resulting chain has a complex geometry and
is embedded into an underlying simple cubic lattice with a fine
mesh spacing of 1.45 A. Each side group occupies a cluster of
lattice points, and the “virtual bond” between two successive
chain units can assume a spectrum of lengths and orientations.
These implicitly account for the correlated conformational
transitions of the protein backbone and side chains (for those
residues having internal degrees of conformational freedom).
Due to its purely lattice-based structure, the resulting model is
computationally extremely efficient (the cost of a local move,
including energy computations, is independent of chain length),
thereby allowing simulations of large-scale transitions in protein
systems. The model’s force field consists of generic terms that
account for geometric regularities seen in all proteins and
sequence-specific potentials that are different for each protein.
Inclusion of characteristic proteinlike short-range distance
cormrelations result in an accurate representation of protein
conformational stiffress and secondary-structure propensities.
Sequence-specific “potentials” are local homology-based and
are rather accurate. The predicted secondary structure exhibits
an accuracy comparable to the best secondary-structure predic-
tion methods. The advantage of this model is that such
secondary-structure information is now provided in a more
complete geometric content. Thus, it has been shown that the
proposed very simple protein representation enables meaningful
modeling of secondary-structural propensities. As a result, this
model may be a good candidate for other applications in
structural studies of protein systems.
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