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An efficient reduced model of protein structure, interaction and dynamics is proposed
and evaluated. The model employs a high coordination lattice representation of protein
conformational space. Only protein side chains are treated in an explicit way. Due
to its high computational efficiency the new model enables studies of significantly larger
protein systems at moderate resolution. We describe few applications in protein structure
predictions based on sparse experimental data.

1 Introduction

Reduced models of proteins are very useful in studies of protein folding mecha-
nisms, protein thermodynamics and dynamics! The necessity to use a reduced level
of representation is enforced by the enormous level of molecular complexities of
protein-water systems. When a denatured polypeptide chain, under proper con-
ditions, adopts a unique three-dimensional native structure, the protein folding
process takes milliseconds to seconds? The contemporary art of computing allows
all-atom representation simulations of such systems within a time frame on the or-
der of nanoseconds3 Replacing groups of atoms by ”united atoms”, while neglecting
some degrees of freedom (for instance those within the side group chains) makes
the problem tractable to some extent.

Various levels of simplification were found in the reduced models of proteins
studied during the last 25 or so years™*5 Most commonly, a single interacting
unit per residue or two interacting units per residue (one for main chain segment
and one for the side group, where applicable) had been employed. All standard
and the more special techniques of simulations were employed as an engine for
conformational search, including various realizations of molecular dynamics, Monte
Carlo methods, genetic algorithms and others.

In many cases, when a reduced model approach is adopted, it is quite reason-
able to go one step further towards computational simplicity by assuming a discrete
structure of protein conformational space. This leads to an entire spectrum of lat-
tice models of polymers and proteins! The lattice approach has several advantages.
It enables much more efficient computations due to the smaller number of confor-
mations to be considered. Moreover, lattice coarse-graining of rotational degrees
of freedom leads to considerable smoothing of the energy landscape. A lot of local
energy barriers, hopefully of little importance for the basic physics, are a priori
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dismissed this way. It is the same for long-range interactions and the handling
of excluded volume. A properly designed Monte Carlo scheme is a natural choice
of sampling methodology for a given lattice model. For very simple models, full
enumeration of conformational states (or of a relevant subset of conformations) is
sometimes possible, leading to a complete description of the physics of such models?

In this contribution, we present a short overview of protein lattice models, char-
acterized by various levels of generalization and, consequently, by various levels of
structural detail. Then, we propose a new type of lattice protein models. The
reasons for designing yet another model are discussed. The new model is tested
in some applications that could be useful in protein structure determination from
sparse experimental data. First, a structure assembly from known secondary struc-
ture (in a three-letter code) and a few long-range restraints is presented, followed
by a comparison of the fidelity and applicability of the new tool with the results
of previous work. Then, the derivation of the short-range conformational propensi-
ties based on evolutionary information is described. This allows protein structure
calculations from knowledge of only a few long-range contacts between polypep-
tide units. Other possible applications in protein structure prediction, including a
purely de novo approach, and the study of long-time protein dynamics and protein
thermodynamics are briefly discussed.

2 Lattice Protein Models

Lattice models of proteins and proteinlike systems can be built assuming various
levels of resolution. So-called "simple exact models” employ simple cubic lattice
chains, and each lattice bead represents a single amino acid residue® These models
could be studied in great detail due to the possibility of an exact enumeration of
all compact states, which would lead to a good description of the model energy
landscape. Extensive exploration of the sequence space is also possible for these
models. Studies of simple exact models provide a general insight into the nature
of hydrophobic collapse, explain the conditions necessary for stability of the folded
state and explain some kinetic phenomena associated with protein folding. %7 This
has been shown in other contributions to this book.

Slightly more complex models, based on the diamond lattice representation of
protein chains, have been employed in studies of an interplay between short-range
conformational propensities and tertiary interactions}® Such models enabled sim-
ulations of simple S-type and helical protein motifs. Some necessary conditions for
the all-or-none folding transition to the unique globular state have been formulated
in these studies. Other models of protein and proteinlike systems, assuming a sim-
ilar level of resolution (fcc or bcc lattices for instance), also have been proposed
and their analysis provided a convincing picture of the origins of cooperativity of
protein folding?

Over last few years, a series of "high-coordination lattice” models have been
developed and used in studies of various aspects of the protein folding problem. An
intermediate model of this type assumed a 24-member set of lattice vectors for rep-
resentation of virtual bonds between protein alpha carbons. Such models allowed a
crude representation of protein side chains with a proper chirality of the alpha car-
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Figure 1: Schematic illustration of various lattice models (from the left top to the right bottom of
the figure). The scale of all drawings with respect to protein geometry is maintained for easy com-
parison. (a) Simple cubic lattice polymer. Secondary structure could be defined only on a symbolic
level. The beads of the chain correspond to amino acid residues and could be "colored”, reflecting
the various identities of amino acids. (b) A planar projection of a short fragment of the fec (face
centered cubic) chain. The model enables low resolution representation of some simple secondary
structure motifs. (c) three-dimensional " Chess knight”- 24-vector protein model. This model could
be used for modeling low resolution structures of all types of proteins, but with some distortions of
secondary structure elements. Alpha carbon vertices are chiral and the side chains can be placed
on-lattice or off-lattice. The definition of the side chain positions is provided by main chain geome-
try. (d) 310 Hybrid lattice” model of protein conformations. The set of virtual bonds between al-
pha carbons consists of 90-lattice vectors ([3,1,1],...(3,1,0],...(2,2,1],...[3,0,0], ... (2,2,0]...).
Large number of the basis vectors and fluctuation bond length break-down lattice anisotropy and
enable good flexibility in packing of the side chains that are defined with respect to the main
chain. Internal degrees of freedom of the side chains is modeled by multiple allowed positions of
the single-sphere model side groups.



bon units. Such representation enabled the modeling of all protein motifs and the
low resolution simulation of the folding process of such complex real protein models
as plastocyanin'® and TIM-motifs!! Higher resolution models, based on the same
idea of two interacting centers per amino acid residue, employed 56 and 90 possible
lattice orientations of the virtual alpha carbon-alpha carbon bonds1:12:13:14 Muylti-
ple rotamer representation of the side chains has been implemented in these models.
The increasing resolution and structural fidelity of lattice proteins is illustrated in
Fig. 1. The "310-hybrid lattice” model enabled a quite accurate representation of
the protein conformation. When fitting the model chains to high resolution crystal-
lographic structures the average coordinate root mean square deviation (cRMSD)
for the alpha carbon atoms was in the range of 0.7 A, while the corresponding error
for the centers of mass of the side group was in the range of 1.0 A. It is impor-
tant to note that such high coordination lattice models do not suffer from lattice
anisotropy due to the large (90) number of allowed orientations of the virtual bonds
of the model chain. This type of model enabled the test structure prediction of
small and simple proteins, !* and the study of the dynamics and thermodynamics
of designed and natural proteins!® When the model force field was supplemented
with some evolutionary information (via the secondary structure prediction and
prediction of plausible tertiary restraints via correlated mutation analysis), the pre-
diction of low resolution structures of the majority of small globular proteins became
possible!? For larger proteins (more than 100 residues), de novo structure predic-
tions by Monte Carlo simulations usually failed with this model. The most likely
reasons could be attributed to deficiencies of the model force field and to the still
insufficient computational speed of the lattice algorithm. The model also could be
used in a somewhat different context. Suppose the secondary structure is known
(in a three-letter code: a helix, an expanded state and everything else) and some
long-range restraints (contacts between some residues) are available. Then, depend-
able and relatively fast assembly of considerably larger structures (up to ca. 150
residues) could be simulated. This MONSSTER algorithm 18 (MOdeling of New
Structures from Secondary and Tertiary Restraints) seems be more versatile and
more accurate than other corresponding algorithms. This may be useful for early
stages of structure determination based on the results of NMR. experiments.

3 Why Yet Another Lattice Model?

Briefly outlined high-coordination lattice models of proteins provide quite accurate
representation of protein structure. With respect to corresponding continuous mod-
els, they are at least 100 times faster in computer simulations due to the implementa-
tion of a "prefabricated” conformational transition and the simplified computation
of various elements of the interaction scheme. However, in such models, the motion
of side chains and the main chain segments are to some extent decoupled. On one
hand, it is a rather physical feature that enables the crude modeling of the various
stages of protein folding: from topology assembly to collective adjustment of the
structure resulting in side chain fixation, very much in the spirit of our view of the
molten globule-native transition in real proteins. ! There is, however, a price that
has to be paid for such a defined structure of the model. The side chains are placed
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in a continuous space; thus, a rather expensive algorithm detects overlapping and
”contacts” of the side chains and main chain segment units (in all combinations).
This is actually very far from the elegant simplicity of the low resolution proteinlike
models, where excluded volume could be handled by a simple occupancy test of
the lattice points (the contacts could be detected in a similar way). Is it possible
to build a protein model that possesses virtues of both approaches, i.e., reasonable
resolution that enables the modeling of some details of protein conformation and
the simplicity of pure lattice models? The model described in this contribution
apparently meets these requirements, at least to some extent. We start from the
assumption that the dense packing within a protein is a very important feature
of all protein systems. This actually is inspired by other studies of the simple
exact models. Dense packing and amino acid specific interactions involve mostly
side chains. The main chain segments are somewhat generic and could be perhaps
treated in some models in an implicit way. Interactions and close packing of the
side groups determine protein structure, provided that the main chain geometry
satisfies proteinlike conformational restrictions. Moreover, the principles of the in-
terplay between the main chain conformation and the side chain packing seem be so
well defined in protein structures that they could be actually reversed. Provided a
proper, proteinlike packing of the side chains, the geometry and interactions within
the main chain are preserved. The above provides a conceptual framework for the
definition of the model described in this work. The model employs single united-
atom representation for the side groups of polypeptide chains. They are, however,
bonded by a set of restrictions that accounts for a specific protein geometry in an
implicit way, including conformational restrictions for the main chain conforma-
tions. An outline of such protein representation is given below. As shown later,
such a very simple model is about two orders of magnitude faster in protein struc-
ture assembly with respect to a high coordination 310-hybrid lattice model with no
apparent loss of accuracy.

4 Side Chain-Only Representation of Protein Conformational Space

Side chains of proteins possess their internal degrees of freedom. Let us assume that
the centers of mass of the side chains in their actual rotational isomeric state serve as
a center of interaction for side chains. For Gly residues, the center of mass is placed
in the backbone Ccr atoms. This defines a chain with virtual bonds connecting the
centers of mass of the polypeptide side chains. The distance between two successive
units of such a chain depends on the identity of the corresponding residues and on
the actual rotameric state of their side chains. The distribution of these distances is
quite broad. The shortest distance is observed between two successive Gly residues
and that would be almost three times larger for a pair of residues with long side
chains in an extremely expanded conformation. For a protein consisting of N amino
acids, the model chain is defined by n + 1 vectors {v;}, i = 0,1,...n, connecting
n + 2 united atoms. Two dummy residues are added for a convenient definition of
" conformation” of the N- and C-terminal residues. The set of these virtual bonds

{v} could be defined as {v} = {a e q} where vectors q belong to the following set
of lattice vectors:



|
< sidé chain

& alpha eption
J=N

\
~1 \
TR
— BN
NS

{
\
(

1.45A

Figure 2: An example of a conformation of a short chain connecting centers of mass of a protein
side groups. The upper part of the figure shows an example of extended conformation. The bottom
part of the chain illustrates a helical turn. The large spheres illustrate the effective hard core of the
model chain. - Within one such sphere, the cluster of occupieﬁ lattice points is shown. The black
dots correspond to three occupied sites along the axis orthogonal to the figure plane, the open
ones to a single point in the plane. Exclusion of double occupancy of the lattice points leads to the
effective excluded volume radius shown for all model residues. For a given position of a selected
chain bead the number of points at which a second bead could be found, providing the closest
distance approach is equal to 24. At slightly longer distances, the number of possible positions
grows rapidly. Consequently, any effects of the lattice anisotropy are practically nonexistent in such
a defined model. Approximate positions of the model alpha carbons could be easily computed as
a linear combination of the coordinates of three successive side chains. A fragment of the resulting
Ca chain is also shown in the figure. These coordinates could used for comparison with other
models that handle Ca-chains in an explicit way.

(g} = {[£k £1, £m]) "
with: k,1,m =0,1,2,3,4, or 5 and 11 < ¢ < 30

The number of the lattice basis vectors q is equal to 592. With the assumed
lattice spacing (the scaling constant with respect to the lattice) parameter a= 1.45
A, the resulting distance between an arbitrary pair of side chains can change from
4.81 A to 7.94 A. This nicely covers the main portion of the distance distribution
seen in real proteins that have an average value of about 6.6 A and a standard
deviation of about 1.3 A. The wings of the distribution have been arbitrarily cut off.
Such model chains can be fitted to the high resolution crystallographic structures
with an accuracy of about 0.7-0.8 A cRMSD (for the side chains centers of mass).
The excluded volume of the chain units could be defined in the form of a cluster of
19 points of the underlying cubic lattice closest to a given chain bead. The cluster
includes the central point, 6 simple cubic lattice points and 12 face-centered cubic
lattice points. When each pair of two clusters is not allowed to overlap, the resulting
hard core is characterized by the closest approach distance equal to 3 lattice units,
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which corresponds to 4.35 A. This is a somewhat underestimated representation
of the excluded volume of real polypeptide chains; for larger residues, a soft core
repulsive envelope has been added. Fig. 2. explains the geometric properties of the
model chain.

A conformational updating scheme for such a chain could be designed in a very
straightforward way. A single cycle of the Monte Carlo algorithm consists of several
simple operations. First, the random number generator selects the chain bead. For
the selected chain fragment, a random conformational transition is attempted and
accepted provided the new conformation does not violate the excluded volume or
assumed boundaries of allowed chain geometry. Transitions in models with energy
parameters are additionally subject to the Metropolis criterion. The set of local
moves consists of one- and two-bead motions, and rigid-bodylike small translations
of somewhat longer fragments of the chains (of randomly selected lengths of up to
20 residues). These are illustrated in Fig. 3. The moves of a larger portion of the
model chain are attempted less frequently. When the dynamics of the model chain
are of interest, a model time scale can be easily set up. A conventional time unit
corresponds to f - n attempts to various conformational transitions, where n is the
chain length and f is a constant (range of 2) associated with the number of types of
conformational transitions built into the algorithm.
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Figure 3: Elementary moves employed in the Monte Carlo sampling scheme. A - The single unit
move, the number of alternative "new” conformations depicted by the open circles is actually
many times larger than it is shown in the figure. B - An example of a random change of chain
end conformation. C - An example of a two-bead (three-bond) conformational transition. D - A
rigid-body type small translation of a larger fragment of the model chain. The arrows indicate
the two virtual bonds that change upon this kind of conformational update. It is worthwhile to
note that due to the large "coordination number” of the model chain, the described Monte Carlo
dynamics avoid various ergodicity problems typical for low coordination lattice chains.



5 Modeling Generic ”Proteinlike” Conformational Bias

The model chain defined in the previous section is very flexible. On other hand,
proteins are relatively rigid copolymers with a specific chirality and strong short-
range conformational restrictions. For example, the distribution of the distance
between i — th and i + 4*" side chains in globular proteins is bimodal, reflecting the
existence of helices and expanded states. These and other properties of polypeptides
have to be built into the model 20.

S2

q2

A Itis

Figure 4: Illustration of the geometrical parameters employed in the design and definition of the
short-range generic "proteinlike” conformational biases.

Let us consider a small fragment of the model chains consisting of beads num-
bered from 1 to 7 and the connecting vectors numbered from 1 to 6 (for reference
see Fig. 4). Let us also define a set of vectors that are almost perpendicular to
the planes defined by three successive chain beads according to the formula given
below:

Qi-1 ® Qi —qi—1 ~ qi

| Qi1 ]| q:l @

A small deviation from orthogonality accommodates the super-twist of the sec-
ondary structure of protein chains. As a result, the vectors are exactly parallel
along the long axis of a canonical helix; thus, these vectors are parallel to each
other for all the residues within a helix. For regular expanded states, every second
vector (and every fourth) along the polypeptide chains is parallel to one another.
Consequently, it is very easy to introduce a bias toward some regular secondary
structure conformations of the model chains. Of course, the bias cannot favor any
specific secondary structure; rather, it should act as a bias against non-proteinlike
irregular conformations. The following generic (sequence independent) potentials
seem to serve this purpose very well:

§; =

E2.4 = —£, for Sy @84 > 0.25, (3)
otherwise F2 4 =0

Of course, the same holds for beads 4 and 6. Additionally:
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E, 6 = —¢, for s, @85 > 0.25, 4
otherwise Ep g =0 @)

Further generic bias could be introduced via an energy price for regular sec-

ondary structure local geometry. Here also the gain is not dependent on a specific
type of secondary structure.

Eg = —¢, for qeq; < -5 (5
and when the local conformation is "helical-compact” )

Ege = —E€g for qoeqq < -5 (6)
and when the local conformation is "helical-compact”

Epy = —e,forqyeq3 >5 )
and when the local conformation is expanded

Egy=—¢,forqpeqq >5 8)
and when the local conformation is expanded

where "helical-compact” is assumed in all cases when: r? ; < 32 and q; eqq > 0,
and "expanded” for 60 < r} 5 < 125 (in lattice units).

The next contribution to the generic potential propagates stretches of regular
secondary structure and also increases the chains persistent length:

0 for | r26 — r1,5 |°< 15 (in lattice units)
2
Ep = E,m'e:—;l'ﬂ— for 15 <| 26 —ri1s5 |2S 40 (9)
Eg for 40 <| r26 —Tris |2

where r; ; is the vector from the i-th to j-th chain bead.

Finally, a small bias, Ep, is introduced toward the right-handed conformation
of compact states. This facilitates formation of right-handed helices in the absence
of the sequence specific potential. When the sequence specific part of the potential
is employed, which of course contains chiral components (see the next sections),
this contribution has been omitted, i.e., Eg = 0.

ER = —€; for r?_l_,~+2 < 32, and (Qi—l ® qi) ® Qi1 >0 (10)

The total energy of the chain is the sum of all contributions and the scaling
factors for particular terms have been adjusted to reproduce the secondary structure
of globular proteins with good fidelity (when the sequence-dependent potential is
added).

Egen = Z (0.25E3,4 + 0.25E; 6 + Efy + Exa + Egy + Eg2 +0.5E, + Eg) (11)

where  means summation along the chain. It should be pointed out that this
somewhat complex set of potentials is controlled by a single energetic parameter &,.
The above set of biases does indeed lead to proteinlike geometry of the model
chain. At proper temperature (or with a proper value of the ¢, parameter, €,/kT =
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1 is a reasonable value) the distribution of local distance matches almost exactly
the distributions seen in globular proteins. What is very interesting is that not only
chirality (or rather handness of the chain), bimodal distribution of r; i+4 distance
or other short-range geometry is reproduced in a semiquantitaive way, but also in-
termediate distributions because the distribution of r;i+g distances becomes very
similar to that seen in globular proteins. This is illustrated in Fig. 5, where some se-
lected distributions of the distances between side chains obtained from the statistics
of representative database of protein structures are compared to the corresponding
distributions in the model chain simulated at T=1.
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Figure 5: Comparison of distributions of distances between side chain centers of mass for known
protein structures (extracted distributions neglected amino acid sequence identity, the top sections
of each panel, smooth line) with the corresponding distributions for unrestricted model chains (the
middle sections) and with that for the model chain controlled by the generic potential (extracted
from long isothermal, T=1, simulation for the model chain congisting of N=100 units, in the bottom
panels of each section). The plots are prepared for T} it3 Tiji+a) Ff ;g and ;48 distances, where
(*) denotes a chiral value, i.e., the value multiplied by a sign depending on the fragment handness.
In the rii+e Case the handness is defined for a "superchain” constructed by connecting every
second original chain bead.
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6 Modeling the Secondary Preferences and the Long-Range Interac-
tions.

The generic model of polypeptide chains described in the previous section could
be made sequence specific in various ways. One of the simplest possible methods
for designing the sequence specific secondary propensities employs statistics of pair-
wise dependent short range distances. The method is very similar to that used in
the context of reduced models based on alpha carbon representation. The geome-
try employed in the definition of short-range interactions in the present studies is
explained in Fig. 6.

Figure 6: Intrachain distances employed in the definition of pair-dependent (amino acids marked
in the figure) short-range potentials. In the case of r};+3» and riipq distances, the statistics also
have been determined for the alternative (flanking) amino acids and taken into simulations with
the same weigh factor as these shown in the figure.

The obtained potentials have several bin histograms, where the numerical values
are obtained by comparison with the "generic” distributions:

~In(f (A, B,%i itk,m))
f (r:?,i+k.m)

where f(r;i+k,m) is the frequency of observation of the i-th bin of the Tiitk,m
distribution, f(rg;, s ), denotes the database averaged, sequence-independent dis-
tribution. A and B denote identity of proper residues as marked in Fig. 6.

Similarly as for short-range interactions, a proteinlike generic bias could be
introduced on the level of the tertiary (long-range) interactions. The generic terms
consist of a cooperative "hydrogen-bond” scheme and a bias toward proteinlike local
patterns of the side chain packing. The details are found elsewheré!.

v(A,B,Y;irkm) =

(12)
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7 Assembly of Protein Structures from Known Secondary Structure
and a Small Number of Tertiary Contacts

To check the performance of the proposed representation of protein structure and
corresponding model interactions, we simulated the process of tertiary structure
assembly given protein secondary structure (in the three-letter code) and a small
number of known tertiary contacts?! This kind of experimental data are frequently
available in the early stages of protein structure determination based on NMR
experiments. The range of the number of tertiary restraints considered here is
substantially smaller than that required for successful model building via more
standard procedures. Recently, we developed a method of protein assembly from
such sparse experimental data. The method employed alpha carbon plus side chain
reduced representation of protein structure. A much simpler, present model was
tested on a superset of protein sequences used previously.

A small number of tertiary restraints and loosely defined secondary structure
is not sufficient for structure assembly. These restraints have to be superimposed
on the top of the more general force field of the model. The force field consists of
the short-range interactions described in the previous section, generic long-range
interactions (a simple model of "hydrogen bonds”, translated onto side group based
model chain geometry, and some packing regularizing generic interactions) and se-
quence specific long-range interactions. These consist of a model of hydrophobic
burial interactions and a pairwise interaction scale, which has been derived as a
potential of mean force based on the statistics of side chain-side chain contact pref-
erences in known protein structures.

The model of hydrophobic interactions consisted of several terms. First one
regularizes model protein density under the assumption that we deal only with
singe domain globular proteins. These are approximately spherical in shape and
the radius of such spheres could be easily correlated with the number of residues in
a folded polypeptide chain. Let us define protein radius of gyration:

5= (V13 trom - ry?)} (13)

where reu indicated the center of mass of the chain, and r; indicated coordi-
nates of the center of mass of the i-th side chain. The following scaling relation
could be derived from a proper statistical analysis of single domain proteins:

S = 1.52N%38 in lattice units (14)

The equivalent sphere could be derived on several shells, and a target number of
residues in a particular shell could be prescribed to "an average” protein of a given
size. Consequently, a density regularizing potential could be defined as follows:

Ey = E(,Z | mo,i —m; | (15)

where my,; is the target number of amino acids in shell i from the center of the
globule. Three inner shell, of equal thickness covering the volume of the sphere of
radius S contain slightly more than half of the protein residues. The entire protein
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is essentially contained in a sphere with a radius equal to 5S The value of the
parameter €, was assumed to be in the range of 1.0 kgT. A conservatlve estimation
of the radius of the protein hydrophobic core is about 2S Faster collapse of the
model protein is facilitated by the implementation of potentlal energy equal to
~ekp(7)/16 for all residues within the hydrophobic core. Here e (i) denotes the
Kyte-Doolittle hydrophobicity parameter of the i-th residue. 22:23

Protein residues have a different size and different shape. The fraction of the
covered surface of a given amino acid being in contact with another amino acid
depends on the identity of both partners. The effect is not additive. Appropriate
parameters could be derived from the statistics of the known protein structures
and translated into a number of occupied points in a coordination sphere. The
corresponding potential describes a local burial effect.

Esurface = Esurf Z E (Ai: ai) (16)

where @; is the covered fraction of the side chain of amino acid A; and the
resulting burial energies E, could be derived from the proper statistics of the struc-
tural database. The scaling factor €4y, for this term has been assumed to be equal
to 0.25 in all reported simulations. The above approach to the hydrophobic inter-
actions enables the omission of the previously defined centrosymmetric one-body
potentials, and thereby opens up the possibility of extending the present approach
to multidomain and multimeric proteins. In the present simulations, both terms
have been used in parallel.

The pairwise contact potentials for the side chains are the same as used in the
previous work. The restraints were also implemented in a similar fashion. The
short-range restraints have been superimposed only with respect to the helical and
extended (B-type assignment) conformations. They were implemented as a bias
toward the loosely defined appropriate local geometry defined by four consecutive
model chain vectors (virtual "bonds” between side chain centers of mass). Addition-
ally, the proper "mixing rules” have been superimposed onto the model hydrogen
bond network, i.e., hydrogen bonding between known helical residues and known
B-residues has been ignored during the simulations, thereby penalizing hydrogen
bonding inconsistent with known secondary structure?! The long-range restraints
were defined as follows:

Eij,restraincd = Erep for3 < Tij < R"p
€ij — 0.5 for Ri,j™P < r,J < R;;
€res (RE; — R},™®) for Bij <r5; < 10 a7
— 2 -
E,,,m%._mn for 10 < ry;

where, E™P denotes a finite (5 kgT) repulsive interactions for larger amino
acids, and R;7 is the cut-off dlstance The value of parameter &,¢, in structure
assembly runs was set equal to g» while during the low temperature refinement run
needed for the proper identification of the lowest energy structures, it was set equal
to % Ten proteins of various sizes and various secondary structure classes have
been tested in the present work. The secondary structures have been taken from
the Kabsch-Sander assignment 2 (reduced to a three-letter code) and the pairs of
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tertiary restraints have been generated randomly from the native contact maps. For
proteins that were the subject of our previous related work, we used the same sets
of long-range restraints. In the cases when the number of restraints is smaller than
in the previous work, we took a subset of previously used restraints. 18

In all cases, the folding simulations lead in a prevailing fraction of experiments
to a proper fold of a moderate resolution. All misfolded structures (one per five to
ten simulations) were identified as a topological mirror image folds. These could be
easily dismissed based on the conformational energy of resulting structures, i.e., the
model force field properly identifies nativelike structures. Table I contains a concise
comparison of the results obtained via the present model with the results of our
previous study employing a more complex model.

Table 1: Comparison of results for the present simulation of protein structure assembly with the
results obtained by the MONSSTER method.

Protein Number Type Number cRMSD in A c¢cRMSD in A

PDB of of  of long-range from the from
name residues fold restraints present model®®* MONSSTER®
1gbl 56 a/B 8 34 3.3
lctf 68 afB 10 3.2 4.2
1pcy 99 B 46 3.8 3.5
1pcy 99 B 25 49 54
1pcy 99 B 15 5.7 —
2trx 108 afB 30 3.1 34
2trx 108 alB 16 35 —
dfab 113 B 27 44 —
4fab 113 B 16 5.9 —
3fxn 138 a/B 35 4.1 3.9
3fxn 138 a/B 20 4.1 _
lmba 146 a 20 43 5.9
Atim 247 a/p 62 5.1 —_
Atim 247 a/B 50 6.0 —
Atim 247 afp 36 6.7 —

¢ Average cRMSD of the Ca over an isothermal stability run.

b The average coordinate root mean square deviation from known tertiary structures 25 is reported
from structures obtained from the present model based on side chain only representation, and converted
into approximate coordinates of the Ca trace (computed as a simple linear combination of the three

consecutive positions of the side chains).

Inspection of the data given in Table 1 leads to several observations. First,
the average accuracy, measured by cRMSD from the native alpha carbon trace for
the model presented in this work is no worse (in most cases, better) than that for
the more complex MONSSTER model having two interaction centers per residuel8
Second, proteins, especially the all-8 type, could be assembled with a smaller num-
ber of restraints. One needs, at most, N/7 long-range restraints, where N is the
number of residues; however, the fidelity of the assembled structures increases with
the increasing number of long-range restraints. Third, much larger structures could
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be assembled as has been shown for the 247 residue Atim protein. This is possibly
due to the strictly lattice structure of the present model that makes simulations for
these long proteins about two orders of magnitude faster. This may increase the
possible applicability of the model in the early stages of protein structure determi-
nation from NMR data. Very few long-range restraints are necessary for building an
approximate model. Then, the model can facilitate the identification of other NMR,
signals, providing additional restraints, and thereby the possibility of consecutive
refinement of the structure of interest.

8 Local Sequence Similarity Based Potential for Short-Range Interac-
tions

The statistical potential for short range interactions described in Section 6 can be
replaced by a more elaborate potential of mean force employing sequence similar-
ity and sequence-structure compatibility of short fragments of polypeptide chains2®
The process of the derivation of such potentials for a given test sequence (in con-
trast to the simple statistical potential described before, this one has to be derived
separately for each sequence of interest) could be outlined as follows:

(i) A multiple sequence alignment search is performed to find close homologues
in the sequence database. When found, the homologous sequences were treated in
exactly the same way as the test sequence, increasing the strength of the statistics.
Only aligned fragments of the homologous sequences are taken into consideration.

(ii) The test sequence (and its existing close homologues) is divided into frag-
ments by sliding a 19-residue window along the sequence. These are sequence
fragments for which the potential is actually constructed.

(iii) The resulting set of N-18 sequence fragments (for the N residue test se-
quence) is then compared to all possible continuous fragments of the sequences from
the structural database. The BLOSUMBS80 2¢ sequence similarity criterion was em-
ployed for this purpose. For the central 9 residues of a 19-residue fragment, the
value of the weight for the alignment scoring criterion was assumed to be equal to
1.0, while for the flanking residues, the weight decreased linearly up to a value of
0.1 for the first and 19th residue. The top 100 most sequentially similar fragments
of protein structures are extracted for each 19-residues window of the test sequence.
These fragments are then used for derivation of local residue-residue distance dis-
tributions for the test protein.

(iv) The distance distributions were collected for several intrachain distances,
Tii+k, With k=1,2,3,4,6, and 8 for the central residues of the test window. The k=3
and k=6 distances were treated as ”chiral”, i.e., the distances were stored as negative
numbers for left-handed conformations and as positive numbers otherwise. For the
k=6 case, the chirality was defined using three consecutive vectors connecting every
second side chain center of mass (vectors rj iy2, Tit2,i+4 and riy4 i g, respectively).

(v) The statistical potential of mean force was then generated by comparison
of the observed distributions (in a form of histogram) of particular distances for the
extracted top scoring structure fragments with the corresponding distribution for
the entire structural database.

The obtained potentials could be symbolically written in the following way:
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v G Righm) = ~In (PLEM-) (18)
P (ri.:’+k,m)

where P(i,r; i+k,m) is the weighted (by the sequence similarity criterion for the
100 top scoring fragments) probability of observation of the i-th bin of the r; ;i k. m
distribution, P(r?;,, ,»), and denotes the corresponding probability averaged over
the entire structural database; i is the position along a given chain; and m denotes
the bin number of the distribution histogram. Particular histograms consisted of 9,
7, 7, 10, 10 and 4 bins for Tii+1, Ti i+2) i,i4+3, Tii+4, i i+6 and r;;is, respectively.
As mentioned before the potential for a given residue in the test sequence depends
on a 19-residue window; consequently, the potential could be qualitatively different
for the same central amino acid in two different protein sequences.

This potential, when applied together with the short-range generic structure
regularizers discussed in previous sections, reproduces the secondary propensities
of polypeptide chains with good fidelity. This could be observed in simulations
of a protein chain in the absence of tertiary interactions2® When translated into a
three-letter code, the average accuracy for the ten proteins listed in Table 1 is 72.2%
when all homologous proteins (and proteins very similar to the test protein folds)
are removed from the structural database. When the whole Fischers 27 database
is employed in the derivation of the potential the secondary structure fidelity in-
creases to 77.8%. It is worthwhile to note that when the potential is based only
on homologous structures, then the secondary propensities are almost exact. Also,
when the tertiary interactions are included, the secondary structure fidelity always
increases; for some (but not all) structurally very simple proteins that fold to a
nativelike compact state, it is almost exact. However, the outlined force field alone
is insufficient to fold the majority of single domain proteins.

9 Protein Structure Assembly Based on Few Known Tertiary Contacts

Since the sequence similarity short-range potential described in the previous section
reproduces secondary propensities of protein chains with good accuracy, it seems
be natural to explore the possibility of structure assembly based on small number
tertiary restraints only. The experiment is similar to that described in Section
7; however, here, knowledge of secondary structure is not assumed. Experimental
methods exist that allow determination of some contacts between side chains. Thus,
the model proposed here may be a valuable tool for prediction of low resolution
protein structures. The folding experiments were done for a subset of proteins
studied in section 7. We selected four proteins for the test simulations: 1gbl, lctf,
lpcy and lmba. These proteins represent all structural classes of single domain
protein folds. The sets of long-range restraints employed here were the same as those
used in previous studies. We examined the possibility of folding these proteins with
even smaller numbers of known tertiary contacts. In these simulations, we employed
two times smaller number of restraints (every second have been extracted from the
original sets). The results of experiments are summarized in Table 2.
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Table 2: The results of folding experiments with a small number of long range restraints

PDB Number Number range of cRMSD  average cRMSD
of restraints of simulations (in A)
1gbl 8 16/21* 2.6-4.2 3.2
1gbl 4 4/11 4.2-5.8 5.1
lctf 10 7/8 3.9-5.0 4.5
lctf ) 12/18 3.9-5.3 4.5
lpcy 25 7/8 4.6-5.5 5.0
1pcy 15 4/9 6.4-7.6 7.1
1mba 20 9/9 3.8-5.1 4.4

° nl/n2 - the number of successful (n1) folding experiments (all restraints satisfied and the topology of
the fold correct per number of all experiments (n2) with satisfied restraints (misfolds have predominantly
mirror image topology)

Inspection of the data given in Table 2 shows that the average accuracy of
obtained structures is very similar to the accuracy of the structures obtained with
assumed knowledge of secondary structure. The only exemption is the case of 1pcy,
where the structures obtained with 15 restraints are of worse quality than those
reported in Table 1. For the three remaining proteins, we attempted folding with
an even smaller number of tertiary restraints: 4 and 5 for 1gbl and 1ctf, respec-
tively. 1gbl and 1ctf fold under these conditions with reproducibility allowing easy
identification of the nativelike structures. For lmba with 10 restraints, the many
folding experiments led to misfolded structures that violated some of the super-
imposed tertiary restraints. In the few successful experiments (all ten restraints
satisfied, i.e., appropriate pairs of amino acids at contact distances), the resulting
folds were correct. In all cases the lowest energy has been observed for one of the
correct structures. Figures 7-10 show representative folded structures compared to
the native structures. To prepare the ribbon diagrams?® , the Ca coordinates were
determined using the approximate procedure mentioned before.

10 Conclusions

In this work, we have proposed a new reduced model of protein structure and
dynamics. The model is based on the lattice representation of the protein side
chain centers of mass. The main chain is treated in an implicit way. Due to
the high effective coordination numbers of such model chains, the model has the
advantage of both simple on-lattice and off-lattice representations. The cost of
Monte Carlo simulations of protein dynamics or the folding process for this model
could be estimated at about two orders of magnitude smaller than that for our
previous lattice models of a similar resolution that treated the main chain and side
groups in an explicit way.

The new model was tested in three special cases. First, we used this model
for protein structure assembly given the knowledge of protein secondary structure
(as a three letter code) and small number tertiary contacts. The new method
2! performed better than our MONSSTER. method 18 However, it should be men-
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tioned that the MONSSTER method seems be more exact and more versatile than
other previously published algorithms for structure assembly 29:3° from sparse ex-
perimental data; thus, the present development appears to be important. Next, we
examined the possibility of implementing the homology-based statistical potential
of short-range interactions within the framework of the new model. The possibility
of quite accurate modeling of secondary propensities has been demonstrated. Sub-
sequently, the model was employed for protein structure assembly given only a few
long-range (tertiary) native contacts between protein side chains. The preliminary
results reported in this work are very encouraging.
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native

Figure 7: Comparison of the native structure of lgbl with a representative structure obtained
from simulation with 4 long range restraints.

native

Figure 8: Comparison of the native structure of lctf with a representative structure obtained from
simulation with 5 long range restraints.



native

Figure 9: Comparison of the native structure of 1pcy with a representative structure obtained
from simulation with 25 long range restraints.

native

Figure 10: Comparison of the native structure of lmba with a representative structure obtained
from simulation with 20 long range restraints.



